This invention relates to permeable membranes for gas and/or liquid separation.
Carbon nanotubes (CNTs) have been considered in connection with permeable membranes for fluid separation for some time. Such membranes often rely on unusual transport properties of fluids through the nanotubes to improve performance. For example, enhanced transport through carbon nanotubes has been considered in U.S. Pat. No. 8,038,887.
However, it remains relatively difficult to fabricate permeable membranes having carbon nanotubes (CNTs) as the active material for separation. One significant reason for this is that active layers in permeable membranes are subject to numerous requirements (e.g., reliability, fouling resistance, high flux, good separation capability, etc.) and it can be difficult to meet these requirements with active layers that include carbon nanotubes. Another issue that can arise with such membranes is that CNTs may not provide sufficient separation capability. For example, small ions are difficult to filter out with CNTs.
Accordingly, it would be an advance in the art to provide high-performance separation membranes that are easier to fabricate.
In this work, we have found that an aligned carbon nanotube mixed matrix membrane with a barrier layer has improved performance.
We have found, surprisingly, that including matrix layer 104 with its aligned 1-D nanoparticles in a separation membrane (e.g., as shown on
For formation of the barrier layer (which can be referred to as the IP layer in some embodiments), the properties of the surface on which it is deposited are important, especially for interfacial polymerization (IP), which is often a preferred approach for fabricating the barrier layer. Preferably, this surface is relatively flat and smooth, with small, evenly distributed pores. We have found that an aligned 1-D nanoparticle matrix layer (e.g., 104 on
The pores formed within the 1-D nanoparticle matrix layer are smaller in size and are more uniform in distribution as a result of the presence of the aligned 1-D nanoparticles. These differences have been confirmed with SEM analysis. Due to these improved characteristics, flow rate through the membrane can be improved. Pores can be formed in the matrix layer through methods such as phase inversion, drying, or etching. In a phase inversion process, a layer of polymer dissolved in a solvent is immersed in a non-solvent, inducing precipitation of the polymer and the formation of voids within the layer. The structure of the voids is determined by kinetic and thermodynamic factors and is sensitive to concentration, temperature, and additives. The incorporation of aligned 1-D nanoparticles will change the solvent/nonsolvent dynamics and the precipitation of the polymer, resulting in a different structure than would be obtained by phase inversion in a matrix layer not including aligned 1-D nanoparticles. A surprising and noteworthy feature of this improvement of the pores in the matrix layer is that the improvement in flow rate does not depend exclusively on transport through the 1-D nanoparticles. Thus, 1-D nanoparticles other than CNTs can be employed, such as nanofibers, nanorods, etc. If CNTs are employed, they can be either open-ended or close-ended.
The improved membrane performance resulting from 1-D nanoparticles in the matrix layer can be seen by comparing an RO membrane including an aligned CNT matrix layer to a commercial RO Membrane (Filmtec SW30HS). The commercial SW30HS membrane has a measured pure water permeability of 1 lmh/bar, while the aligned CNT membrane with an IP layer has a measured pure water permeability 6 lmh/bar. Both membranes have over 96% rejection and can withstand pressures above 500 psi. This 600% improvement in performance is a result of a superior IP layer that is enabled by the nanotube porous matrix layer.
We also observe that the type, quality, and size of the CNTs influence the performance of the membrane. For smaller nanotubes, where the inner diameter is 2 nm, the pure water permeability is 4 lmh/bar. For larger nanotubes, where the inner diameter is 5 nm, the pure water permeability is 11 lmh/bar. These data show that the incorporation of aligned nanotubes, and the type of nanotube, has a significant influence in the produced porous matrix and the final membrane performance.
Similarly, in forward osmosis membranes with an IP barrier layer, membranes with aligned nanotubes in the matrix layer have improved performance relative to similar membranes without carbon nanotubes. Table 1 below provides some results.
Here, LMH is short for “liters per square meter per hour”, “skin to water” refers to measurements taken with the barrier layer (i.e., the skin) facing the fresh water side of the separation, while “skin to draw” refers to measurements taken with the barrier layer facing the draw solution side of the separation.
This approach is broadly applicable to any gas or liquid separation, including but not limited to: forward osmosis, reverse osmosis, gas separation, and solute-solvent separation in general. Gas separation applications can be further extended to carbon capture and sequestration.
a-b show side and top views of an embodiment of the invention.
a-b show top and side images of a porous matrix layer including aligned 1-D nanoparticles.
a-d show some alternative embodiments of the invention.
a-h show a first fabrication sequence suitable for making embodiments of the invention.
a-f show a second fabrication sequence suitable for making embodiments of the invention.
a-b show SEM images relating to the roof layer fabrication approach.
a-b show further SEM images relating to the roof layer fabrication approach.
a shows a side view of an embodiment of the invention.
Any kind of 1-D nanoparticle can be employed in embodiments of the invention. Here, a 1-D nanoparticle is defined as a particle having at least two of its length (L), width (W) and height (H) being less than one micron, and having an aspect ratio (i.e., max(L,W,H)/min(L,W,H)) of 10 or more. Suitable nanoparticles include but are not limited to: open-ended carbon nanotubes, close-ended carbon nanotubes, carbon fibers, nanowires, nanorods, and other types of 1-D nano-objects.
Preferably, the thickness of matrix layer 104 is from about 100 nm to about 100 μm. Preferably, the thickness of active layer 102 is from about 0.3 nm to about 500 nm. Any polymer can be used as matrix polymer 105. Similarly, any material that provides species-specific gas or liquid transport can be used for active layer 102. Suitable materials for matrix polymer 105 include, but are not limited to: cellulose acetate, epoxy, polydimethysiloxane, polyvinylene fluoride, polysulfone, m- or p-polyaramids. Suitable materials for active layer 102 include, but are not limited to: polyamide, polyethylene glycol (PEG) and its co-polymers.
Active layer 102 can be a gas-selective layer. For example, layer 102 can include poly(amido amine) (PAMAM) or a PEG-nylon block co-polymer, polydimethylsiloxane (PDMS), chitosan, polytrimethylsilyl-1-pentyne (PTMSP), or both to impart the membrane with selectivity to CO2 or other gases.
Alternatively, active layer 102 can be a liquid separation layer for solvent-solute separation. Various applications include, but are not limited to: forward osmosis, reverse osmosis, nanofiltration, pressure retarded osmosis, desalination, carbon capture and/or sequestration, etc.
a-b show embodiments of the invention having anti-fouling layers. The example of
c-d show embodiments of the invention having further mechanical support in the porous support layer. The example of
One approach for making membranes according to embodiments of the invention is as follows:
1) Form vertically aligned 1-D nanoparticles on a substrate;
2) Infiltrate a matrix precursor between the 1-D nanoparticles;
3) Form a porous polymer matrix from the matrix precursor to provide a matrix layer including the porous polymer matrix and the vertically aligned 1-D nanoparticles, where the 1-D nanoparticles substantially extend through the matrix layer;
4) Form a porous support layer on top of the matrix layer (here, steps 3 and 4 can be performed as two separate steps, or the matrix layer and porous support layer can be formed in a single step);
5) Separate the matrix layer from the substrate; and
6) Form an active layer on an exposed surface of the matrix layer, where the active layer provides species-specific fluid transport.
Two refinements of this basic process have also been considered, and are described below in connection with
a shows aligned 1-D nanoparticles 108 on a substrate 402. Methods for growing aligned 1-D nanoparticles on a substrate are known in the art, and any such method can be employed here.
b shows the result of depositing a porous roof layer 406 on the 1-D nanoparticles, such that the roof layer and substrate are vertically separated.
c shows the result of infiltrating a matrix polymer precursor 408 between the 1-D nanoparticles, and also between roof layer 406 and substrate 402. Preferably, matrix polymer precursor 408 is capable of flowing through roof layer 406 in order to facilitate infiltration.
d shows the result of forming matrix layer 104 from matrix precursor 408. The polymerization is performed such that pores form in layer 104, one of which is referenced as 110. A phase inversion process is a preferred approach for forming matrix layer 104, but any approach for forming a porous layer from precursor 408 can be employed.
e shows the result of removing roof layer 406. This removal can be performed by any method. In some cases, reactive ion etching or mechanical removal is preferred. Mechanical removal of the roof layer can be helpful in cases where the 1-D nanoparticles are nanotubes, because mechanically removing the ends of nanotubes (as occurs when the roof layer is removed) can be an effective way of ensuring that the nanotubes are open-ended. This step is optional. Infiltration of the matrix precursor can also form an excess layer above roof layer 406, which forms porous support layer 106 after polymerization. In such cases, matrix layer 104 and porous support layer 106 are formed simultaneously in a single process step, and roof layer 406 remains in the final structure. In the resulting structures, porous roof layer 406 is regarded, by definition, as being part of the porous support layer.
f shows the result of forming porous support layer 106 on matrix layer 104. A phase inversion process is a preferred approach for forming support layer 106, but any approach for forming a porous layer can be employed.
g shows the result of removing substrate 402 from the structure.
h shows the result of depositing active layer 102 on the exposed surface of matrix layer 104. Interfacial polymerization is a preferred approach for forming active layer 102, but any approach for depositing an active layer 102 on matrix layer 104 can be employed.
As indicated above, the process of
One of the challenges in the post-infiltration processing is removing the excess layer on the membrane to expose the nanotube pores. The process of
For good infiltration it is very important to achieve a highly porous roof layer, which can be either achieved by tuning the deposition conditions, or by post-deposition etching of the roof layer, or by post-deposition mechanical polishing of this layer. This roof layer on top of the CNT array can be made using CVD coated polymers (parylene), thin layer of graphite or other PVD deposited materials (silica, silicon nitride, gold, etc.).
For effective infiltration, the polymer precursor 408 should have low viscosity to fill the gaps between nanotubes. The easiest way to achieve the fill is to use in situ polymerization or crosslinking of polymers (PDMS, polystyrene, various epoxies). In this step low viscosity precursors 408 are added during infiltration step, the excess is mechanically removed from the membrane surface, and final crosslinking is performed after removal of polymer excess. Example 2 below gives a protocol for CNT membrane fabrication with PDMS polymeric fill.
After the polymer precursor 408 is cross-linked to form matrix layer 104 (using elevated temperature, UV or UV-Vis irradiation, etc.) the roof can be removed using plasma etching, polishing, or chemical treatment. At this stage, we can also add a mechanical support layer (e.g., 106 on
After attaching the support membrane, the resulting structure can be released from the wafer/substrate by using a mild acid etch (HF, HCl), or by mechanical removal of the wafer.
The resulting CNT membranes can be coated with a thin interfacially-polymerized polyamide layer to alter their rejection properties (See Example 3 for a sample protocol of this procedure).
a shows aligned 1-D nanoparticles 108 on a substrate 402. Methods for growing aligned 1-D nanoparticles on a substrate are known in the art, and any such method can be employed here.
b shows the result of depositing a conformal polymer layer 502 on the 1-D nanoparticles, such that the 1-D nanoparticles are coated by the conformal layer. Conformal layer 502 may or may not also be deposited on substrate 402. Suitable materials for conformal layer 502 include, but are not limited to: polydopamine, polyethyleneimine, polyacrylic acid, poly(methyl methacrylate) or surfactants (e.g. sodium dodecyl sulfate or Triton X® (Dow)).
c shows the result of infiltrating a matrix polymer precursor 504 between the 1-D nanoparticles, and also above the 1-D nanoparticles.
d shows the result of simultaneously forming matrix layer 104 and porous support layer 106 from matrix precursor 504. The polymerization is performed such that pores form in layers 104 and 106. One of the pores in matrix layer 104 is referenced as 110. A phase inversion process is a preferred approach for simultaneously forming matrix layer 104 and porous support layer 106, but any approach for forming porous layer 104 and 106 from precursor 504 can be employed.
e shows the result of removing substrate 402 from the structure.
f shows the result of depositing active layer 102 on the exposed surface of matrix layer 104. Interfacial polymerization is a preferred approach for forming active layer 102, but any approach for depositing an active layer 102 on matrix layer 104 can be employed.
The approach of
In some cases, it is preferred for infiltrating the matrix precursor to result in the formation of an excess layer on top of the 1-D nanoparticles (e.g., as on
The following description provides several illustrative examples of the above-described principles, where the 1-D nanoparticles are carbon nanotubes (CNTs).
Membranes in this example include an aligned carbon nanotube array partially or fully infiltrated with a polymer to form a composite layer (104 on
Carbon nanotubes were grown using 0.5 nm of Fe and 0.1 nm of Mo as a catalyst deposited over 30 nm of alumina on standard 4″ silicon wafer. The catalyst was deposited in e-beam evaporator using very slow, 0.01-0.02 nm/s deposition rates. CNTs were synthesized at 695-720° C. catalyst annealing temperature, 90 mbar synthesis pressure, acetylene concentration 25 sccm, growth temperature 670-720° C. As-grown nanotubes were approximately 10-15 microns tall.
A 1-4 mg/mL dopamine hydrochloride (Aldrich) was dissolved in 10-50 mM Trizma-HCL buffer (Aldrich) solution of 8-10 pH range. A desired amount of the dopamine solution was then poured into a container with aligned CNT wafer. The solution was constantly and gently agitated for 10-40 minutes to polymerize dopamine to polydopamine. This procedure leaves an ultrathin polydopamine coating layer (502 on
A polymer solution of m-polyaramid was prepared by dissolving 5-18 wt % m-polyaramid in n-methyl pyrrolidinone solvent with 1-10 wt % lithium chloride between 70-90 deg C. under constant agitation for 1-4 hours. (Other hydrophilic or hydrophobic polymers could also be used (polysulfone, poly(vinylidene fluoride), cellulose acetate).
To prepare the membrane, excess water was squeezed off the polydopamine-CNTs wafer (after taking it out from DI water bath) either with filter paper or with a rubber roller. Then the wafer was soaked in a n-methyl pyrrolidinone bath for 1-5 minutes. Then an excess amount of the m-polyaramid polymer solution was poured onto the wafer and allowed to infiltrate for 0.5-8 hrs (thus the m-polyaramid polymer solution here is an example of 504 on
Another approach is thin film composite membranes where the top layer of the membrane is a barrier layer supported by a thin composite layer of substantially aligned carbon nanotubes bound in a permeable polymer matrix that is fabricated with the use of a porous roof. Without losing any generality, an example of this layer is a vertically-aligned carbon nanotube layer with diameters ranging from 0.5 nm to 5 nm. The nanotubes in this example are bound by a vapor-deposited poly-xylene (parylene) polymer. The poly-xylene layer can fill the majority of the interstitial space of the CNT array or that interstitial space could be filled by the composite of poly-xylene and another polymer, such as PDMS, epoxy, m-polyaramide, polysulfone, polyethersulfone, poly(vinylidene fluoride), or cellulose acetate. The thin nanotube polymer layer (e.g., 104 on
Carbon nanotubes were grown as described in Example 1. The resulting array of vertically aligned CNTs was covered with 30 nm of parylene (type C) to form a roof layer (e.g., 406 on
The CNT array covered by parylene roof layer was infiltrated with a PDMS solution (e.g., 408 on
Any excess of PDMS on the top of the parylene roof layer was gently removed by wiping with soft paper. One of the functions of the parylene roof layer is holding the carbon nanotube array and preventing its destruction during this wiping procedure. Infiltrated polymer was cured at 70-130° C. for 1-12 hours to form matrix layer 104. An SEM image of the PDMS infiltration is shown on
A reinforcing polymer mesh (e.g., 106 on
After releasing, the membrane was washed in water (5-10 min), dried in vacuum (10-100 mbar) and the catalyst residue from wafer side was etched for 1-5 min by O2 plasma using 50-100 W power.
The resulting membranes have high gas permeability and Knudsen gas selectivity, which indicates the absence of large size pores.
A thin polyamide rejection layer (e.g., 102 on
Aqueous Phase:
1-3 wt % 1,3 phenylenediamine (MPDA), 0-3 wt % of 3,5 diaminobenzoic acid (DABA), 0.5-2 wt % triethylamine (TEA), 0.5-3 wt % sodium dodecylbenzenesulfonate (SDBS), and 5-8 wt % camphor-10-sulfonic acid (CSA) and 0.5-4 wt % sodium hydroxide in water stirred for 1 hr before use.
Organic Phase:
0.05-0.2 wt/vol benzenetricarbonyl trichloride (TMC) in 0-100 vol % hexanes and 0-20 vol % of chloroform in 0-100 vol % Isopar G solution stirred for 1 hr before use.
Interfacial Polymerization (IP) Procedure:
Aligned CNTs membrane (e.g., 104 on
All the thin film membranes were washed with water to remove unreacted chemicals prior to storage and/or use.
After the membrane including aligned CNT layer 104 and porous support layer 106 was prepared as described in the previous examples, the top surface was coated with poly(trimethylsilyl)pentyne (PTMSP). The thin polymer layer was deposited by spin coating the PTMSP dissolved in cyclohexane (0.5-20 mg/mL) at 1000 rpm. The composite membrane was treated with oxygen plasma (5 seconds @20 mW) and then coated with Pebax® 1657 (0.05-1 wt % in 70:30 EtOH:H2O) using the same spin coating method. The resulting structure is as shown on
The membrane prepared with this recipe showed high selectivity to CO2 over N2 and high flux.
The preceding description has been by way of example as opposed to limitation, so many variations and elaborations of the above-described principle also constitute practice of the invention. For example, ultrasonic welding or thermal welding or gluing can be used to seal the membrane within a plastic carrier using a polymeric washer layer. The function of the “washer” layer is to prevent the membrane from cracking during handling from contact with a sharp edge of the main plastic carrier.
This application claims the benefit of U.S. provisional patent application 61/465,871, filed on Mar. 25, 2011, entitled “Reinforced thin-film composite hydrophilic membranes for forward osmosis, hydrophilic hollow fiber membranes for forward osmosis, and reinforced aligned carbon nanotube membranes for liquid and gas separations”, and hereby incorporated by reference in its entirety. This application also claims the benefit of U.S. provisional patent application 61/627,718, filed on Oct. 17, 2011, entitled “Preparation of aligned carbon nanotube membranes for water and gas separation applications”, and hereby incorporated by reference in its entirety.
This invention was made with Government support under contract number DE-AR0000025 awarded by the Department of Energy, under contract number W911NF-09-C-0079 awarded by the Department of Defense, and under contract number IIP-1058572 awarded by the National Science Foundation. The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
4326509 | Usukura | Apr 1982 | A |
4428720 | Van Erden et al. | Jan 1984 | A |
4454176 | Buckfelder et al. | Jun 1984 | A |
4618533 | Steuck | Oct 1986 | A |
5593738 | Ihm et al. | Jan 1997 | A |
6261879 | Houston et al. | Jul 2001 | B1 |
6406626 | Murakami et al. | Jun 2002 | B1 |
6413070 | Meyering et al. | Jul 2002 | B1 |
6513666 | Meyering et al. | Feb 2003 | B2 |
6755970 | Knappe et al. | Jun 2004 | B1 |
6849184 | Lampi et al. | Feb 2005 | B1 |
6884375 | Wang et al. | Apr 2005 | B2 |
6992051 | Anderson | Jan 2006 | B2 |
7205069 | Smalley et al. | Apr 2007 | B2 |
7445712 | Herron | Nov 2008 | B2 |
7611628 | Hinds, III et al. | Nov 2009 | B1 |
7627938 | Kim et al. | Dec 2009 | B2 |
7901578 | Pruet | Mar 2011 | B2 |
8029857 | Hoek et al. | Oct 2011 | B2 |
8038887 | Bakajin et al. | Oct 2011 | B2 |
8177978 | Kurth et al. | May 2012 | B2 |
8358717 | Park et al. | Jan 2013 | B2 |
8518276 | Striemer et al. | Aug 2013 | B2 |
8567612 | Kurth et al. | Oct 2013 | B2 |
20020063093 | Rice et al. | May 2002 | A1 |
20030038074 | Patil | Feb 2003 | A1 |
20040004037 | Herron | Jan 2004 | A1 |
20040071951 | Jin | Apr 2004 | A1 |
20050142385 | Jin | Jun 2005 | A1 |
20060144789 | Cath et al. | Jul 2006 | A1 |
20060233694 | Sandhu et al. | Oct 2006 | A1 |
20080149561 | Chu et al. | Jun 2008 | A1 |
20080210370 | Smalley et al. | Sep 2008 | A1 |
20080223795 | Bakajin et al. | Sep 2008 | A1 |
20080236804 | Cola et al. | Oct 2008 | A1 |
20080290020 | Marand et al. | Nov 2008 | A1 |
20090078640 | Chu et al. | Mar 2009 | A1 |
20090214847 | Maruyama et al. | Aug 2009 | A1 |
20090250392 | Thorsen et al. | Oct 2009 | A1 |
20090272692 | Kurth et al. | Nov 2009 | A1 |
20090283475 | Hylton et al. | Nov 2009 | A1 |
20090308727 | Kirts | Dec 2009 | A1 |
20090321355 | Ratto et al. | Dec 2009 | A1 |
20100025330 | Ratto et al. | Feb 2010 | A1 |
20100051538 | Freeman et al. | Mar 2010 | A1 |
20100059433 | Freeman et al. | Mar 2010 | A1 |
20100062156 | Kurth et al. | Mar 2010 | A1 |
20100140162 | Jangbarwala | Jun 2010 | A1 |
20100155333 | Husain et al. | Jun 2010 | A1 |
20100206811 | Ng et al. | Aug 2010 | A1 |
20100212319 | Donovan | Aug 2010 | A1 |
20100224550 | Herron | Sep 2010 | A1 |
20100224561 | Marcin | Sep 2010 | A1 |
20100320140 | Nowak et al. | Dec 2010 | A1 |
20110036774 | McGinnis | Feb 2011 | A1 |
20110057322 | Matsunaga et al. | Mar 2011 | A1 |
20110073540 | McGinnis et al. | Mar 2011 | A1 |
20110132834 | Tomioka et al. | Jun 2011 | A1 |
20110186506 | Ratto et al. | Aug 2011 | A1 |
20110220574 | Bakajin et al. | Sep 2011 | A1 |
20110284456 | Brozell | Nov 2011 | A1 |
20120043274 | Chi et al. | Feb 2012 | A1 |
20120080378 | Revanur et al. | Apr 2012 | A1 |
20120080381 | Wang et al. | Apr 2012 | A1 |
20120241371 | Revanur et al. | Sep 2012 | A1 |
20120251521 | Rostro et al. | Oct 2012 | A1 |
20120273421 | Perry et al. | Nov 2012 | A1 |
20130095241 | Lulevich et al. | Apr 2013 | A1 |
20130203873 | Linder et al. | Aug 2013 | A1 |
20140015159 | Lazar et al. | Jan 2014 | A1 |
20140302579 | Boulanger et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
101228214 | Jul 2008 | CN |
S55149682 | Nov 1980 | JP |
S5959213 | Apr 1984 | JP |
62-140620 | Jun 1987 | JP |
2005-138028 | Jun 2005 | JP |
2010094641 | Apr 2010 | JP |
9962623 | Dec 1999 | WO |
0213955 | Feb 2002 | WO |
2009039467 | Mar 2009 | WO |
WO 2009035415 | Mar 2009 | WO |
2009129354 | Oct 2009 | WO |
2009129354 | Oct 2009 | WO |
2010006196 | Jan 2010 | WO |
2010144057 | Dec 2010 | WO |
2011028541 | Mar 2011 | WO |
2012135065 | Oct 2012 | WO |
2013059314 | Apr 2013 | WO |
2014071238 | May 2014 | WO |
Entry |
---|
Paul L. McEuen et al, Single-Walled Nanotubes Electronics; IEEE Transacactions on Nanotechnology, vol. 1 No. 1 Mar. 2002. |
International Search Report and Written Opinion dated Oct. 31, 2012 for PCT Application No. PCT/US2012/030449. |
Akthakul, et al., “Antifouling polymer membranes with subnanometer size selectivity”, Macromolecules 37, Sep. 3. 2004, pp. 7663-7668. |
Cath, et al., “Forward osmosis: principles, applications and recent devlopments”, Journal of Membrane Science 281, May 31, 2006, pp. 70-87. |
Li, et al., “Electronic properties of multiwalled carbon nanotubes in an embedded vertical array”, Applied Physics Letters, vol. 81, No. 5, 2002, pp. 910-912. |
Mandal, et al., “Drug delivery system based on chronobiology—a review”, Journal of Controlled Release 147, Aug. 4, 2010, pp. 314-325. |
McCutcheon: et al., “Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes”, Journal of Membrane Science, Mar. 2008, pp. 458-466. |
Santus, et al., “Osmotic drug delivery: a review of the patent literature”, Journal of Controlled Release 35, Jul. 1995, pp. 1-21. |
Sotthivirat, et al., “Controlled porosity-osmotic pump pellets of a poorly water-soluble drug using sulfobutylether-b-cyclodestrin, (SBE)—7M-b-CD, as a solubilizing and osmotic agent”, Journal of Pharmaceutical Sciences, vol. 96, No. 9, Sep. 2007, pp. 2364-2374. |
Yip, et al., “High Performance Thin-Film Composite Forward Osmosis Membrane”, Environmental Science and Technology, Apr. 21, 2010, pp. 3812-3818. |
Zhao, et al., “Modification of porous poly (vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process”, Journal of Membrane Science 310, Mar. 2008, pp. 567-576. |
Extended EP search report & Written Opinion dated May 15, 2015 for EP appln No. 11831039.0. |
Number | Date | Country | |
---|---|---|---|
20120241371 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61465871 | Mar 2011 | US | |
61627718 | Oct 2011 | US |