In the field of computing, data transfers from one computer to another take up a significant amount of computing time. One of the processes that make this problem worse is that in some operations, such as virtual computing, data may need to be accessed by multiple separate processes on a particular physical machine (e.g., a host machine of a data center, standalone computer, etc.). In the prior art, different processes may each need their own copy of a set of data. In such circumstances, data used by multiple processes on the same machine will be copied, sometimes multiple times, from one memory location (accessible by a first process) to another memory location (accessible to a second process) on the same machine. Such copying may slow down the transmission and/or processing of the data. For example, in a prior art socket splicing operation, incoming data on a receiving socket is copied from a first memory location used by a receiving socket, to a second, intermediary memory location. The data is then copied from the intermediate memory location to a third memory location used by a transmitting socket. Each additional copy operation slows down the transmission of the data.
In some of the prior art, Berkeley Sockets (a.k.a. BSD sockets) are often used for inter process communication and are the de-facto standard API for I/O (convenient API for user-space I/O). With BSD, splicing TCP sockets requires performing two I/O operations (one read operation and one write operation) per I/O buffer. Additional performance costs include memory copying that consumes several CPU cycles and hurt other processes by “polluting” shared L3 cache and putting additional pressure on the memory channels. The performance costs also include additional system calls and a slow network stack. High-speed Ethernet speeds are reduced by these performance costs of the BSD Sockets because network speeds have outstripped those of the CPU and memory. Thus operations that require extra CPU and memory use become a bottleneck for data transmission. Because the network transmits data faster than a single CPU can feed the data into the network, more than a single CPU core is required to simply saturate a network link.
Attempts have been made to eliminate these performance costs by creating network systems that bypass the kernel of a computer in the network transmission path, such as with DPDK and Netmap. The kernel bypass methods attempt to avoid the performance penalties associated with BSD Sockets. However, by bypassing the kernels, these methods lose the use of network infrastructure that already exists inside the kernel. Without the existing kernel infrastructure, the kernel bypass methods require a substitute for that network. Thus, the developers of such kernel bypass methods also need to re-develop existing network infrastructure of the kernels (e.g., IP, TCP, ICMP, IGMP). Therefore, there is a need in the art for a dedicated memory allocator for I/O operations that inherently facilitates zero-copy I/O operations and exceptionless system calls rather than merely bypassing the kernel.
Modern computers use a bifurcated structure that includes a core operating system (the kernel) and applications that access that kernel operating in a user-space. Some data is used by both the kernel and by applications in the user-space. The prior art copies the data from memory locations used by the kernel to separate memory locations used by applications of the user-space. Unlike that prior art, some embodiments provide a novel method for performing zero-copy operations using a dedicated memory allocator for I/O operations (MAIO). Zero-copy operations are operations that allow separate processes (e.g., a kernel-space process and a user-space process, two sockets in a kernel-space, etc.) to access the same data without copying the data between separate memory locations. The term “kernel-space process,” as used herein, encompasses any operation or set of operations by the kernel, including operations that are part of a specific process, operations called by a specific process, or operations independent of any specific process.
To enable the zero-copy operations that share data between user-space processes and kernel-space processes without copying the data, the method of some embodiments provides a user-space process that maps a pool of dedicated kernel memory pages to a virtual memory address space of user-space processes. The method allocates a virtual region of the memory for zero-copy operations. The method allows access to the virtual region by both the user-space process and a kernel-space process. The MAIO system of the present invention greatly outperforms standard copying mechanism and performs at least on par and in many cases better than existing zero-copy techniques while preserving the ubiquitous BSD Sockets API.
In some embodiments, the method only allows a single user to access a particular virtual region. In some embodiments, the allocated virtual region implements a dedicated receiving (RX) ring for a network interface controller (NIC). The dedicated RX ring may be limited to a single tuple (e.g., a single combination of source IP address, source port address, destination IP address, destination port address, and protocol). The dedicated RX ring may alternately be limited to a defined group of tuples.
In the method of some embodiments, the allocated virtual region implements a dedicated transmission (TX) ring for a NIC. Similar to the case in which the virtual region implements an RX ring, the dedicated TX ring may be limited to a single tuple or a defined group of tuples.
The kernel has access to a finite amount of memory. Allocating that memory for use in zero-copy operations prevents the allocated memory from being used for other kernel functions. If too much memory is allocated, the kernel may run out of memory. Accordingly, in addition to allocating virtual memory, the user-space process of some embodiments may also de-allocate memory to free it for other kernel uses. Therefore, the user-space process of some embodiments identifies virtual memory, already allocated to zero-copy operations, to be de-allocated. In some cases, a user-space process may not de-allocate enough memory. Therefore, in some embodiments, when the amount of memory allocated by the user-space process is more than a threshold amount, the kernel-space process de-allocates at least part of the memory allocated by the user-space process. In some embodiments, either in addition to or instead of the kernel-space process de-allocating memory, when the amount of memory allocated by the user-space process is more than a threshold amount, the kernel-space process prevents the user-space process from allocating more memory.
In some embodiments, the kernel-space process is a guest kernel-space process on a guest virtual machine operating on a host machine. The method may additionally allow access to the virtual region by a user-space process of the host machine and/or a kernel-space process of the host.
Zero-copy processes can also be used for TCP splicing. Some embodiments provide a method of splicing TCP sockets on a computing device (e.g., a physical computer or a virtual computer) that processes a kernel of an operating system. The method receives a set of packets at a first TCP socket of the kernel, stores the set of packets at a kernel memory location, and sends the set of packets directly from the kernel memory location out through a second TCP socket of the kernel. In some embodiments, the receiving, storing, and sending are performed without a system call. Some embodiments preserve standard BSD Sockets API but provide seamless zero-copy I/O support.
Packets may sometimes come in to the receiving socket faster than the transmitting socket can send them on, causing a memory buffer to fill. If the memory buffer becomes completely full and packets continue to be received, packets would have to be discarded rather than sent. The capacity of a socket to receive packets without its buffer being overwhelmed is called a “receive window size.”
In some embodiments, when the buffer is full beyond a threshold level, the method sends an indicator of a reduced size of the receive window to the original source of the set of packets. In more severe cases, in some embodiments, when the buffer is full, the method sends an indicator to the original source of the set of packets that the receive window size is zero. In general, the buffer will be filled by the receiving socket and emptied (partially or fully) by the transmitting socket. That is, memory in the buffer will become available as the transmitting socket sends data out and releases the buffer memory that held that data. Accordingly, the method of some embodiments sends multiple indicators to the original source of the packets as the buffer fullness fluctuates. For example, when the transmitting socket empties the buffer, the method of some embodiments sends a second indicator that the receive window size is no longer zero.
In some embodiments, the set of packets is a first set of packets and the method waits for the first set of packets to be sent by the second TCP socket before allowing a second set of packets to be received by the first TCP socket. In some such embodiments, the kernel memory location identifies a set of memory pages; the method frees the memory pages with a driver completion handler after the data stored in the memory pages is sent.
The preceding Summary is intended to serve as a brief introduction to some embodiments of the invention. It is not meant to be an introduction or overview of all inventive subject matter disclosed in this document. The Detailed Description that follows and the Drawings that are referred to in the Detailed Description will further describe the embodiments described in the Summary as well as other embodiments. Accordingly, to understand all the embodiments described by this document, a full review of the Summary, Detailed Description, the Drawings and the Claims is needed. Moreover, the claimed subject matters are not to be limited by the illustrative details in the Summary, Detailed Description and the Drawing.
The novel features of the invention are set forth in the appended claims. However, for purpose of explanation, several embodiments of the invention are set forth in the following figures.
In the following detailed description of the invention, numerous details, examples, and embodiments of the invention are set forth and described. However, it will be clear and apparent to one skilled in the art that the invention is not limited to the embodiments set forth and that the invention may be practiced without some of the specific details and examples discussed.
Modern computers use a bifurcated structure that includes a core operating system (the kernel) and applications that access that kernel operating in a user-space. Some data is used by both the kernel and by applications in the user-space. The prior art copies the data from memory locations used by the kernel to separate memory locations used by applications of the user-space. Unlike that prior art, some embodiments provide a novel method for performing zero-copy operations using a dedicated memory allocator for I/O operations (MAIO). Zero-copy operations are operations that allow separate processes (e.g., a kernel-space process and a user-space process, two sockets in a kernel-space, etc.) to access the same data without copying the data between separate memory locations. The term “kernel-space process,” as used herein, encompasses any operation or set of operations by the kernel, whether these operations are part of a specific process or independent of any specific process.
Some embodiments provide a novel method for performing zero-copy operations using dedicated memory allocated for I/O operations.
The process 100 of
After the memory is mapped, the process 100 then provides (at 115) the memory location identifier to a kernel-space process to allow the kernel-space process to access the virtual memory region. The process 100 also provides (at 120) a memory location identifier to a user-space process to access the virtual-memory region.
Although the process 100 is shown as providing memory location identifier to the kernel-space process first, one of ordinary skill in the art will understand that other embodiments provide the memory location identifier to the kernel-space process after providing it to the user-space process. Additionally, in some embodiments, the features of either operation 115 or operation 120 may be combined with the features of operation 110 into a single operation in which the mapping operation is performed by a kernel-space operation or a user-space operation which creates the memory location identifier of operations 115 or 120 in the course of a mapping operation similar to operation 110. In some embodiments, the location identifier may supply an identifier of a memory location in kernel-space at which the memory begins and/or a corresponding memory location in a virtual memory for the user-space at which the memory begins. In embodiments in which the kernel-space and the user-space each uses a separate addressing locations for the same physical memory location, this or whatever other location identifier or identifiers are exchanged between the user-space process and the kernel allows the kernel to identify an address of a page, in the kernel-space memory, based on a supplied memory page address, in the virtual memory, provided to the kernel by the user-space process. Similarly, in some embodiments, the user-space process may translate the address locations between the virtual memory addresses and the kernel-space memory addresses.
Once the process 100 maps a pool of dedicated kernel memory pages to a virtual memory address space of user-space processes, some embodiments provide a process for allocating a virtual region of that dedicated kernel memory for zero-copy operations.
The process 200 allocates (at 210) a virtual region of memory from the identified memory location for use in a zero-copy memory operation. The process 200 provides (at 215) an identifier of the allocated memory for zero-copy memory operations to a kernel-space process and a user-space process. In
Zero-copy operations between kernel-space and user-space are useful in multiple processes. One such process is receiving and transmitting data in I/O operations. In existing systems, the direct and indirect costs of system calls impact user-space I/O performance. Some embodiments of the present invention avoid these costs by offloading the I/O operation to one or more dedicated kernel threads which will perform the I/O operation using kernel sockets rather than requiring user-space processes to perform the I/O operations. In some embodiments, a dedicated ring memory buffer (sometimes called an RX ring) is used for receiving data at a network interface controller (NIC) and a second dedicated ring memory buffer is used for transmitting data from the NIC. The dedicated RX ring may be limited to a single tuple (e.g., a single combination of source IP address, source port address, destination IP address, destination port address, and protocol). The dedicated RX ring may alternately be limited to a defined group of tuples. Similarly, in some embodiments an allocated virtual region implements a dedicated transmission ring memory buffer (sometimes called a TX ring) for a NIC. As in the case in which the virtual region implements an RX ring, the dedicated TX ring may be limited to a single tuple or a defined group of tuples.
An example of such dedicated RX and TX rings is shown in
Although the dedicated transmission memory buffer ring 415 is shown as two separate items, one in the kernel-space and one straddling a dashed line separating user-space from kernel-space, they are the same memory buffer ring shown from two different perspectives, not two separate entities. Kernel processes and user processes each have access to the transmission memory buffer ring 415 and the data 420 sent from the kernel with system calls 417 in the user-space is all data stored in the transmission memory buffer ring 415. In addition to storing data 420 for MAIO pages, in some embodiments, the dedicated transmission ring may be used to store data 422 for a kernel buffer without needing any special care for data separation.
As with dedicated memory buffer ring 415, although the dedicated receiving memory buffer ring 425 is shown as two separate items, one in the kernel-space and one straddling a dashed line separating user-space from kernel-space, they are also a single memory buffer ring shown from two different perspectives, not two separate entities. Kernel processes and user processes each have access to the transmission memory buffer ring 425 and the data 430 received by the kernel with system calls 427 from the user-space is all data stored in the transmission memory buffer ring 425.
Some embodiments use dedicated threads with the ring buffers. This has multiple advantages. For example, it reduces the need for some system calls which would otherwise slow down the data transmission. For example, when sending data some embodiments do not require a send_msg system call, but instead use an I/O descriptor (e.g., struct, msghdr, and int flags) written to a shared memory ring buffer. Additionally, splitting (between the kernel-space process and the user-space process) responsibility for performing I/O preserves the existing socket API, facilitates exceptionless system calls, and allows for better parallel programming. Furthermore, bifurcated I/O (splitting the responsibility for performing the I/O) enables the separation of the application computations and the TCP computations to different CPU cores. In some embodiments, dedicated kernel threads are also used to perform memory operations (e.g., retrieving memory buffers back from the user).
Although the embodiment of
The previous figure illustrated the use of the present invention in a computer system with a single user-space and a single kernel-space. However, the invention is not limited to such systems. In some embodiments, the invention operates on a guest machine (e.g., a virtual machine operating on a physical host machine). In some such embodiments, both the host system and the guest system are designed to use zero-copy operations and are both able to access the shared memory.
The embodiments of
In order to protect data when user-processes now seemingly have access to sensitive kernel memory, the present invention provides entirely separate allocated memory to different tenants. That is, in some embodiments, the method limits access to the virtual region allocated for zero-copy operations to a single user. Thus, the kernel memory a particular user has access to contains only data that the particular user would normally have access to.
Some embodiments provide additional security features. For example, in some embodiments, shared pages are only ever used by the kernel to hold I/O data buffers and not any metadata or any other data needed by the kernel. That is, the user-space process can only ever see the information that a user-space process has written or data bound to user-space which would be received by the user in a standard operation, even if a zero-copy operation were not used. In some embodiments, in addition to the message data, the kernel-process is privy to transport headers as well. In some embodiments, where the NIC supports Header/Data splitting, the kernel-process places the headers onto non-shared buffers for additional security. In contrast, in embodiments where all potential receiving memory ring buffers are shared, the MAIO would potentially expose all traffic to a single observer. In the absence of driver support for keeping different tenant data separate, the usefulness of MAIO in such embodiments should be limited to those cases when any user with access is trusted (e.g., sudo).
Kernel memory allocated to zero-copy operations is not available for other kernel functions. If allocated memory is not released back to the kernel while new memory continues to be allocated, the kernel may run out of memory for those other functions. Therefore, in addition to allocating virtual memory, the user-space process of some embodiments may de-allocate memory. That is, the user-space process may identify virtual memory, previously allocated to zero-copy operations, to be de-allocated.
Under some circumstances, a user-process may not properly de-allocate memory. Accordingly, in some embodiments, when the amount of memory allocated by the user-space process is more than a threshold amount, the kernel-space process takes corrective action. In some embodiments, when the amount of memory allocated by the user-space process is more than a threshold amount, the kernel-space process prevents the user-space process from allocating more memory.
When the process 700 determines (at 710) that the user-process has more than the threshold amount of memory, the process 700 uses (at 715) a standard memory allocation (e.g., the driver of the NIC uses a standard memory allocation) and refuses to designate a pool of kernel memory for the user-space process. For example, this occurs when a user-space process hoards MAIO buffers without releasing them to the kernel, thus starving the kernel of needed memory. In some embodiments, when the driver of the NIC reverts to standard memory allocation, this renders the user-space process unable to receive, while other process and kernel functionality will remain intact. After operation 715, the process 700 moves on to operation 725.
When the process 700 determines (at 710) that the user-process does not have more than the threshold amount of memory, the process 700 designates (at 720) a pool of dedicated kernel memory for the user-space process to share with kernel-space processes. After operation 720, the process 700 moves on to operation 725.
The process 700 determines (at 725) whether it has received (e.g., from the user-space process) a request to de-allocate a pool of dedicated kernel memory. When the process 700 has received a request to de-allocate a pool of dedicated kernel memory, the process 700 de-allocates (at 730) that pool of kernel memory, freeing that pool to be allocated for shared use with other user-space processes or for use in other kernel operations. The process then returns to operation 705 when it receives a new request for a pool of memory. When the process 700 determines (at 725) that it has not received a request to de-allocate a pool of dedicated kernel memory, the process 700 returns to operation 705.
The process 700 may be used to prevent memory hoarding by a user process in circumstances when zero-copy solutions with a shared static buffer are considered dangerous because these shared pages can be exhausted and cannot be swapped out. However, some modern systems have hundreds of GB of RAM and such systems may not be exhausted during typical operation. In such systems, the user-space process might not reach a threshold level requiring the kernel to refuse further memory allocation. In other embodiments, the kernel-space process itself de-allocates memory allocated to the user-space process rather than merely denying new allocations.
Although the previous description involved zero-copy operations used between kernel-space processes and user-space processes, zero-copy processes can also be used in kernel-space to kernel-space operations. One example, of such kernel/kernel operations is TCP splicing. TCP splicing is a method of splicing two socket connections inside a kernel, so that the data relayed between the two connections can be run at near router speeds.
In older prior art, TCP splicing involved user-space processes as well as kernel-space processes. In more recent prior art, a process called an “eBPF callback” is called when a packet is received. The eBPF callback forwards the received packet to a predefined socket. However, the prior art eBPF callback is problematic due to the fact that the callback is invoked in a non-process context. That is, the eBPF callback process has no way to determine whether the predefined socket to which the callback is forwarding the packet is ready to handle a packet. Therefore, when the destination socket cannot send (e.g., due to a closed send or receive window); there is no feedback process that can tell the original sender to wait for the window to open. Without this option, the notion of “back-pressure” (narrowing a receive window to tell the system that is the original source of the packets to slow or stop transmission until the transmitting socket can send the packets that already arrived) is infeasible. Back-pressure is paramount for socket splicing where the two connected lines are of different widths.
In contrast to the prior art eBPF callback, the present invention allows backpressure in the form of feedback to the original source when the transmitting socket is not ready to receive more packets. Some embodiments provide a method of splicing TCP sockets on a computing device (e.g., a physical computer or a virtual computer) that processes a kernel of an operating system. The method receives a set of packets at a first TCP socket of the kernel, stores the set of packets at a kernel memory location, and sends the set of packets directly from the kernel memory location out through a second TCP socket of the kernel. The method provides back-pressure that prevents the original source of the packets from sending packets to the receiving socket faster than the transmitting socket of the splice can send them onward. In some embodiments, the receiving, storing, and sending are performed without a system call.
The process 800 of
In some cases, the transmitting socket 930 may not be able to transmit packets as quickly as the receiving socket 910 is able to receive them. When that occurs, the receiving socket 910 adds packets to the memory buffer 920 faster than the transmitting socket 930 can clear the packets by sending them. Thus, the memory buffer 920 fills up. Accordingly, the process 800 determines (at 820) whether the buffer fullness has crossed a threshold level. This can happen in one of two ways, by the fullness increasing past a first threshold or decreasing past a second threshold. One of ordinary skill in the art will understand that in some embodiments the first and second thresholds will be the same and in other embodiments the thresholds will be different.
When the buffer becomes full beyond a first threshold level, the process 800 sends (at 825) an indicator from the first TCP socket (e.g., receiving socket 910 of
The reduction of the rate of incoming packets will eventually result in the buffer dropping below a threshold (on subsequent passes through the loop). At that point, the process 800 then sends (at 825) an indicator increasing the size of the receiving window. Once the indicator is sent, the process 800 returns to operation 805 and continues to loop through operations 805-820, occasionally returning to operation 825 to adjust the size of the receive window up or down as needed before returning to the loop again.
While the adjustments are intended to keep the packets arriving at a rate that always leaves adequate space in the buffer, in some cases, the buffer may become nearly or entirely full. In such cases, the process 800 sends (at 825) an indicator to the original source of the set of packets, that the receive window size is zero, stopping the transmission of packets to the receiving socket entirely until the transmitting socket clears enough space in the buffer. Subsequent passes through the loop send (at 815) packets, but do not receive or store new ones until the buffer has enough space to resume receiving and the process 800 sends (at 825) an indicator that the receive window is open again.
Although the above described figures disclose the elements of some embodiments, some embodiments may include other elements. For example, in some embodiments, the memory allocator uses a pool of dedicated compound memory pages (i.e., _GFP_COMP). In some embodiments, the allocator is partly based on two mechanisms: a page_frag mechanism over 64 KB buffers and these buffers in turn are allotted by a magazine allocator. This allocation scheme efficiently allocates variable size buffers in the kernel. Variable size allocation is useful to support variable sizes of MTU & HW offloads (e.g., HW GRO). To facilitate zero-copy, these pages are mapped once to the virtual memory address space of the privileged user-space process. The user-space process accesses MAIO buffers in two ways in some embodiments: (1) Zero-copy send, in which the user-space process has to mmap (mmap is a Unix system call that maps files or devices into memory), or perform a similar operation appropriate to the operating system on which the invention is implemented, the MAIO buffer and then allocate a virtual region for its own use (the allocated region's size is a multiple of 64 KB in some embodiments); and (2) Zero-copy receive, in which the user-space process performs a zero-copy receive operation to get MAIO buffers. The user-space process of some embodiments can return memory to the kernel via an exception-less mechanism.
With respect to Zero-copy support for kernel sockets, some embodiments expand the existing Linux TCP API with a tcp_read_sock_zcopy for RX and add a new msg flag, SOCK_KERN_ZEROCOPY, for tcp_sendmsg_locked in TX. With respect to receiving, some embodiments provide a new function, tcp_read_sock_zcopy, based on existing infrastructure i.e., tcp_read_sock. It is used by tcp_splice_read to collect buffers from a socket without copying. When kernel memory is used for I/O (e.g., for TCP socket splicing), enabling zero-copy is less complicated when compared to zero-copy from user-space. The pages are already pinned in memory and there is no need for a notification on TX completion. The pages are reference counted, and can be freed by the device driver completion handler (do_tcp_sendpages). Instead of modifying the behavior of tcp_sendmsg_locked, it is also possible to use do_tcp_sendpages, which is used in splicing. Ironically, do_tcp_sendpages accepts only one page fragment (i.e., struct page, size and offset) per invocation and does not work with a scatter-gather list, which tcp_sendmsg_locked supports. Although the above description refers to TCP, one of ordinary skill in the art will understand that the inventions described herein also apply to other standards such as UDP, etc.
The bus 1005 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the electronic system 1000. For instance, the bus 1005 communicatively connects the processing unit(s) 1010 with the read-only memory 1030, the system memory 1025, and the permanent storage device 1035.
From these various memory units, the processing unit(s) 1010 retrieve instructions to execute and data to process in order to execute the processes of the invention. The processing unit(s) may be a single processor or a multi-core processor in different embodiments.
The read-only-memory (ROM) 1030 stores static data and instructions that are needed by the processing unit(s) 1010 and other modules of the electronic system. The permanent storage device 1035, on the other hand, is a read-and-write memory device. This device is a non-volatile memory unit that stores instructions and data even when the electronic system 1000 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 1035.
Other embodiments use a removable storage device (such as a floppy disk, flash drive, etc.) as the permanent storage device. Like the permanent storage device 1035, the system memory 1025 is a read-and-write memory device. However, unlike storage device 1035, the system memory is a volatile read-and-write memory, such a random access memory. The system memory 1025 stores some of the instructions and data that the processor needs at runtime. In some embodiments, the invention's processes are stored in the system memory 1025, the permanent storage device 1035, and/or the read-only memory 1030. From these various memory units, the processing unit(s) 1010 retrieve instructions to execute and data to process in order to execute the processes of some embodiments.
The bus 1005 also connects to the input and output devices 1040 and 1045. The input devices 1040 enable the user to communicate information and select commands to the electronic system. The input devices 1040 include alphanumeric keyboards and pointing devices (also called “cursor control devices”). The output devices 1045 display images generated by the electronic system 1000. The output devices 1045 include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as a touchscreen that function as both input and output devices.
Finally, as shown in
Some embodiments include electronic components, such as microprocessors, storage and memory that store computer program instructions in a machine-readable or computer-readable medium (alternatively referred to as computer-readable storage media, machine-readable media, or machine-readable storage media). Some examples of such computer-readable media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra-density optical discs, any other optical or magnetic media, and floppy disks. The computer-readable media may store a computer program that is executable by at least one processing unit and includes sets of instructions for performing various operations. Examples of computer programs or computer code include machine code, such as is produced by a compiler, and files including higher-level code that are executed by a computer, an electronic component, or a microprocessor using an interpreter.
While the above discussion primarily refers to microprocessor or multi-core processors that execute software, some embodiments are performed by one or more integrated circuits, such as application-specific integrated circuits (ASICs) or field-programmable gate arrays (FPGAs). In some embodiments, such integrated circuits execute instructions that are stored on the circuit itself.
As used in this specification, the terms “computer”, “server”, “processor”, and “memory” all refer to electronic or other technological devices. These terms exclude people or groups of people. For the purposes of the specification, the terms display or displaying means displaying on an electronic device. As used in this specification, the terms “computer readable medium,” “computer readable media,” and “machine readable medium” are entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. These terms exclude any wireless signals, wired download signals, and any other ephemeral signals.
This specification refers throughout to computational and network environments that include virtual machines (VMs). However, virtual machines are merely one example of data compute nodes (DCNs) or data compute end nodes, also referred to as addressable nodes. DCNs may include non-virtualized physical hosts, virtual machines, containers that run on top of a host operating system without the need for a hypervisor or separate operating system, and hypervisor kernel network interface modules.
VMs, in some embodiments, operate with their own guest operating systems on a host using resources of the host virtualized by virtualization software (e.g., a hypervisor, virtual machine monitor, etc.). The tenant (i.e., the owner of the VM) can choose which applications to operate on top of the guest operating system. Some containers, on the other hand, are constructs that run on top of a host operating system without the need for a hypervisor or separate guest operating system. In some embodiments, the host operating system uses name spaces to isolate the containers from each other and therefore provides operating-system level segregation of the different groups of applications that operate within different containers. This segregation is akin to the VM segregation that is offered in hypervisor-virtualized environments that virtualize system hardware, and thus can be viewed as a form of virtualization that isolates different groups of applications that operate in different containers. Such containers are more lightweight than VMs.
Hypervisor kernel network interface modules, in some embodiments, are non-VM DCNs that include a network stack with a hypervisor kernel network interface and receive/transmit threads. One example of a hypervisor kernel network interface module is the vmknic module that is part of the ESXi™ hypervisor of VMware, Inc.
It should be understood that while the specification refers to VMs, the examples given could be any type of DCNs, including physical hosts, VMs, non-VM containers, and hypervisor kernel network interface modules. In fact, the example networks could include combinations of different types of DCNs in some embodiments.
While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. In addition, a number of the figures conceptually illustrate processes. The specific operations of these processes may not be performed in the exact order shown and described. The specific operations may not be performed in one continuous series of operations, and different specific operations may be performed in different embodiments. Furthermore, the process could be implemented using several sub-processes, or as part of a larger macro process. Thus, one of ordinary skill in the art would understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5652751 | Sharony | Jul 1997 | A |
5909553 | Campbell et al. | Jun 1999 | A |
6154465 | Pickett | Nov 2000 | A |
6157648 | Voit et al. | Dec 2000 | A |
6201810 | Masuda et al. | Mar 2001 | B1 |
6363378 | Conklin et al. | Mar 2002 | B1 |
6445682 | Weitz | Sep 2002 | B1 |
6744775 | Beshai et al. | Jun 2004 | B1 |
6976087 | Westfall et al. | Dec 2005 | B1 |
7003481 | Banka et al. | Feb 2006 | B2 |
7280476 | Anderson | Oct 2007 | B2 |
7313629 | Nucci et al. | Dec 2007 | B1 |
7320017 | Kurapati et al. | Jan 2008 | B1 |
7373660 | Guichard et al. | May 2008 | B1 |
7581022 | Griffin et al. | Aug 2009 | B1 |
7680925 | Sathyanarayana et al. | Mar 2010 | B2 |
7681236 | Tamura et al. | Mar 2010 | B2 |
7962458 | Holenstein et al. | Jun 2011 | B2 |
8094575 | Vadlakonda et al. | Jan 2012 | B1 |
8094659 | Arad | Jan 2012 | B1 |
8111692 | Ray | Feb 2012 | B2 |
8141156 | Mao et al. | Mar 2012 | B1 |
8224971 | Miller et al. | Jul 2012 | B1 |
8228928 | Parandekar et al. | Jul 2012 | B2 |
8243589 | Trost et al. | Aug 2012 | B1 |
8259566 | Chen et al. | Sep 2012 | B2 |
8274891 | Averi et al. | Sep 2012 | B2 |
8301749 | Finklestein et al. | Oct 2012 | B1 |
8385227 | Downey | Feb 2013 | B1 |
8566452 | Goodwin et al. | Oct 2013 | B1 |
8630291 | Shaffer et al. | Jan 2014 | B2 |
8661295 | Khanna et al. | Feb 2014 | B1 |
8724456 | Hong et al. | May 2014 | B1 |
8724503 | Johnsson et al. | May 2014 | B2 |
8745177 | Kazerani et al. | Jun 2014 | B1 |
8797874 | Yu et al. | Aug 2014 | B2 |
8799504 | Capone et al. | Aug 2014 | B2 |
8804745 | Sinn | Aug 2014 | B1 |
8806482 | Nagargadde et al. | Aug 2014 | B1 |
8855071 | Sankaran et al. | Oct 2014 | B1 |
8856339 | Mestery et al. | Oct 2014 | B2 |
8964548 | Keralapura et al. | Feb 2015 | B1 |
8989199 | Sella et al. | Mar 2015 | B1 |
9009217 | Nagargadde et al. | Apr 2015 | B1 |
9055000 | Ghosh et al. | Jun 2015 | B1 |
9060025 | Xu | Jun 2015 | B2 |
9071607 | Twitchell, Jr. | Jun 2015 | B2 |
9075771 | Gawali et al. | Jul 2015 | B1 |
9100329 | Jiang et al. | Aug 2015 | B1 |
9135037 | Petrescu-Prahova et al. | Sep 2015 | B1 |
9137334 | Zhou | Sep 2015 | B2 |
9154327 | Marino et al. | Oct 2015 | B1 |
9203764 | Shirazipour et al. | Dec 2015 | B2 |
9225591 | Beheshti-Zavareh et al. | Dec 2015 | B2 |
9306949 | Richard et al. | Apr 2016 | B1 |
9323561 | Ayala et al. | Apr 2016 | B2 |
9336040 | Dong et al. | May 2016 | B2 |
9354983 | Yenamandra et al. | May 2016 | B1 |
9356943 | Lopilato et al. | May 2016 | B1 |
9379981 | Zhou et al. | Jun 2016 | B1 |
9413724 | Xu | Aug 2016 | B2 |
9419878 | Hsiao et al. | Aug 2016 | B2 |
9432245 | Sorenson et al. | Aug 2016 | B1 |
9438566 | Zhang et al. | Sep 2016 | B2 |
9450817 | Bahadur et al. | Sep 2016 | B1 |
9450852 | Chen et al. | Sep 2016 | B1 |
9462010 | Stevenson | Oct 2016 | B1 |
9467478 | Khan et al. | Oct 2016 | B1 |
9485163 | Fries et al. | Nov 2016 | B1 |
9521067 | Michael et al. | Dec 2016 | B2 |
9525564 | Lee | Dec 2016 | B2 |
9559951 | Sajassi et al. | Jan 2017 | B1 |
9563423 | Pittman | Feb 2017 | B1 |
9602389 | Maveli et al. | Mar 2017 | B1 |
9608917 | Anderson et al. | Mar 2017 | B1 |
9608962 | Chang | Mar 2017 | B1 |
9614748 | Battersby et al. | Apr 2017 | B1 |
9621460 | Mehta et al. | Apr 2017 | B2 |
9641551 | Kariyanahalli | May 2017 | B1 |
9648547 | Hart et al. | May 2017 | B1 |
9665432 | Kruse et al. | May 2017 | B2 |
9686127 | Ramachandran et al. | Jun 2017 | B2 |
9715401 | Devine et al. | Jul 2017 | B2 |
9717021 | Hughes et al. | Jul 2017 | B2 |
9722815 | Mukundan et al. | Aug 2017 | B2 |
9747249 | Cherian et al. | Aug 2017 | B2 |
9755965 | Yadav et al. | Sep 2017 | B1 |
9787559 | Schroeder | Oct 2017 | B1 |
9807004 | Koley et al. | Oct 2017 | B2 |
9819540 | Bahadur et al. | Nov 2017 | B1 |
9819565 | Djukic et al. | Nov 2017 | B2 |
9825822 | Holland | Nov 2017 | B1 |
9825911 | Brandwine | Nov 2017 | B1 |
9825992 | Xu | Nov 2017 | B2 |
9832128 | Ashner et al. | Nov 2017 | B1 |
9832205 | Santhi et al. | Nov 2017 | B2 |
9875355 | Williams | Jan 2018 | B1 |
9906401 | Rao | Feb 2018 | B1 |
9930011 | Clemons, Jr. et al. | Mar 2018 | B1 |
9935829 | Miller et al. | Apr 2018 | B1 |
9942787 | Tillotson | Apr 2018 | B1 |
9996370 | Khafizov | Jun 2018 | B1 |
10038601 | Becker et al. | Jul 2018 | B1 |
10057183 | Salle et al. | Aug 2018 | B2 |
10057294 | Xu | Aug 2018 | B2 |
10116593 | Sinn et al. | Oct 2018 | B1 |
10135789 | Mayya et al. | Nov 2018 | B2 |
10142226 | Wu et al. | Nov 2018 | B1 |
10178032 | Freitas | Jan 2019 | B1 |
10178037 | Appleby et al. | Jan 2019 | B2 |
10187289 | Chen et al. | Jan 2019 | B1 |
10200264 | Menon et al. | Feb 2019 | B2 |
10229017 | Zou et al. | Mar 2019 | B1 |
10237123 | Dubey et al. | Mar 2019 | B2 |
10250498 | Bales et al. | Apr 2019 | B1 |
10263832 | Ghosh | Apr 2019 | B1 |
10320664 | Nainar et al. | Jun 2019 | B2 |
10320691 | Matthews et al. | Jun 2019 | B1 |
10326830 | Singh | Jun 2019 | B1 |
10348767 | Lee et al. | Jul 2019 | B1 |
10355989 | Panchai et al. | Jul 2019 | B1 |
10425382 | Mayya et al. | Sep 2019 | B2 |
10454708 | Mibu | Oct 2019 | B2 |
10454714 | Mayya et al. | Oct 2019 | B2 |
10461993 | Turabi et al. | Oct 2019 | B2 |
10498652 | Mayya et al. | Dec 2019 | B2 |
10511546 | Singarayan et al. | Dec 2019 | B2 |
10523539 | Mayya et al. | Dec 2019 | B2 |
10550093 | Ojima et al. | Feb 2020 | B2 |
10554538 | Spohn et al. | Feb 2020 | B2 |
10560431 | Chen et al. | Feb 2020 | B1 |
10565464 | Han et al. | Feb 2020 | B2 |
10567519 | Mukhopadhyaya et al. | Feb 2020 | B1 |
10574528 | Mayya et al. | Feb 2020 | B2 |
10594516 | Cidon et al. | Mar 2020 | B2 |
10594591 | Houjyo et al. | Mar 2020 | B2 |
10594659 | El-Moussa et al. | Mar 2020 | B2 |
10608844 | Cidon et al. | Mar 2020 | B2 |
10637889 | Ermagan et al. | Apr 2020 | B2 |
10666460 | Cidon et al. | May 2020 | B2 |
10666497 | Tahhan et al. | May 2020 | B2 |
10686625 | Cidon et al. | Jun 2020 | B2 |
10693739 | Naseri et al. | Jun 2020 | B1 |
10715427 | Raj et al. | Jul 2020 | B2 |
10749711 | Mukundan et al. | Aug 2020 | B2 |
10778466 | Cidon et al. | Sep 2020 | B2 |
10778528 | Mayya et al. | Sep 2020 | B2 |
10778557 | Ganichev et al. | Sep 2020 | B2 |
10805114 | Cidon et al. | Oct 2020 | B2 |
10805272 | Mayya et al. | Oct 2020 | B2 |
10819564 | Turabi et al. | Oct 2020 | B2 |
10826775 | Moreno et al. | Nov 2020 | B1 |
10841131 | Cidon et al. | Nov 2020 | B2 |
10911374 | Kumar et al. | Feb 2021 | B1 |
10938693 | Mayya et al. | Mar 2021 | B2 |
10951529 | Duan et al. | Mar 2021 | B2 |
10958479 | Cidon et al. | Mar 2021 | B2 |
10959098 | Cidon et al. | Mar 2021 | B2 |
10992558 | Silva et al. | Apr 2021 | B1 |
10992568 | Michael et al. | Apr 2021 | B2 |
10999100 | Cidon et al. | May 2021 | B2 |
10999137 | Cidon et al. | May 2021 | B2 |
10999165 | Cidon et al. | May 2021 | B2 |
10999197 | Hooda et al. | May 2021 | B2 |
11005684 | Cidon | May 2021 | B2 |
11018995 | Cidon et al. | May 2021 | B2 |
11044190 | Ramaswamy et al. | Jun 2021 | B2 |
11050588 | Mayya et al. | Jun 2021 | B2 |
11050644 | Hegde et al. | Jun 2021 | B2 |
11071005 | Shen et al. | Jul 2021 | B2 |
11089111 | Markuze et al. | Aug 2021 | B2 |
11095612 | Oswal et al. | Aug 2021 | B1 |
11102032 | Cidon et al. | Aug 2021 | B2 |
11108851 | Kurmala et al. | Aug 2021 | B1 |
11115347 | Gupta et al. | Sep 2021 | B2 |
11115426 | Pazhyannur et al. | Sep 2021 | B1 |
11115480 | Markuze et al. | Sep 2021 | B2 |
11121962 | Michael et al. | Sep 2021 | B2 |
11121985 | Cidon et al. | Sep 2021 | B2 |
11128492 | Sethi et al. | Sep 2021 | B2 |
11153230 | Cidon et al. | Oct 2021 | B2 |
11171885 | Cidon et al. | Nov 2021 | B2 |
11212140 | Mukundan et al. | Dec 2021 | B2 |
11212238 | Cidon et al. | Dec 2021 | B2 |
11223514 | Mayya et al. | Jan 2022 | B2 |
11245641 | Ramaswamy et al. | Feb 2022 | B2 |
11252079 | Michael et al. | Feb 2022 | B2 |
11252105 | Cidon et al. | Feb 2022 | B2 |
11252106 | Cidon et al. | Feb 2022 | B2 |
11258728 | Cidon et al. | Feb 2022 | B2 |
11310170 | Cidon et al. | Apr 2022 | B2 |
11323307 | Mayya et al. | May 2022 | B2 |
11349722 | Mayya et al. | May 2022 | B2 |
11363124 | Markuze et al. | Jun 2022 | B2 |
11374904 | Mayya et al. | Jun 2022 | B2 |
11375005 | Rolando et al. | Jun 2022 | B1 |
11381474 | Kumar et al. | Jul 2022 | B1 |
11381499 | Ramaswamy et al. | Jul 2022 | B1 |
11388086 | Ramaswamy et al. | Jul 2022 | B1 |
11394640 | Ramaswamy et al. | Jul 2022 | B2 |
11418997 | Devadoss et al. | Aug 2022 | B2 |
11438789 | Devadoss et al. | Sep 2022 | B2 |
11444865 | Ramaswamy et al. | Sep 2022 | B2 |
11444872 | Mayya et al. | Sep 2022 | B2 |
11477127 | Ramaswamy et al. | Oct 2022 | B2 |
11489720 | Kempanna et al. | Nov 2022 | B1 |
11489783 | Ramaswamy et al. | Nov 2022 | B2 |
11509571 | Ramaswamy et al. | Nov 2022 | B1 |
11516049 | Cidon et al. | Nov 2022 | B2 |
11533248 | Mayya et al. | Dec 2022 | B2 |
11575591 | Ramaswamy et al. | Feb 2023 | B2 |
11575600 | Markuze et al. | Feb 2023 | B2 |
11582144 | Ramaswamy et al. | Feb 2023 | B2 |
20020075542 | Kumar et al. | Jun 2002 | A1 |
20020085488 | Kobayashi | Jul 2002 | A1 |
20020087716 | Mustafa | Jul 2002 | A1 |
20020152306 | Tuck | Oct 2002 | A1 |
20020198840 | Banka et al. | Dec 2002 | A1 |
20030050061 | Wu et al. | Mar 2003 | A1 |
20030061269 | Hathaway et al. | Mar 2003 | A1 |
20030088697 | Matsuhira | May 2003 | A1 |
20030112766 | Riedel et al. | Jun 2003 | A1 |
20030112808 | Solomon | Jun 2003 | A1 |
20030126468 | Markham | Jul 2003 | A1 |
20030161313 | Jinmei et al. | Aug 2003 | A1 |
20030189919 | Gupta et al. | Oct 2003 | A1 |
20030202506 | Perkins et al. | Oct 2003 | A1 |
20030219030 | Gubbi | Nov 2003 | A1 |
20040059831 | Chu et al. | Mar 2004 | A1 |
20040068668 | Lor et al. | Apr 2004 | A1 |
20040165601 | Liu et al. | Aug 2004 | A1 |
20040224771 | Chen et al. | Nov 2004 | A1 |
20050078690 | DeLangis | Apr 2005 | A1 |
20050149604 | Navada | Jul 2005 | A1 |
20050154790 | Nagata et al. | Jul 2005 | A1 |
20050172161 | Cruz et al. | Aug 2005 | A1 |
20050195754 | Nosella | Sep 2005 | A1 |
20050210479 | Andjelic | Sep 2005 | A1 |
20050265255 | Kodialam et al. | Dec 2005 | A1 |
20060002291 | Alicherry et al. | Jan 2006 | A1 |
20060114838 | Mandavilli et al. | Jun 2006 | A1 |
20060171365 | Borella | Aug 2006 | A1 |
20060182034 | Klinker et al. | Aug 2006 | A1 |
20060182035 | Vasseur | Aug 2006 | A1 |
20060193247 | Naseh et al. | Aug 2006 | A1 |
20060193252 | Naseh et al. | Aug 2006 | A1 |
20070050594 | Augsburg | Mar 2007 | A1 |
20070064604 | Chen et al. | Mar 2007 | A1 |
20070064702 | Bates et al. | Mar 2007 | A1 |
20070083727 | Johnston et al. | Apr 2007 | A1 |
20070091794 | Filsfils et al. | Apr 2007 | A1 |
20070103548 | Carter | May 2007 | A1 |
20070115812 | Hughes | May 2007 | A1 |
20070121486 | Guichard et al. | May 2007 | A1 |
20070130325 | Lesser | Jun 2007 | A1 |
20070162619 | Aloni et al. | Jul 2007 | A1 |
20070162639 | Chu et al. | Jul 2007 | A1 |
20070177511 | Das et al. | Aug 2007 | A1 |
20070237081 | Kodialam et al. | Oct 2007 | A1 |
20070260746 | Mirtorabi et al. | Nov 2007 | A1 |
20070268882 | Breslau et al. | Nov 2007 | A1 |
20080002670 | Bugenhagen et al. | Jan 2008 | A1 |
20080049621 | McGuire et al. | Feb 2008 | A1 |
20080055241 | Goldenberg et al. | Mar 2008 | A1 |
20080080509 | Khanna et al. | Apr 2008 | A1 |
20080095187 | Jung et al. | Apr 2008 | A1 |
20080117930 | Chakareski et al. | May 2008 | A1 |
20080144532 | Chamarajanagar et al. | Jun 2008 | A1 |
20080181116 | Kavanaugh et al. | Jul 2008 | A1 |
20080219276 | Shah | Sep 2008 | A1 |
20080240121 | Xiong et al. | Oct 2008 | A1 |
20080263218 | Beerends et al. | Oct 2008 | A1 |
20090013210 | McIntosh et al. | Jan 2009 | A1 |
20090028092 | Rothschild | Jan 2009 | A1 |
20090125617 | Klessig et al. | May 2009 | A1 |
20090141642 | Sun | Jun 2009 | A1 |
20090154463 | Hines et al. | Jun 2009 | A1 |
20090182874 | Morford et al. | Jul 2009 | A1 |
20090247204 | Sennett et al. | Oct 2009 | A1 |
20090268605 | Campbell et al. | Oct 2009 | A1 |
20090274045 | Meier et al. | Nov 2009 | A1 |
20090276657 | Wetmore et al. | Nov 2009 | A1 |
20090303880 | Maltz et al. | Dec 2009 | A1 |
20100008361 | Guichard et al. | Jan 2010 | A1 |
20100017802 | Lojewski | Jan 2010 | A1 |
20100046532 | Okita | Feb 2010 | A1 |
20100061379 | Parandekar et al. | Mar 2010 | A1 |
20100080129 | Strahan et al. | Apr 2010 | A1 |
20100088440 | Banks et al. | Apr 2010 | A1 |
20100091782 | Hiscock | Apr 2010 | A1 |
20100091823 | Retana et al. | Apr 2010 | A1 |
20100107162 | Edwards et al. | Apr 2010 | A1 |
20100118727 | Draves et al. | May 2010 | A1 |
20100118886 | Saavedra | May 2010 | A1 |
20100165985 | Sharma et al. | Jul 2010 | A1 |
20100191884 | Holenstein et al. | Jul 2010 | A1 |
20100223621 | Joshi et al. | Sep 2010 | A1 |
20100226246 | Proulx | Sep 2010 | A1 |
20100290422 | Haigh et al. | Nov 2010 | A1 |
20100309841 | Conte | Dec 2010 | A1 |
20100309912 | Mehta et al. | Dec 2010 | A1 |
20100322255 | Hao et al. | Dec 2010 | A1 |
20100332657 | Elyashev et al. | Dec 2010 | A1 |
20110007752 | Silva et al. | Jan 2011 | A1 |
20110032939 | Nozaki et al. | Feb 2011 | A1 |
20110040814 | Higgins | Feb 2011 | A1 |
20110075674 | Li et al. | Mar 2011 | A1 |
20110107139 | Middlecamp et al. | May 2011 | A1 |
20110110370 | Moreno et al. | May 2011 | A1 |
20110141877 | Xu et al. | Jun 2011 | A1 |
20110142041 | Imai | Jun 2011 | A1 |
20110153909 | Dong | Jun 2011 | A1 |
20110235509 | Szymanski | Sep 2011 | A1 |
20110255397 | Kadakia et al. | Oct 2011 | A1 |
20110302663 | Prodan et al. | Dec 2011 | A1 |
20120008630 | Ould-Brahim | Jan 2012 | A1 |
20120027013 | Napierala | Feb 2012 | A1 |
20120039309 | Evans et al. | Feb 2012 | A1 |
20120099601 | Haddad et al. | Apr 2012 | A1 |
20120136697 | Peles et al. | May 2012 | A1 |
20120140935 | Kruglick | Jun 2012 | A1 |
20120157068 | Eichen et al. | Jun 2012 | A1 |
20120173694 | Yan et al. | Jul 2012 | A1 |
20120173919 | Patel et al. | Jul 2012 | A1 |
20120182940 | Taleb et al. | Jul 2012 | A1 |
20120221955 | Raleigh et al. | Aug 2012 | A1 |
20120227093 | Shalzkamer et al. | Sep 2012 | A1 |
20120240185 | Kapoor et al. | Sep 2012 | A1 |
20120250682 | Vincent et al. | Oct 2012 | A1 |
20120250686 | Vincent et al. | Oct 2012 | A1 |
20120281706 | Agarwal et al. | Nov 2012 | A1 |
20120287818 | Corti et al. | Nov 2012 | A1 |
20120300615 | Kempf et al. | Nov 2012 | A1 |
20120307659 | Yamada | Dec 2012 | A1 |
20120317270 | Vrbaski et al. | Dec 2012 | A1 |
20120317291 | Wolfe | Dec 2012 | A1 |
20130019005 | Hui et al. | Jan 2013 | A1 |
20130021968 | Reznik et al. | Jan 2013 | A1 |
20130044764 | Casado et al. | Feb 2013 | A1 |
20130051237 | Ong | Feb 2013 | A1 |
20130051399 | Zhang et al. | Feb 2013 | A1 |
20130054763 | Merwe et al. | Feb 2013 | A1 |
20130086267 | Gelenbe et al. | Apr 2013 | A1 |
20130097304 | Asthana et al. | Apr 2013 | A1 |
20130103729 | Cooney et al. | Apr 2013 | A1 |
20130103834 | Dzerve et al. | Apr 2013 | A1 |
20130117530 | Kim et al. | May 2013 | A1 |
20130124718 | Griffith et al. | May 2013 | A1 |
20130124911 | Griffith et al. | May 2013 | A1 |
20130124912 | Griffith et al. | May 2013 | A1 |
20130128889 | Mathur et al. | May 2013 | A1 |
20130142201 | Kim et al. | Jun 2013 | A1 |
20130170354 | Takashima et al. | Jul 2013 | A1 |
20130173788 | Song | Jul 2013 | A1 |
20130182712 | Aguayo et al. | Jul 2013 | A1 |
20130185729 | Vasic et al. | Jul 2013 | A1 |
20130191688 | Agarwal et al. | Jul 2013 | A1 |
20130223226 | Narayanan et al. | Aug 2013 | A1 |
20130223454 | Dunbar et al. | Aug 2013 | A1 |
20130238782 | Zhao et al. | Sep 2013 | A1 |
20130242718 | Zhang | Sep 2013 | A1 |
20130254599 | Katkar et al. | Sep 2013 | A1 |
20130258839 | Wang et al. | Oct 2013 | A1 |
20130258847 | Zhang et al. | Oct 2013 | A1 |
20130266015 | Qu et al. | Oct 2013 | A1 |
20130266019 | Qu et al. | Oct 2013 | A1 |
20130283364 | Chang et al. | Oct 2013 | A1 |
20130286846 | Atlas et al. | Oct 2013 | A1 |
20130297611 | Moritz et al. | Nov 2013 | A1 |
20130297770 | Zhang | Nov 2013 | A1 |
20130301469 | Suga | Nov 2013 | A1 |
20130301642 | Radhakrishnan et al. | Nov 2013 | A1 |
20130308444 | Sem-Jacobsen et al. | Nov 2013 | A1 |
20130315242 | Wang et al. | Nov 2013 | A1 |
20130315243 | Huang et al. | Nov 2013 | A1 |
20130329548 | Nakil et al. | Dec 2013 | A1 |
20130329601 | Yin et al. | Dec 2013 | A1 |
20130329734 | Chesla et al. | Dec 2013 | A1 |
20130346470 | Obstfeld et al. | Dec 2013 | A1 |
20140016464 | Shirazipour et al. | Jan 2014 | A1 |
20140019604 | Twitchell, Jr. | Jan 2014 | A1 |
20140019750 | Dodgson et al. | Jan 2014 | A1 |
20140040975 | Raleigh et al. | Feb 2014 | A1 |
20140064283 | Balus et al. | Mar 2014 | A1 |
20140071832 | Johnsson et al. | Mar 2014 | A1 |
20140092907 | Sridhar et al. | Apr 2014 | A1 |
20140108665 | Arora et al. | Apr 2014 | A1 |
20140112171 | Pasdar | Apr 2014 | A1 |
20140115584 | Mudigonda et al. | Apr 2014 | A1 |
20140122559 | Branson | May 2014 | A1 |
20140123135 | Huang et al. | May 2014 | A1 |
20140126418 | Brendel et al. | May 2014 | A1 |
20140156818 | Hunt | Jun 2014 | A1 |
20140156823 | Liu et al. | Jun 2014 | A1 |
20140160935 | Zecharia et al. | Jun 2014 | A1 |
20140164560 | Ko et al. | Jun 2014 | A1 |
20140164617 | Jalan et al. | Jun 2014 | A1 |
20140164718 | van Schaik | Jun 2014 | A1 |
20140173113 | Vemuri et al. | Jun 2014 | A1 |
20140173331 | Martin et al. | Jun 2014 | A1 |
20140181824 | Saund et al. | Jun 2014 | A1 |
20140208317 | Nakagawa | Jul 2014 | A1 |
20140219135 | Li et al. | Aug 2014 | A1 |
20140223507 | Xu | Aug 2014 | A1 |
20140229210 | Sharifian et al. | Aug 2014 | A1 |
20140244851 | Lee | Aug 2014 | A1 |
20140258535 | Zhang | Sep 2014 | A1 |
20140269690 | Tu | Sep 2014 | A1 |
20140279862 | Dietz et al. | Sep 2014 | A1 |
20140280499 | Basavaiah et al. | Sep 2014 | A1 |
20140317440 | Biermayr et al. | Oct 2014 | A1 |
20140321277 | Lynn, Jr. et al. | Oct 2014 | A1 |
20140337500 | Lee | Nov 2014 | A1 |
20140337674 | Ivancic et al. | Nov 2014 | A1 |
20140341109 | Cartmell et al. | Nov 2014 | A1 |
20140365834 | Stone | Dec 2014 | A1 |
20140372582 | Ghanwani et al. | Dec 2014 | A1 |
20150003240 | Drwiega et al. | Jan 2015 | A1 |
20150016249 | Mukundan et al. | Jan 2015 | A1 |
20150029864 | Raileanu et al. | Jan 2015 | A1 |
20150039744 | Niazi et al. | Feb 2015 | A1 |
20150046572 | Cheng et al. | Feb 2015 | A1 |
20150052247 | Threefoot et al. | Feb 2015 | A1 |
20150052517 | Raghu et al. | Feb 2015 | A1 |
20150056960 | Egner et al. | Feb 2015 | A1 |
20150058917 | Xu | Feb 2015 | A1 |
20150088942 | Shah | Mar 2015 | A1 |
20150089628 | Lang | Mar 2015 | A1 |
20150092603 | Aguayo et al. | Apr 2015 | A1 |
20150096011 | Watt | Apr 2015 | A1 |
20150100958 | Banavalikar et al. | Apr 2015 | A1 |
20150124603 | Ketheesan et al. | May 2015 | A1 |
20150134777 | Onoue | May 2015 | A1 |
20150139238 | Pourzandi et al. | May 2015 | A1 |
20150146539 | Mehta et al. | May 2015 | A1 |
20150163152 | Li | Jun 2015 | A1 |
20150169340 | Haddad et al. | Jun 2015 | A1 |
20150172121 | Farkas et al. | Jun 2015 | A1 |
20150172169 | DeCusatis et al. | Jun 2015 | A1 |
20150188823 | Williams et al. | Jul 2015 | A1 |
20150189009 | Bemmel | Jul 2015 | A1 |
20150195178 | Bhattacharya et al. | Jul 2015 | A1 |
20150201036 | Nishiki et al. | Jul 2015 | A1 |
20150222543 | Song | Aug 2015 | A1 |
20150222638 | Morley | Aug 2015 | A1 |
20150236945 | Michael et al. | Aug 2015 | A1 |
20150236962 | Veres et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150249644 | Xu | Sep 2015 | A1 |
20150257081 | Ramanujan et al. | Sep 2015 | A1 |
20150271056 | Chunduri et al. | Sep 2015 | A1 |
20150271104 | Chikkamath et al. | Sep 2015 | A1 |
20150271303 | Neginhal et al. | Sep 2015 | A1 |
20150281004 | Kakadia et al. | Oct 2015 | A1 |
20150312142 | Barabash et al. | Oct 2015 | A1 |
20150312760 | O'Toole | Oct 2015 | A1 |
20150317169 | Sinha et al. | Nov 2015 | A1 |
20150334025 | Rader | Nov 2015 | A1 |
20150334696 | Gu et al. | Nov 2015 | A1 |
20150341271 | Gomez | Nov 2015 | A1 |
20150349978 | Wu et al. | Dec 2015 | A1 |
20150350907 | Timariu et al. | Dec 2015 | A1 |
20150358236 | Roach et al. | Dec 2015 | A1 |
20150363221 | Terayama et al. | Dec 2015 | A1 |
20150363733 | Brown | Dec 2015 | A1 |
20150365323 | Duminuco et al. | Dec 2015 | A1 |
20150372943 | Hasan et al. | Dec 2015 | A1 |
20150372982 | Herle et al. | Dec 2015 | A1 |
20150381407 | Wang et al. | Dec 2015 | A1 |
20150381493 | Bansal et al. | Dec 2015 | A1 |
20160020844 | Hart et al. | Jan 2016 | A1 |
20160021597 | Hart et al. | Jan 2016 | A1 |
20160035183 | Buchholz et al. | Feb 2016 | A1 |
20160036924 | Koppolu et al. | Feb 2016 | A1 |
20160036938 | Aviles et al. | Feb 2016 | A1 |
20160037434 | Gopal et al. | Feb 2016 | A1 |
20160072669 | Saavedra | Mar 2016 | A1 |
20160072684 | Manuguri et al. | Mar 2016 | A1 |
20160080502 | Yadav et al. | Mar 2016 | A1 |
20160105353 | Cociglio | Apr 2016 | A1 |
20160105392 | Thakkar et al. | Apr 2016 | A1 |
20160105471 | Nunes et al. | Apr 2016 | A1 |
20160105488 | Thakkar et al. | Apr 2016 | A1 |
20160117185 | Fang et al. | Apr 2016 | A1 |
20160134461 | Sampath et al. | May 2016 | A1 |
20160134528 | Lin et al. | May 2016 | A1 |
20160134591 | Liao et al. | May 2016 | A1 |
20160142373 | Ossipov | May 2016 | A1 |
20160150055 | Choi | May 2016 | A1 |
20160164832 | Bellagamba et al. | Jun 2016 | A1 |
20160164914 | Madhav et al. | Jun 2016 | A1 |
20160173338 | Wolting | Jun 2016 | A1 |
20160191363 | Haraszti et al. | Jun 2016 | A1 |
20160191374 | Singh et al. | Jun 2016 | A1 |
20160192403 | Gupta et al. | Jun 2016 | A1 |
20160197834 | Luft | Jul 2016 | A1 |
20160197835 | Luft | Jul 2016 | A1 |
20160198003 | Luft | Jul 2016 | A1 |
20160205071 | Cooper et al. | Jul 2016 | A1 |
20160210209 | Verkaik et al. | Jul 2016 | A1 |
20160212773 | Kanderholm et al. | Jul 2016 | A1 |
20160218947 | Hughes et al. | Jul 2016 | A1 |
20160218951 | Vasseur et al. | Jul 2016 | A1 |
20160255169 | Kovvuri et al. | Sep 2016 | A1 |
20160255542 | Hughes et al. | Sep 2016 | A1 |
20160261493 | Li | Sep 2016 | A1 |
20160261495 | Xia et al. | Sep 2016 | A1 |
20160261506 | Hegde et al. | Sep 2016 | A1 |
20160261639 | Xu | Sep 2016 | A1 |
20160269298 | Li et al. | Sep 2016 | A1 |
20160269926 | Sundaram | Sep 2016 | A1 |
20160285736 | Gu | Sep 2016 | A1 |
20160301471 | Kunz et al. | Oct 2016 | A1 |
20160308762 | Teng et al. | Oct 2016 | A1 |
20160315912 | Mayya et al. | Oct 2016 | A1 |
20160323377 | Einkauf et al. | Nov 2016 | A1 |
20160328159 | Coddington et al. | Nov 2016 | A1 |
20160330111 | Manghirmalani et al. | Nov 2016 | A1 |
20160337202 | Ben-Itzhak et al. | Nov 2016 | A1 |
20160352588 | Subbarayan et al. | Dec 2016 | A1 |
20160353268 | Senarath et al. | Dec 2016 | A1 |
20160359738 | Sullenberger et al. | Dec 2016 | A1 |
20160366187 | Kamble | Dec 2016 | A1 |
20160371153 | Dornemann | Dec 2016 | A1 |
20160378527 | Zamir | Dec 2016 | A1 |
20160380886 | Blair et al. | Dec 2016 | A1 |
20160380906 | Hodique et al. | Dec 2016 | A1 |
20170005986 | Bansal et al. | Jan 2017 | A1 |
20170006499 | Hampel et al. | Jan 2017 | A1 |
20170012870 | Blair et al. | Jan 2017 | A1 |
20170019428 | Cohn | Jan 2017 | A1 |
20170026283 | Williams et al. | Jan 2017 | A1 |
20170026355 | Mathaiyan et al. | Jan 2017 | A1 |
20170034046 | Cai et al. | Feb 2017 | A1 |
20170034052 | Chanda et al. | Feb 2017 | A1 |
20170034129 | Sawant et al. | Feb 2017 | A1 |
20170048296 | Ramalho et al. | Feb 2017 | A1 |
20170053258 | Carney et al. | Feb 2017 | A1 |
20170055131 | Kong et al. | Feb 2017 | A1 |
20170063674 | Maskalik et al. | Mar 2017 | A1 |
20170063782 | Jain et al. | Mar 2017 | A1 |
20170063794 | Jain et al. | Mar 2017 | A1 |
20170064005 | Lee | Mar 2017 | A1 |
20170075710 | Prasad et al. | Mar 2017 | A1 |
20170093625 | Pera et al. | Mar 2017 | A1 |
20170097841 | Chang et al. | Apr 2017 | A1 |
20170104653 | Badea et al. | Apr 2017 | A1 |
20170104755 | Arregoces et al. | Apr 2017 | A1 |
20170109212 | Gaurav et al. | Apr 2017 | A1 |
20170118067 | Vedula | Apr 2017 | A1 |
20170118173 | Arramreddy et al. | Apr 2017 | A1 |
20170123939 | Maheshwari et al. | May 2017 | A1 |
20170126516 | Tiagi et al. | May 2017 | A1 |
20170126564 | Mayya et al. | May 2017 | A1 |
20170134186 | Mukundan et al. | May 2017 | A1 |
20170134520 | Abbasi et al. | May 2017 | A1 |
20170139789 | Fries et al. | May 2017 | A1 |
20170142000 | Cai et al. | May 2017 | A1 |
20170149637 | Banikazemi et al. | May 2017 | A1 |
20170155557 | Desai et al. | Jun 2017 | A1 |
20170163473 | Sadana et al. | Jun 2017 | A1 |
20170171310 | Gardner | Jun 2017 | A1 |
20170180220 | Leckey et al. | Jun 2017 | A1 |
20170181210 | Nadella et al. | Jun 2017 | A1 |
20170195161 | Ruel et al. | Jul 2017 | A1 |
20170195169 | Mills et al. | Jul 2017 | A1 |
20170201585 | Doraiswamy et al. | Jul 2017 | A1 |
20170207976 | Rovner et al. | Jul 2017 | A1 |
20170214545 | Cheng et al. | Jul 2017 | A1 |
20170214701 | Hasan | Jul 2017 | A1 |
20170223117 | Messerli et al. | Aug 2017 | A1 |
20170236060 | Ignatyev | Aug 2017 | A1 |
20170237710 | Mayya et al. | Aug 2017 | A1 |
20170257260 | Govindan et al. | Sep 2017 | A1 |
20170257309 | Appanna | Sep 2017 | A1 |
20170264496 | Ao et al. | Sep 2017 | A1 |
20170279717 | Bethers et al. | Sep 2017 | A1 |
20170279741 | Elias et al. | Sep 2017 | A1 |
20170279803 | Desai et al. | Sep 2017 | A1 |
20170280474 | Vesterinen et al. | Sep 2017 | A1 |
20170288987 | Pasupathy et al. | Oct 2017 | A1 |
20170289002 | Ganguli et al. | Oct 2017 | A1 |
20170289027 | Ratnasingham | Oct 2017 | A1 |
20170295264 | Touitou et al. | Oct 2017 | A1 |
20170302565 | Ghobadi et al. | Oct 2017 | A1 |
20170310641 | Jiang et al. | Oct 2017 | A1 |
20170310691 | Vasseur et al. | Oct 2017 | A1 |
20170317954 | Masurekar et al. | Nov 2017 | A1 |
20170317969 | Masurekar et al. | Nov 2017 | A1 |
20170317974 | Masurekar et al. | Nov 2017 | A1 |
20170324628 | Dhanabalan | Nov 2017 | A1 |
20170337086 | Zhu et al. | Nov 2017 | A1 |
20170339054 | Yadav et al. | Nov 2017 | A1 |
20170339070 | Chang et al. | Nov 2017 | A1 |
20170364419 | Lo | Dec 2017 | A1 |
20170366445 | Nemirovsky et al. | Dec 2017 | A1 |
20170366467 | Martin et al. | Dec 2017 | A1 |
20170373950 | Szilagyi et al. | Dec 2017 | A1 |
20170374174 | Evens et al. | Dec 2017 | A1 |
20180006995 | Bickhart et al. | Jan 2018 | A1 |
20180007005 | Chanda et al. | Jan 2018 | A1 |
20180007123 | Cheng et al. | Jan 2018 | A1 |
20180013636 | Seetharamaiah et al. | Jan 2018 | A1 |
20180014051 | Phillips et al. | Jan 2018 | A1 |
20180020035 | Boggia et al. | Jan 2018 | A1 |
20180034668 | Mayya et al. | Feb 2018 | A1 |
20180041425 | Zhang | Feb 2018 | A1 |
20180062875 | Tumuluru | Mar 2018 | A1 |
20180062914 | Boutros et al. | Mar 2018 | A1 |
20180062917 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063036 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063193 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063233 | Park | Mar 2018 | A1 |
20180063743 | Tumuluru et al. | Mar 2018 | A1 |
20180069924 | Tumuluru et al. | Mar 2018 | A1 |
20180074909 | Bishop et al. | Mar 2018 | A1 |
20180077081 | Lauer et al. | Mar 2018 | A1 |
20180077202 | Xu | Mar 2018 | A1 |
20180084081 | Kuchibhotla et al. | Mar 2018 | A1 |
20180097725 | Wood et al. | Apr 2018 | A1 |
20180114569 | Strachan et al. | Apr 2018 | A1 |
20180123910 | Fitzgibbon | May 2018 | A1 |
20180123946 | Ramachandran et al. | May 2018 | A1 |
20180131608 | Jiang et al. | May 2018 | A1 |
20180131615 | Zhang | May 2018 | A1 |
20180131720 | Hobson et al. | May 2018 | A1 |
20180145899 | Rao | May 2018 | A1 |
20180159796 | Wang et al. | Jun 2018 | A1 |
20180159856 | Gujarathi | Jun 2018 | A1 |
20180167378 | Kostyukov et al. | Jun 2018 | A1 |
20180176073 | Dubey et al. | Jun 2018 | A1 |
20180176082 | Katz et al. | Jun 2018 | A1 |
20180176130 | Banerjee et al. | Jun 2018 | A1 |
20180213472 | Ishii et al. | Jul 2018 | A1 |
20180219765 | Michael et al. | Aug 2018 | A1 |
20180219766 | Michael et al. | Aug 2018 | A1 |
20180234300 | Mayya et al. | Aug 2018 | A1 |
20180248790 | Tan et al. | Aug 2018 | A1 |
20180260125 | Botes et al. | Sep 2018 | A1 |
20180262468 | Kumar et al. | Sep 2018 | A1 |
20180270104 | Zheng et al. | Sep 2018 | A1 |
20180278541 | Wu et al. | Sep 2018 | A1 |
20180287907 | Kulshreshtha et al. | Oct 2018 | A1 |
20180295101 | Gehrmann | Oct 2018 | A1 |
20180295529 | Jen et al. | Oct 2018 | A1 |
20180302286 | Mayya et al. | Oct 2018 | A1 |
20180302321 | Manthiramoorthy et al. | Oct 2018 | A1 |
20180307851 | Lewis | Oct 2018 | A1 |
20180316606 | Sung et al. | Nov 2018 | A1 |
20180351855 | Sood et al. | Dec 2018 | A1 |
20180351862 | Jeganathan et al. | Dec 2018 | A1 |
20180351863 | Vairavakkalai et al. | Dec 2018 | A1 |
20180351882 | Jeganathan et al. | Dec 2018 | A1 |
20180367445 | Bajaj | Dec 2018 | A1 |
20180373558 | Chang et al. | Dec 2018 | A1 |
20180375744 | Mayya et al. | Dec 2018 | A1 |
20180375824 | Mayya et al. | Dec 2018 | A1 |
20180375967 | Pithawala et al. | Dec 2018 | A1 |
20190013883 | Vargas et al. | Jan 2019 | A1 |
20190014038 | Ritchie | Jan 2019 | A1 |
20190020588 | Twitchell, Jr. | Jan 2019 | A1 |
20190020627 | Yuan | Jan 2019 | A1 |
20190028378 | Houjyo et al. | Jan 2019 | A1 |
20190028552 | Johnson et al. | Jan 2019 | A1 |
20190036808 | Shenoy et al. | Jan 2019 | A1 |
20190036810 | Michael et al. | Jan 2019 | A1 |
20190036813 | Shenoy et al. | Jan 2019 | A1 |
20190046056 | Khachaturian et al. | Feb 2019 | A1 |
20190058657 | Chunduri et al. | Feb 2019 | A1 |
20190058709 | Kempf et al. | Feb 2019 | A1 |
20190068470 | Mirsky | Feb 2019 | A1 |
20190068493 | Ram et al. | Feb 2019 | A1 |
20190068500 | Hira | Feb 2019 | A1 |
20190075083 | Mayya et al. | Mar 2019 | A1 |
20190103990 | Cidon et al. | Apr 2019 | A1 |
20190103991 | Cidon et al. | Apr 2019 | A1 |
20190103992 | Cidon et al. | Apr 2019 | A1 |
20190103993 | Cidon et al. | Apr 2019 | A1 |
20190104035 | Cidon et al. | Apr 2019 | A1 |
20190104049 | Cidon et al. | Apr 2019 | A1 |
20190104050 | Cidon et al. | Apr 2019 | A1 |
20190104051 | Cidon et al. | Apr 2019 | A1 |
20190104052 | Cidon et al. | Apr 2019 | A1 |
20190104053 | Cidon et al. | Apr 2019 | A1 |
20190104063 | Cidon et al. | Apr 2019 | A1 |
20190104064 | Cidon et al. | Apr 2019 | A1 |
20190104109 | Cidon et al. | Apr 2019 | A1 |
20190104111 | Cidon et al. | Apr 2019 | A1 |
20190104413 | Cidon et al. | Apr 2019 | A1 |
20190109769 | Jain et al. | Apr 2019 | A1 |
20190132221 | Boutros et al. | May 2019 | A1 |
20190132234 | Dong et al. | May 2019 | A1 |
20190140889 | Mayya et al. | May 2019 | A1 |
20190140890 | Mayya et al. | May 2019 | A1 |
20190158371 | Dillon et al. | May 2019 | A1 |
20190158605 | Markuze et al. | May 2019 | A1 |
20190199539 | Deng et al. | Jun 2019 | A1 |
20190220703 | Prakash et al. | Jul 2019 | A1 |
20190238364 | Boutros et al. | Aug 2019 | A1 |
20190238446 | Barzik et al. | Aug 2019 | A1 |
20190238449 | Michael et al. | Aug 2019 | A1 |
20190238450 | Michael et al. | Aug 2019 | A1 |
20190238483 | Marichetty et al. | Aug 2019 | A1 |
20190268421 | Markuze et al. | Aug 2019 | A1 |
20190268973 | Bull et al. | Aug 2019 | A1 |
20190278631 | Bernat et al. | Sep 2019 | A1 |
20190280962 | Michael et al. | Sep 2019 | A1 |
20190280963 | Michael et al. | Sep 2019 | A1 |
20190280964 | Michael et al. | Sep 2019 | A1 |
20190306197 | Degioanni | Oct 2019 | A1 |
20190306282 | Masputra et al. | Oct 2019 | A1 |
20190313907 | Khachaturian et al. | Oct 2019 | A1 |
20190319847 | Nahar et al. | Oct 2019 | A1 |
20190327109 | Guichard et al. | Oct 2019 | A1 |
20190334813 | Raj et al. | Oct 2019 | A1 |
20190334820 | Zhao | Oct 2019 | A1 |
20190342201 | Singh | Nov 2019 | A1 |
20190342219 | Liu et al. | Nov 2019 | A1 |
20190356736 | Narayanaswamy et al. | Nov 2019 | A1 |
20190364099 | Thakkar et al. | Nov 2019 | A1 |
20190364456 | Yu | Nov 2019 | A1 |
20190372888 | Michael et al. | Dec 2019 | A1 |
20190372889 | Michael et al. | Dec 2019 | A1 |
20190372890 | Michael et al. | Dec 2019 | A1 |
20190394081 | Tahhan et al. | Dec 2019 | A1 |
20200014609 | Hockett et al. | Jan 2020 | A1 |
20200014615 | Michael et al. | Jan 2020 | A1 |
20200014616 | Michael et al. | Jan 2020 | A1 |
20200014661 | Mayya et al. | Jan 2020 | A1 |
20200014663 | Chen et al. | Jan 2020 | A1 |
20200021514 | Michael et al. | Jan 2020 | A1 |
20200021515 | Michael et al. | Jan 2020 | A1 |
20200036624 | Michael et al. | Jan 2020 | A1 |
20200044943 | Bor-Yaliniz et al. | Feb 2020 | A1 |
20200044969 | Hao et al. | Feb 2020 | A1 |
20200059420 | Abraham | Feb 2020 | A1 |
20200059457 | Raza et al. | Feb 2020 | A1 |
20200059459 | Abraham et al. | Feb 2020 | A1 |
20200092207 | Sipra et al. | Mar 2020 | A1 |
20200097327 | Beyer et al. | Mar 2020 | A1 |
20200099625 | Yigit et al. | Mar 2020 | A1 |
20200099659 | Cometto et al. | Mar 2020 | A1 |
20200106696 | Michael et al. | Apr 2020 | A1 |
20200106706 | Mayya et al. | Apr 2020 | A1 |
20200119952 | Mayya et al. | Apr 2020 | A1 |
20200127905 | Mayya et al. | Apr 2020 | A1 |
20200127911 | Gilson et al. | Apr 2020 | A1 |
20200153701 | Mohan et al. | May 2020 | A1 |
20200153736 | Liebherr et al. | May 2020 | A1 |
20200159661 | Keymolen et al. | May 2020 | A1 |
20200162407 | Tillotson | May 2020 | A1 |
20200169473 | Rimar et al. | May 2020 | A1 |
20200177503 | Hooda et al. | Jun 2020 | A1 |
20200177550 | Valluri et al. | Jun 2020 | A1 |
20200177629 | Hooda et al. | Jun 2020 | A1 |
20200186471 | Shen et al. | Jun 2020 | A1 |
20200195557 | Duan et al. | Jun 2020 | A1 |
20200204460 | Schneider et al. | Jun 2020 | A1 |
20200213212 | Dillon et al. | Jul 2020 | A1 |
20200213224 | Cheng et al. | Jul 2020 | A1 |
20200218558 | Sreenath et al. | Jul 2020 | A1 |
20200235990 | Janakiraman et al. | Jul 2020 | A1 |
20200235999 | Mayya et al. | Jul 2020 | A1 |
20200236046 | Jain et al. | Jul 2020 | A1 |
20200241927 | Yang | Jul 2020 | A1 |
20200244721 | S et al. | Jul 2020 | A1 |
20200252234 | Ramamoorthi et al. | Aug 2020 | A1 |
20200259700 | Bhalla et al. | Aug 2020 | A1 |
20200267184 | Vera-Schockner | Aug 2020 | A1 |
20200280587 | Janakiraman et al. | Sep 2020 | A1 |
20200287819 | Theogaraj et al. | Sep 2020 | A1 |
20200287976 | Theogaraj et al. | Sep 2020 | A1 |
20200296011 | Jain et al. | Sep 2020 | A1 |
20200296026 | Michael et al. | Sep 2020 | A1 |
20200301764 | Thoresen | Sep 2020 | A1 |
20200314006 | Mackie et al. | Oct 2020 | A1 |
20200314614 | Moustafa et al. | Oct 2020 | A1 |
20200322230 | Natal et al. | Oct 2020 | A1 |
20200322287 | Connor et al. | Oct 2020 | A1 |
20200336336 | Sethi et al. | Oct 2020 | A1 |
20200344143 | Faseela et al. | Oct 2020 | A1 |
20200344163 | Gupta et al. | Oct 2020 | A1 |
20200351188 | Arora et al. | Nov 2020 | A1 |
20200358878 | Bansal et al. | Nov 2020 | A1 |
20200366530 | Mukundan et al. | Nov 2020 | A1 |
20200366562 | Mayya et al. | Nov 2020 | A1 |
20200382345 | Zhao et al. | Dec 2020 | A1 |
20200382387 | Pasupathy et al. | Dec 2020 | A1 |
20200412483 | Tan et al. | Dec 2020 | A1 |
20200412576 | Kondapavuluru et al. | Dec 2020 | A1 |
20200413283 | Shen et al. | Dec 2020 | A1 |
20210006482 | Hwang et al. | Jan 2021 | A1 |
20210006490 | Michael et al. | Jan 2021 | A1 |
20210029019 | Kottapalli | Jan 2021 | A1 |
20210029088 | Mayya et al. | Jan 2021 | A1 |
20210036888 | Makkalla et al. | Feb 2021 | A1 |
20210036987 | Mishra et al. | Feb 2021 | A1 |
20210067372 | Cidon et al. | Mar 2021 | A1 |
20210067373 | Cidon et al. | Mar 2021 | A1 |
20210067374 | Cidon et al. | Mar 2021 | A1 |
20210067375 | Cidon et al. | Mar 2021 | A1 |
20210067407 | Cidon et al. | Mar 2021 | A1 |
20210067427 | Cidon et al. | Mar 2021 | A1 |
20210067442 | Sundararajan et al. | Mar 2021 | A1 |
20210067461 | Cidon et al. | Mar 2021 | A1 |
20210067464 | Cidon et al. | Mar 2021 | A1 |
20210067467 | Cidon et al. | Mar 2021 | A1 |
20210067468 | Cidon et al. | Mar 2021 | A1 |
20210073001 | Rogers et al. | Mar 2021 | A1 |
20210092062 | Dhanabalan et al. | Mar 2021 | A1 |
20210105199 | H et al. | Apr 2021 | A1 |
20210112034 | Sundararajan et al. | Apr 2021 | A1 |
20210126830 | R. et al. | Apr 2021 | A1 |
20210126853 | Ramaswamy et al. | Apr 2021 | A1 |
20210126854 | Guo et al. | Apr 2021 | A1 |
20210126860 | Ramaswamy et al. | Apr 2021 | A1 |
20210144091 | H et al. | May 2021 | A1 |
20210160169 | Shen et al. | May 2021 | A1 |
20210160813 | Gupta et al. | May 2021 | A1 |
20210176255 | Hill et al. | Jun 2021 | A1 |
20210184952 | Mayya et al. | Jun 2021 | A1 |
20210184966 | Ramaswamy et al. | Jun 2021 | A1 |
20210184983 | Ramaswamy et al. | Jun 2021 | A1 |
20210194814 | Roux et al. | Jun 2021 | A1 |
20210226880 | Ramamoorthy et al. | Jul 2021 | A1 |
20210234728 | Cidon et al. | Jul 2021 | A1 |
20210234775 | Devadoss et al. | Jul 2021 | A1 |
20210234786 | Devadoss et al. | Jul 2021 | A1 |
20210234804 | Devadoss et al. | Jul 2021 | A1 |
20210234805 | Devadoss et al. | Jul 2021 | A1 |
20210235312 | Devadoss et al. | Jul 2021 | A1 |
20210235313 | Devadoss et al. | Jul 2021 | A1 |
20210266262 | Subramanian et al. | Aug 2021 | A1 |
20210279069 | Salgaonkar et al. | Sep 2021 | A1 |
20210314289 | Chandrashekhar et al. | Oct 2021 | A1 |
20210328835 | Mayya et al. | Oct 2021 | A1 |
20210336880 | Gupta et al. | Oct 2021 | A1 |
20210377109 | Shrivastava et al. | Dec 2021 | A1 |
20210377156 | Michael et al. | Dec 2021 | A1 |
20210392060 | Silva et al. | Dec 2021 | A1 |
20210392070 | Tootaghaj et al. | Dec 2021 | A1 |
20210399920 | Sundararajan et al. | Dec 2021 | A1 |
20210399978 | Michael et al. | Dec 2021 | A9 |
20210400113 | Markuze et al. | Dec 2021 | A1 |
20210409277 | Jeuk et al. | Dec 2021 | A1 |
20220006726 | Michael et al. | Jan 2022 | A1 |
20220006751 | Ramaswamy et al. | Jan 2022 | A1 |
20220006756 | Ramaswamy et al. | Jan 2022 | A1 |
20220038370 | Vasseur et al. | Feb 2022 | A1 |
20220038557 | Markuze et al. | Feb 2022 | A1 |
20220045927 | Liu et al. | Feb 2022 | A1 |
20220052928 | Sundararajan et al. | Feb 2022 | A1 |
20220086035 | Devaraj et al. | Mar 2022 | A1 |
20220094644 | Cidon et al. | Mar 2022 | A1 |
20220123961 | Mukundan et al. | Apr 2022 | A1 |
20220131740 | Mayya et al. | Apr 2022 | A1 |
20220131807 | Srinivas et al. | Apr 2022 | A1 |
20220141184 | Oswal et al. | May 2022 | A1 |
20220158923 | Ramaswamy et al. | May 2022 | A1 |
20220158924 | Ramaswamy et al. | May 2022 | A1 |
20220166713 | Markuze et al. | May 2022 | A1 |
20220210041 | Gandhi et al. | Jun 2022 | A1 |
20220210042 | Gandhi et al. | Jun 2022 | A1 |
20220231949 | Ramaswamy et al. | Jul 2022 | A1 |
20220231950 | Ramaswamy et al. | Jul 2022 | A1 |
20220232411 | Vijayakumar et al. | Jul 2022 | A1 |
20220239596 | Kumar et al. | Jul 2022 | A1 |
20220294701 | Mayya et al. | Sep 2022 | A1 |
20220335027 | Seshadri et al. | Oct 2022 | A1 |
20220337553 | Mayya et al. | Oct 2022 | A1 |
20220353152 | Ramaswamy | Nov 2022 | A1 |
20220353171 | Ramaswamy et al. | Nov 2022 | A1 |
20220353175 | Ramaswamy et al. | Nov 2022 | A1 |
20220353182 | Ramaswamy et al. | Nov 2022 | A1 |
20220353190 | Ramaswamy et al. | Nov 2022 | A1 |
20220360500 | Ramaswamy et al. | Nov 2022 | A1 |
20220407773 | Kempanna et al. | Dec 2022 | A1 |
20220407774 | Kempanna et al. | Dec 2022 | A1 |
20220407790 | Kempanna et al. | Dec 2022 | A1 |
20220407820 | Kempanna et al. | Dec 2022 | A1 |
20220407915 | Kempanna et al. | Dec 2022 | A1 |
20230006929 | Mayya et al. | Jan 2023 | A1 |
20230025586 | Rolando et al. | Jan 2023 | A1 |
20230026330 | Rolando et al. | Jan 2023 | A1 |
20230026865 | Rolando et al. | Jan 2023 | A1 |
20230028872 | Ramaswamy | Jan 2023 | A1 |
20230039869 | Ramaswamy et al. | Feb 2023 | A1 |
Number | Date | Country |
---|---|---|
1926809 | Mar 2007 | CN |
102577270 | Jul 2012 | CN |
102811165 | Dec 2012 | CN |
104956329 | Sep 2015 | CN |
106230650 | Dec 2016 | CN |
106656847 | May 2017 | CN |
110447209 | Nov 2019 | CN |
111198764 | May 2020 | CN |
1912381 | Apr 2008 | EP |
2538637 | Dec 2012 | EP |
2763362 | Aug 2014 | EP |
3041178 | Jul 2016 | EP |
3297211 | Mar 2018 | EP |
3509256 | Jul 2019 | EP |
3346650 | Nov 2019 | EP |
2010233126 | Oct 2010 | JP |
2014200010 | Oct 2014 | JP |
2017059991 | Mar 2017 | JP |
2017524290 | Aug 2017 | JP |
2574350 | Feb 2016 | RU |
03073701 | Sep 2003 | WO |
2007016834 | Feb 2007 | WO |
2012167184 | Dec 2012 | WO |
2015092565 | Jun 2015 | WO |
2016061546 | Apr 2016 | WO |
2016123314 | Aug 2016 | WO |
2017083975 | May 2017 | WO |
2019070611 | Apr 2019 | WO |
2019094522 | May 2019 | WO |
2020012491 | Jan 2020 | WO |
2020018704 | Jan 2020 | WO |
2020091777 | May 2020 | WO |
2020101922 | May 2020 | WO |
2020112345 | Jun 2020 | WO |
2021040934 | Mar 2021 | WO |
2021118717 | Jun 2021 | WO |
2021150465 | Jul 2021 | WO |
2021211906 | Oct 2021 | WO |
2022005607 | Jan 2022 | WO |
2022154850 | Jul 2022 | WO |
2022159156 | Jul 2022 | WO |
2022231668 | Nov 2022 | WO |
2022235303 | Nov 2022 | WO |
2022265681 | Dec 2022 | WO |
2023009159 | Feb 2023 | WO |
Entry |
---|
Alvizu, Rodolfo, et al., “SDN-Based Network Orchestration for New Dynamic Enterprise Networking Services,” 2017 19th International Conference on Transparent Optical Networks, Jul. 2-6, 2017, 4 pages, IEEE, Girona, Spain. |
Barozet, Jean-Marc, “Cisco SD-WAN as a Managed Service,” BRKRST-2558, Jan. 27-31, 2020, 98 pages, Cisco, Barcelona, Spain, retrieved from https://www.ciscolive.eom/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKRST-2558.pdf. |
Barozet, Jean-Marc, “Cisco SDWAN,” Deep Dive, Dec. 2017, 185 pages, Cisco, Retreived from https://www.coursehero.com/file/71671376/Cisco-SDWAN-Deep-Divepdf/. |
Bertaux, Lionel, et al., “Software Defined Networking and Virtualization for Broadband Satellite Networks,” IEEE Communications Magazine, Mar. 18, 2015, 7 pages, vol. 53, IEEE, retrieved from https://ieeexplore.ieee.org/document/7060482. |
Cox, Jacob H., et al., “Advancing Software-Defined Networks: A Survey,” IEEE Access, Oct. 12, 2017, 40 pages, vol. 5, IEEE, retrieved from https://ieeexplore.ieee.org/document/8066287. |
Duan, Zhenhai, et al., “Service Overlay Networks: SLAs, QoS, and Bandwidth Provisioning,” IEEE/ACM Transactions on Networking, Dec. 2003, 14 pages, vol. 11, IEEE, New York, NY, USA. |
Jivorasetkul, Supalerk, et al., “End-to-End Header Compression over Software-Defined Networks: a Low Latency Network Architecture,” 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, Sep. 19-21, 2012, 2 pages, IEEE, Bucharest, Romania. |
Li, Shengru, et al., “Source Routing with Protocol-oblivious Forwarding (POF) to Enable Efficient e-Health Data Transfers,” 2016 IEEE International Conference on Communications (ICC), May 22-27, 2016, 6 pages, IEEE, Kuala Lumpur, Malaysia. |
Ming, Gao, et al., “A Design of SD-WAN-Oriented Wide Area Network Access,” 2020 International Conference on Computer Communication and Network Security (CCNS), Aug. 21-23, 2020, 4 pages, IEEE, Xi'an, China. |
Tootaghaj, Diman Zad, et al., “Homa: An Efficient Topology and Route Management Approach in SD-WAN Overlays,” IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Jul. 6-9, 2020, 10 pages, IEEE, Toronto, ON, Canada. |
Alsaeedi, Mohammed, et al., “Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey,” IEEE Access, Aug. 1, 2019, 34 pages, vol. 7, IEEE, retrieved from https://ieeexplore.ieee.org/document/8784036. |
Long, Feng, “Research and Application of Cloud Storage Technology in University Information Service,” Chinese Excellent Masters' Theses Full-text Database, Mar. 2013, 72 pages, China Academic Journals Electronic Publishing House, China. |
Non-Published Commonly Owned U.S. Appl. No. 17/562,890, filed Dec. 27, 2021, 36 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/572,583, filed Jan. 10, 2022, 33 pages, Nicira, Inc. |
Noormohammadpour, Mohammad, et al., “DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines,” 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), Dec. 19-22, 2016, 9 pages, IEEE, Hyderabad, India. |
Huang, Cancan, et al., “Modification of Q.SD-WAN,” Rapporteur Group Meeting—Doc, Study Period 2017-2020, Q4/11-DOC1 (190410), Study Group 11, Apr. 10, 2019, 19 pages, International Telecommunication Union, Geneva, Switzerland. |
Non-published Commonly Owned U.S. Appl. No. 17/187,913, filed Mar. 1, 2021, 27 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/827,972, filed May 30, 2022, 30 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/850,112, filed Jun. 27, 2022, 41 pages, Nicira, Inc. |
Guo, Xiangyi, et al., (U.S. Appl. No. 62/925,193), filed Oct. 23, 2019, 26 pages. |
Non-Published Commonly Owned U.S. Appl. No. 17/542,413, filed Dec. 4, 2021, 173 pages, VMware, Inc. |
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Surveys and Tutorials, Apr. 20, 2016, vol. 18, No. 4, 27 pages, IEEE. |
Lasserre, Marc, et al., “Framework for Data Center (DC) Network Virtualization,” RFC 7365, Oct. 2014, 26 pages, IETF. |
Lin, Weidong, et al., “Using Path Label Routing in Wide Area Software-Defined Networks with Open Flow,” 2016 International Conference on Networking and Network Applications, Jul. 2016, 6 pages, IEEE. |
Non-Published Commonly Owned U.S. Appl. No. 17/240,890, filed Apr. 26, 2021, 325 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/240,906, filed Apr. 26, 2021, 18 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/467,378, filed Sep. 6, 2021, 157 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/474,034, filed Sep. 13, 2021, 349 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/233,427, filed Apr. 16, 2021, 124 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/361,292, filed Jun. 28, 2021, 35 pages, Nicira, Inc. |
Sarhan, Soliman Abd Elmonsef, et al., “Data Inspection in SDN Network,” 2018 13th International Conference on Computer Engineering and Systems (ICCES), Dec. 18-19, 2018, 6 pages, IEEE, Cairo, Egypt. |
Xie, Junfeng, et al., A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges, IEEE Communications Surveys & Tutorials, Aug. 23, 2018, 38 pages, vol. 21, Issue 1, IEEE. |
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Society, Apr. 20, 2016, vol. 18, No. 4, 37 pages, IEEE. |
Fortz, Bernard, et al., “Internet Traffic Engineering by Optimizing OSPF Weights,” Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 26-30, 2000, 11 pages, IEEE, Tel Aviv, Israel, Israel. |
Francois, Frederic, et al., “Optimizing Secure SDN-enabled Inter-Data Centre Overlay Networks through Cognitive Routing,” 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Sep. 19-21, 2016, 10 pages, IEEE, London, UK. |
Michael, Nithin, et al., “HALO: Hop-by-Hop Adaptive Link-State Optimal Routing,” IEEE/ACM Transactions on Networking, Dec. 2015, 14 pages, vol. 23, No. 6, IEEE. |
Mishra, Mayank, et al., “Managing Network Reservation for Tenants in Oversubscribed Clouds,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, Aug. 14-16, 2013, 10 pages, IEEE, San Francisco, CA, USA. |
Mudigonda, Jayaram, et al., “NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters,” Proceedings of the ACM SIGCOMM 2011 Conference, Aug. 15-19, 2011, 12 pages, ACM, Toronto, Canada. |
Non-Published Commonly Owned U.S. Appl. No. 16/662,363, filed Oct. 24, 2019, 129 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/662,379, filed Oct. 24, 2019, 123 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/662,402, filed Oct. 24, 2019, 128 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/662,427, filed Oct. 24, 2019, 165 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/662,489, filed Oct. 24, 2019, 165 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/662,510, filed Oct. 24, 2019, 165 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/662,531, filed Oct. 24, 2019, 135 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/662,570, filed Oct. 24, 2019, 141 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/662,587, filed Oct. 24, 2019, 145 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/662,591, filed Oct. 24, 2019, 130 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/721,964, filed Dec. 20, 2019, 39 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/721,965, filed Dec. 20, 2019, 39 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/792,908, filed Feb. 18, 2020, 48 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/792,909, filed Feb. 18, 2020, 49 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/851,294, filed Apr. 17, 2020, 59 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/851,301, filed Apr. 17, 2020, 59 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/851,308, filed Apr. 17, 2020, 59 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/851,314, filed Apr. 17, 2020, 59 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/851,323, filed Apr. 17, 2020, 59 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/851,397, filed Apr. 17, 2020, 59 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/068,603, filed Oct. 12, 2020, 37 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/072,764, filed Oct. 16, 2020, 33 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/072,774, filed Oct. 16, 2020, 34 pages, VMware, Inc. |
Non-Published Commonly Owned Related U.S. Appl. No. 17/085,916 with similar specification, filed Oct. 30, 2020, 35 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 15/803,964, filed Nov. 6, 2017, 15 pages, The Mode Group. |
Non-Published Commonly Owned U.S. Appl. No. 16/216,235, filed Dec. 11, 2018, 19 pages, The Mode Group. |
Non-Published Commonly Owned U.S. Appl. No. 16/818,862, filed Mar. 13, 2020, 198 pages, The Mode Group. |
Ray, Saikat, et al., “Always Acyclic Distributed Path Computation,” University of Pennsylvania Department of Electrical and Systems Engineering Technical Report, May 2008, 16 pages, University of Pennsylvania ScholarlyCommons. |
Webb, Kevin C., et al., “Blender: Upgrading Tenant-Based Data Center Networking,” 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Oct. 20-21, 2014, 11 pages, IEEE, Marina del Rey, CA, USA. |
Yap, Kok-Kiong, et al., “Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global Internet Peering,” SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Aug. 21-25, 2017, 14 pages, Los Angeles, CA. |
Non-Published Commonly Owned U.S. Appl. No. 17/943,147, filed Sep. 12, 2022, 42 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/967,795, filed Oct. 17, 2022, 39 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/976,784, filed Oct. 29, 2022, 55 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/083,536, filed Dec. 18, 2022, 27 pages, VMware, Inc. |
Taleb, Tarik, “D4.1 Mobile Network Cloud Component Design,” Mobile Cloud Networking, Nov. 8, 2013, 210 pages, MobileCloud Networking Consortium, retrieved from http://www.mobile-cloud-networking.eu/site/index.php?process=download&id=127&code=89d30565cd2ce087d3f8e95f9ad683066510a61f. |
Valtulina, Luca, “Seamless Distributed Mobility Management (DMM) Solution in Cloud Based LTE Systems,” Master Thesis, Nov. 2013, 168 pages, University of Twente, retrieved from http://essay.utwente.nl/64411/1/Luca_Valtulina_MSc_Report_final.pdf. |
Zakurdaev, Gieorgi, et al., “Dynamic On-Demand Virtual Extensible LAN Tunnels via Software-Defined Wide Area Networks,” 2022 IEEE 12th Annual Computing and Communication Workshop and Conference, Jan. 26-29, 2022, 6 pages, IEEE, Las Vegas, NV, USA. |
Non-Published Commonly Owned U.S. Appl. No. 18/102,685, filed Jan. 28, 2023, 124 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/102,687, filed Jan. 28, 2023, 172 pages, VMware, Inc. |
Number | Date | Country | |
---|---|---|---|
20220035673 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
63059113 | Jul 2020 | US |