International Business Machines Corporation, a New York corporation; Macronix International Corporation, a Taiwan corporation, and Infineon Technologies AG, a German corporation, are parties to a Joint Research Agreement.
1. Field of the Invention
The present invention relates to high density memory devices based on phase change based memory materials, including chalcogenide based materials and on other programmable resistive materials, and to methods for manufacturing such devices.
2. Description of Related Art
Programmable resistive materials, including phase change based materials, have been used in nonvolatile random access memory cells. Phase change materials, such as chalcogenides, can be caused to change phase between an amorphous state and a crystalline state by application of electrical current at levels suitable for implementation in integrated circuits. The generally amorphous state is characterized by higher resistivity than the generally crystalline state, which can be readily sensed to indicate data.
Phase change materials are capable of being switched between a first structural state in which the material is in a generally amorphous solid phase, and a second structural state in which the material is in a generally crystalline solid phase in the active region of the cell. The term amorphous is used to refer to a relatively less ordered structure, more disordered than a single crystal, which has detectable characteristics such as higher electrical resistivity than the crystalline phase. The term crystalline is used to refer to a relatively more ordered structure, more ordered than in an amorphous structure, which has detectable characteristics such as lower electrical resistivity than the amorphous phase. Other material characteristics affected by the change between amorphous and crystalline phases include atomic order, free electron density and activation energy. The material may be switched into either different solid phases or mixtures of two or more solid phases, providing a gray scale between completely amorphous and completely crystalline states.
The change from the amorphous to the crystalline state is generally a lower current operation, requiring a current that is sufficient to raise the phase change material to a level between a phase transition temperature and a melting temperature. The change from crystalline to amorphous, referred to as reset herein, is generally a higher current operation, which includes a short high current density pulse to melt or breakdown the crystalline structure, after which the phase change material cools quickly, quenching the phase change process, allowing at least a portion of the phase change structure to stabilize in the amorphous state. It is desirable to minimize the magnitude of the reset current used to cause transition of phase change material from a crystalline state to an amorphous state. The magnitude of the needed reset current can be reduced by reducing the volume of the active region in the phase change material element in the cell. Techniques used to reduce the volume of the active region include reducing the contact area between electrodes and the phase change material, so that higher current densities are achieved in the active volume, with small absolute current values through the phase change material element.
One direction of development has been toward forming small pores in an integrated circuit structure, and using small quantities of programmable resistive material to fill the small pores. Patents illustrating development toward small pores include: Ovshinsky, “Multibit Single Cell Memory Element Having Tapered Contact,” U.S. Pat. No. 5,687,112, issued 11 Nov. 1997; Zahorik et al., “Method of Making Chalogenide [sic] Memory Device,” U.S. Pat. No. 5,789,277, issued 4 Aug. 1998; Doan et al., “Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same,” U.S. Pat. No. 6,150,253, issued 21 Nov. 2000.
Another memory cell structure under development, referred to sometimes as a “mushroom” cell because of the shape of the active region on the bottom electrode in a typical structure, is based on the formation of a small electrode in contact with a larger portion of phase change material, and then a usually larger electrode in contact with an opposite surface of the phase change material. Current flow from the small contact to the larger contact is used for reading, setting and resetting the memory cell. The small electrode concentrates the current density at the contact point, so that an active region in the phase change material is confined to a small volume near the contact point. See, for example, Ahn et al., “Highly reliable 50 nm contact cell technology for 256 Mb PRAM,” VLSI Technology 2005 Digest of Technical Papers, pages 98-99, 14 Jun. 2005; Denison, International publication No. WO2004/055916 A2, “Phase Change Memory and Method Therefore,” Publication Date: 1 Jul. 2004; and Song et al., United States Patent Application Publication No. US 2005/0263829 A1, “Semiconductor Devices Having Phase Change Memory Cells, Electronic Systems Employing the Same and Methods of Fabricating the Same,” published 1 Dec. 2005.
Another problem with manufacturing very small dimension structures is alignment. When the structures are made using separate lithographic steps, the sizes of the structures, or of at least one of them, must be large enough to allow for alignment tolerances in the lithographic process. These requirements can restrict the flexibility in the design of the memory cells, and cause variation in the performance of the cells.
A self-aligned, nonvolatile memory structure based upon phase change material is described in U.S. Pat. No. 6,579,760 entitled Self-Aligned Programmable Phase Change Memory, invented by Hsiang-Lan Lung, issued Jun. 17, 2003. The memory structure can be made within a very small area on an integrated circuit. For example, the area required for each memory cell in an array is about 4F2, where F is equal to the minimum line width for the manufacturing process. Thus, for processes having a minimum line width of 0.1 microns, the memory cell area is about 0.04 microns squared.
Memory cells, including a stack of materials forming diode access devices and a layer of phase change material, are defined at intersections of bit lines and word lines, and have dimensions that are defined by the widths of the bit lines and word lines in a self-aligned process. However, the dimensions of the word lines and bit lines are still quite large, as compared for example to the size of a pore in a pore-type memory cell. Thus it is desirable to provide a high-density array technology, using self-aligned technology, and which provides for formation of very small pores
It is desirable therefore to provide a reliable method for manufacturing a memory cell structure with self-aligning and self-converging control over the critical dimensions of the pore cell, which will work with high density integrated circuit memory devices.
A memory array is described, comprising a structure, including dielectric fill material and having conductive lines, arranged in one embodiment as word lines, at a lower portion thereof. A plurality of vias in the structure are positioned over corresponding conductive lines. A pore-type memory element is formed within each via, and contains a diode, coupled to a corresponding conductive line in the substrate, and memory material in contact with a contact surface on the diode. Each diode comprises for example a first semiconductor layer having a first conductivity type, a second semiconductor layer having a second conductivity type, and a conductive cap, where the diode does not completely fill the via. A pore within the each via is defined by a spacer on an interior sidewall of the via, the spacer defining a self-centered opening in the center of the via, exposing the contact surface of the diode. Memory material within the self-centered opening in the center of the via contacts the conductive cap. A top electrode contacts the memory material. Optionally, a plurality of bit lines overlie the top electrodes, and connect the memory cells into the columns of the array. Alternatively, the top electrodes comprise portions of the bit lines themselves, in contact with the memory material in the vias along a column in the array.
A method of fabricating a memory array is described. The method basically comprises the steps of:
A method described herein begins with a structure, generally composed of dielectric fill material and having conductive lines formed at its lower portion, and a sacrificial layer formed on its upper surface. Silicon plugs are formed in the structure. First, silicon is removed from the plugs, to a depth of, for example, about half the thickness of the structure, thereby forming a recess. Then, diodes are formed in the silicon plugs, each diode having a lightly-doped first layer of the same conductivity type as the conductive lines; a heavily doped second layer of opposite conductivity type; and a conductive cap. An etching step expands the volume of the recess by etching dielectric material to undercut the sacrificial layer. A fill layer is deposited into the undercut recess, thereby forming a void within its center. The fill layer is etched to penetrate the void, defining self-aligned spacers in the recess adjacent the conductive cap. The etching is continued to expose the conductive cap at the center of the spacers. Memory material is deposited to fill the recess, the memory material making contact with the conductive cap. Finally, a top electrode is formed in the upper portion of the memory material.
In other embodiments, the diodes are formed using deposition of doped semiconductor layers, rather than the implanting of a semiconductor plug.
Other aspects and advantages of the invention are described below with reference to the figures.
a-4h depict an embodiment of a process for fabricating the memory array of
The following description of the invention will typically be with reference to specific structural embodiments and methods. It is understood that there is no intention to limit the invention to the specifically disclosed embodiments and methods but that the invention may be practiced using other features, elements, methods, and embodiments. Preferred embodiments are described to illustrate the present invention, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art will recognize a variety of equivalent variations on the description that follows. Like elements in various embodiments are commonly referred to with like reference numerals.
With regard to directional descriptions herein, the orientation of the drawings establish their respective frames of reference, with “up,” “down,” “left” and “right” referring to directions shown on the respective drawings. Similarly, “thickness” refers to a vertical dimension and “width” to the horizontal. These directions have no application to orientation of the circuits in operation or otherwise, as will be understood by those in the art.
A detailed description is provided with reference to
A controller implemented in this example, using bias arrangement state machine 22, controls the application of biasing arrangement supply voltages and current sources 23, such as read, program erase, erase verify, program verify voltages, or currents for the word lines and bit lines, and controls the word line/source line operation using an access control process. The controller 22 can be implemented using special purpose logic circuitry as known in the art. In alternative embodiments, the controller 22 comprises a general purpose processor, which may be implemented on the same integrated circuit, which executes a computer program to control the operations of the device. In yet other embodiments, a combination of special-purpose logic circuitry and a general-purpose processor may be utilized for implementation of the controller 22.
As shown in the schematic diagram of
Embodiments of the memory cell include phase change based memory materials, including chalcogenide based materials and other materials, for the memory members. Chalcogens include any of the four elements oxygen (O), sulfur (S), selenium (Se), and tellurium (Te), forming part of group VI of the periodic table. Chalcogenides comprise compounds of a chalcogen with a more electropositive element or radical. Chalcogenide alloys comprise combinations of chalcogenides with other materials such as transition metals. A chalcogenide alloy usually contains one or more elements from group IVA of the periodic table of elements, such as germanium (Ge) and tin (Sn). Often, chalcogenide alloys include combinations including one or more of antimony (Sb), gallium (Ga), indium (In), and silver (Ag). Many phase change based memory materials have been described in technical literature, including alloys of: Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/Sb/Te, Ge/Sn/Sb/Te, Ge/Sb/Se/Te and Te/Ge/Sb/S. In the family of Ge/Sb/Te alloys, a wide range of alloy compositions may be workable. The compositions can be characterized as TeaGebSb100−(a+b).
One researcher has described the most useful alloys as having an average concentration of Te in the deposited materials well below 70%, typically below about 60% and ranged in general from as low as about 23% up to about 58% Te and most preferably about 48% to 58% Te. Concentrations of Ge were above about 5% and ranged from a low of about 8% to about 30% average in the material, remaining generally below 50%. Most preferably, concentrations of Ge ranged from about 8% to about 40%. The remainder of the principal constituent elements in this composition was Sb. These percentages are atomic percentages that total 100% of the atoms of the constituent elements. (Ovshinsky '112 patent, cols 10-11.) Particular alloys evaluated by another researcher include Ge2Sb2Te5, GeSb2Te4 and GeSb4Te7. (Noboru Yamada, “Potential of Ge—Sb—Te Phase-Change Optical Disks for High-Data-Rate Recording”, SPIE v. 3109, pp. 28-37 (1997).) More generally, a transition metal such as chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb), palladium (Pd), platinum (Pt) and mixtures or alloys thereof may be combined with Ge/Sb/Te to form a phase change alloy that has programmable resistive properties. Specific examples of memory materials that may be useful are given in Ovshinsky '112 at columns 11-13, which examples are hereby incorporated by reference.
Phase change alloys are capable of being switched between a first structural state in which the material is in a generally amorphous solid phase, and a second structural state in which the material is in a generally crystalline solid phase in its local order in the active channel region of the cell. These alloys are at least bistable. The term amorphous is used to refer to a relatively less ordered structure, more disordered than a single crystal, which has the detectable characteristics such as higher electrical resistivity than the crystalline phase. The term crystalline is used to refer to a relatively more ordered structure, more ordered than in an amorphous structure, which has detectable characteristics such as lower electrical resistivity than the amorphous phase. Typically, phase change materials may be electrically switched between different detectable states of local order across the spectrum between completely amorphous and completely crystalline states. Other material characteristics affected by the change between amorphous and crystalline phases include atomic order, free electron density and activation energy. The material may be switched either into different solid phases or into mixtures of two or more solid phases, providing a gray scale between completely amorphous and completely crystalline states. The electrical properties in the material may vary accordingly.
Phase change alloys can be changed from one phase state to another by application of electrical pulses. It has been observed that a shorter, higher amplitude pulse tends to change the phase change material to a generally amorphous state. A longer, lower amplitude pulse tends to change the phase change material to a generally crystalline state. The energy in a shorter, higher amplitude pulse is high enough to allow for bonds of the crystalline structure to be broken and short enough to prevent the atoms from realigning into a crystalline state. Appropriate profiles for pulses can be determined empirically or by modeling, and specifically adapted to a particular phase change alloy. In following sections of the disclosure, the phase change material is referred to as GST, and it will be understood that other types of phase change materials can be used. A material useful for implementation of a PCRAM described herein is Ge2Sb2Te5. Representative phase change materials include:
GexSbyTez
x:y:z=2:2:5
GeSbTe with doping, such as silicon dioxide, N—, Si—, Ti—, or other element doping may also be used.
Chalcogenides and other phase change materials are doped with impurities in some embodiments to modify conductivity, transition temperature, melting temperature, and other properties of memory elements using the doped chalcogenides. Representative impurities used for doping chalcogenides include nitrogen, silicon, oxygen, silicon dioxide, silicon nitride, copper, silver, gold, aluminum, aluminum oxide, tantalum, tantalum oxide, tantalum nitride, titanium and titanium oxide. See, e.g. U.S. Pat. No. 6,800,504, and U.S. Patent Application Publication No. US 2005/0029502.
An exemplary method for forming chalcogenide material, including doping materials, uses the PVD-sputtering or magnetron-sputtering method with source gas(es) of Ar, N2, and/or He, etc. at the pressure of 1 mTorr˜100 mTorr. The deposition is usually done at room temperature. A collimator with an aspect ratio of 1˜5 can be used to improve the fill-in performance. To improve the fill-in performance, a DC bias of several tens of volts to several hundreds of volts is also used. On the other hand, the combination of DC bias and the collimator can be used simultaneously.
A post-deposition annealing treatment in vacuum or in an N2 ambient is optionally performed to improve the crystallized state of chalcogenide material. The annealing temperature typically ranges from 100° C. to 400° C. with an anneal time of less than 30 minutes.
The thickness of chalcogenide material depends on the design of cell structure. In general, a chalcogenide material with thickness of higher than 8 nm can have a phase change characterization so that the material exhibits at least two stable resistance states. It is expected that some materials are suitable with even lower thicknesses.
An embodiment of a memory array in accordance with the claimed invention is seen in
The array 100 as shown includes a conductive layer 102, which the upper portion of the drawing shows to be separated into conductive lines 103 acting in this embodiment as word lines. Alternative embodiments may arrange the array so the conductive lines act as bit lines. As discussed below, two memory elements 105 extend upwardly from the corresponding conductive lines, within vias surrounded by dielectric fill material 104. Each memory element 105 includes, successively from the conductive layer 102 upward, a lightly doped layer of N material (the N− layer) 106, a layer of heavily doped P material (the P+ layer) 108, a conductive cap 110, spacers 112, a memory material layer 114, a top electrode 116, and a bit line 316. The conductive layer 102 extends in a direction parallel to the word lines in the memory array, a direction that may be referred to below as the word line direction and extending parallel to the plane of the drawing sheet. The direction perpendicular to the word line direction, and to the drawing sheet, is the bit line direction. Dimensions and materials associated with the array and individual memory elements are discussed in connection with fabrication processes, below. Conductive cap 110 is formed of a metal silicide, in one embodiment comprising TiS, and in others a silicide containing W, Co, Ni or Ta, chosen for compatibility with the adjoining materials. The conductive cap assists in maintaining the uniformity of the electric field impressed across the memory material layer, by providing a contact surface that is more highly conductive than the semiconductor material in the diode.
It will be noted that the N− and P+ layers define a diode, which serves as an access device to drive the memory cell. U.S. patent application Ser. No. 11/736,440, entitled “4F2 Self align Side Wall Active Phase Change Memory,” and Ser. No. 11/777,392, entitled “4F2 Self Align Fin bottom Electrodes FET Drive Phase Change Memory,” both owned by the assignees hereof, disclose and claim phase change memory cell arrays, but both these applications and other devices employ transistors as the access devices. Here, the combination of diode drivers and the self-aligned fabrication process reduces the need for additional masks thereby simplifying manufacturing procedures. Being a fully self-aligning process also eliminates the need for alignment of the array and therefore increases the array density. The resulting array of memory cells is a contact electrode-free array, meaning it eliminates the need for additional lithographic steps to create additional contacts to the drain terminals of the access transistors. The elimination of the need for additional contacts helps to reduce the overall size of the memory cell. That size is further reduced by the fact that the driver element is a vertical diode rather than a transistor.
Above the diode lies the memory layer 114, which in the depicted embodiment is formed of a chalcogenide material as described above. Spacers 112 are formed of an insulating material, such as SiN, leaving a relatively small cross-sectional portion of the memory material in contact with the conductive cap 110 and thus the P+ layer 108. This design concentrates current flow in a relatively small portion of the memory material, producing a rapid temperature rise due to joule heating, further producing a rapid phase change. An electrode 116 and bit line 316 contact the memory element.
a-4h depict fabrication of the embodiment illustrated in
As seen, the lowermost level of the structure is a conductive layer 102. That layer is bisected by a Shallow Trench Isolation (STI) structure 122 running in the word line direction and extending upward the depth of the structure, so that the conductive layer is divided into conductive word lines 103. The trenches are formed by patterned etching processes, as known in the art, and filled with dielectric fill material, such as SiO2. Vias 120 are formed in the structure, extending from the conductive lines completely through the structure, generally circular in form, as is conventionally accomplished. It is preferred that the width or diameter of vias 120 be close to the minimum feature size of the process used, typically a minimum lithographic feature size, to create the opening. Using conventional lithographic techniques, the width or diameter of a via 120 can be about 90 nm and will typically vary about 5% to 10%, which is about 4.5 nm to about 9 nm.
These vias are filled with Si, either formed by appropriate deposition techniques or grown in place, to form silicon plugs 121. A sacrificial layer 118 is formed atop the structure, preferably formed of SiN or similar material. The sacrificial layer material is specifically chosen for the ability to selectively etch that material and the dielectric fill material.
b-4h focus on single memory elements, to show clearly the process steps. It will be understood that the process performs identical actions on all of the elements in an array.
Initially, as seen in
In another embodiment of the process, the diode is formed by depositing layers of appropriately doped polysilicon, in successive layers, to form the N− and P+ layers. For example, in one process, a first layer of doped polysilicon is deposited using a CVD process, followed by an etch back to a selected depth inside the via, followed by a second layer of doped polysilicon deposited using a CVD process, followed by an etch back to a second selected depth inside the via.
Next, the recess 128 is enlarged by undercutting the dielectric fill material 104 lying beneath the sacrificial layer 118, as shown in
The undercutting step is the initial portion of the formation of a “keyhole” structure, as seen in
The fill deposition creates a self-aligned void 123 within the fill material 124. The lateral size or width of the void 123 is primarily controlled by the overhang dimension of sacrificial layer 118 and by variations in the deposition rates within the lower and upper opening segments, independent of the lithographic process used to form the openings.
Void 123 facilitates the subsequent etching of the additional silicon layer to form SiN spacers 112, as seen in
g illustrates the deposition of memory material 114, and the top electrode 116, forming memory element 115 for one embodiment, in which the electrode 116 fills a recess in the memory material 114.
Finally, in
An alternate embodiment of the last portion of the process is shown in
While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.
Any and all patents, patent applications and printed publications referred to above are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3271591 | Ovshinsky | Sep 1966 | A |
3530441 | Ovshinsky | Sep 1970 | A |
4452592 | Tsai | Jun 1984 | A |
4599705 | Holmberg et al. | Jul 1986 | A |
4719594 | Young et al. | Jan 1988 | A |
4769339 | Ishii | Sep 1988 | A |
4876220 | Mohsen et al. | Oct 1989 | A |
4959812 | Momodomi et al. | Sep 1990 | A |
5106775 | Kaga et al. | Apr 1992 | A |
5166096 | Cote et al. | Nov 1992 | A |
5166758 | Ovshinsky et al. | Nov 1992 | A |
5177567 | Klersy et al. | Jan 1993 | A |
5332923 | Takeuchi et al. | Jul 1994 | A |
5391901 | Tanabe et al. | Feb 1995 | A |
5515488 | Hoppe et al. | May 1996 | A |
5534712 | Ovshinsky et al. | Jul 1996 | A |
5550396 | Tsutsumi et al. | Aug 1996 | A |
5687112 | Ovshinsky | Nov 1997 | A |
5688713 | Linliu et al. | Nov 1997 | A |
5716883 | Tseng et al. | Feb 1998 | A |
5754472 | Sim et al. | May 1998 | A |
5789277 | Zahorik et al. | Aug 1998 | A |
5789758 | Reinberg | Aug 1998 | A |
5814527 | Wolstenholme et al. | Sep 1998 | A |
5831276 | Gonzalez et al. | Nov 1998 | A |
5837564 | Sandhu et al. | Nov 1998 | A |
5869843 | Harshfield | Feb 1999 | A |
5879955 | Gonzalez et al. | Mar 1999 | A |
5902704 | Schoenborn et al. | May 1999 | A |
5920788 | Reinberg | Jul 1999 | A |
5933365 | Klersy et al. | Aug 1999 | A |
5952671 | Reinberg et al. | Sep 1999 | A |
5958358 | Tenne et al. | Sep 1999 | A |
5970336 | Wolstenholme et al. | Oct 1999 | A |
5985698 | Gonzalez et al. | Nov 1999 | A |
5998244 | Wolstenholme et al. | Dec 1999 | A |
6011725 | Eitan et al. | Jan 2000 | A |
6025220 | Sandhu | Feb 2000 | A |
6031287 | Harshfield | Feb 2000 | A |
6034882 | Johnson et al. | Mar 2000 | A |
6046951 | El Hajji et al. | Apr 2000 | A |
6066870 | Siek | May 2000 | A |
6077674 | Schleifer et al. | Jun 2000 | A |
6077729 | Harshfield | Jun 2000 | A |
6087269 | Williams | Jul 2000 | A |
6087674 | Ovshinsky et al. | Jul 2000 | A |
6104038 | Gonzalez et al. | Aug 2000 | A |
6111264 | Wolstenholme et al. | Aug 2000 | A |
6114713 | Zahorik | Sep 2000 | A |
6117720 | Harshfield | Sep 2000 | A |
6147395 | Gilgen | Nov 2000 | A |
6150253 | Doan et al. | Nov 2000 | A |
6153890 | Wolstenholme et al. | Nov 2000 | A |
6177317 | Huang et al. | Jan 2001 | B1 |
6185122 | Johnson et al. | Feb 2001 | B1 |
6189582 | Reinberg et al. | Feb 2001 | B1 |
6236059 | Wolstenholme et al. | May 2001 | B1 |
RE37259 | Ovshinsky | Jul 2001 | E |
6271090 | Huang et al. | Aug 2001 | B1 |
6280684 | Yamada et al. | Aug 2001 | B1 |
6287887 | Gilgen | Sep 2001 | B1 |
6291137 | Lyons et al. | Sep 2001 | B1 |
6314014 | Lowrey et al. | Nov 2001 | B1 |
6316348 | Fu et al. | Nov 2001 | B1 |
6320786 | Chang et al. | Nov 2001 | B1 |
6326307 | Lindley et al. | Dec 2001 | B1 |
6339544 | Chiang et al. | Jan 2002 | B1 |
6351406 | Johnson et al. | Feb 2002 | B1 |
6372651 | Yang et al. | Apr 2002 | B1 |
6380068 | Jeng et al. | Apr 2002 | B2 |
6420215 | Knall et al. | Jul 2002 | B1 |
6420216 | Clevenger et al. | Jul 2002 | B1 |
6420725 | Harshfield | Jul 2002 | B1 |
6423621 | Doan et al. | Jul 2002 | B2 |
6429064 | Wicker | Aug 2002 | B1 |
6440837 | Harshfield | Aug 2002 | B1 |
6462353 | Gilgen | Oct 2002 | B1 |
6483736 | Johnson et al. | Nov 2002 | B2 |
6487114 | Jong et al. | Nov 2002 | B2 |
6501111 | Lowrey | Dec 2002 | B1 |
6511867 | Lowrey et al. | Jan 2003 | B2 |
6512241 | Lai | Jan 2003 | B1 |
6514788 | Quinn | Feb 2003 | B2 |
6514820 | Ahn et al. | Feb 2003 | B2 |
6534781 | Dennison | Mar 2003 | B2 |
6545903 | Wu | Apr 2003 | B1 |
6551866 | Maeda et al. | Apr 2003 | B1 |
6555860 | Lowrey et al. | Apr 2003 | B2 |
6563156 | Harshfield | May 2003 | B2 |
6566700 | Xu | May 2003 | B2 |
6567293 | Lowrey et al. | May 2003 | B1 |
6576546 | Gilbert et al. | Jun 2003 | B2 |
6579760 | Lung et al. | Jun 2003 | B1 |
6586761 | Lowrey | Jul 2003 | B2 |
6589714 | Maimon et al. | Jul 2003 | B2 |
6593176 | Dennison | Jul 2003 | B2 |
6596589 | Tseng et al. | Jul 2003 | B2 |
6597009 | Wicker | Jul 2003 | B2 |
6605527 | Dennison et al. | Aug 2003 | B2 |
6605821 | Lee et al. | Aug 2003 | B1 |
6607974 | Harshfield | Aug 2003 | B2 |
6613604 | Maimon et al. | Sep 2003 | B2 |
6617192 | Lowrey et al. | Sep 2003 | B1 |
6621095 | Chiang et al. | Sep 2003 | B2 |
6627530 | Li et al. | Sep 2003 | B2 |
6639849 | Takahashi et al. | Oct 2003 | B2 |
6673700 | Dennison et al. | Jan 2004 | B2 |
6674115 | Hudgens et al. | Jan 2004 | B2 |
6677678 | Biolsi et al. | Jan 2004 | B2 |
6744088 | Dennison | Jun 2004 | B1 |
6750079 | Lowrey et al. | Jun 2004 | B2 |
6750101 | Lung et al. | Jun 2004 | B2 |
6791102 | Johnson et al. | Sep 2004 | B2 |
6797979 | Chiang et al. | Sep 2004 | B2 |
6800504 | Li et al. | Oct 2004 | B2 |
6805563 | Ohashi et al. | Oct 2004 | B2 |
6815704 | Chen | Nov 2004 | B1 |
6838692 | Lung et al. | Jan 2005 | B1 |
6850432 | Lu et al. | Feb 2005 | B2 |
6859389 | Idehara et al. | Feb 2005 | B2 |
6861267 | Xu et al. | Mar 2005 | B2 |
6864500 | Gilton | Mar 2005 | B2 |
6864503 | Lung et al. | Mar 2005 | B2 |
6867638 | Saiki et al. | Mar 2005 | B2 |
6881603 | Lai | Apr 2005 | B2 |
6888750 | Walker et al. | May 2005 | B2 |
6894304 | Moore | May 2005 | B2 |
6894305 | Yi et al. | May 2005 | B2 |
6900517 | Tanaka et al. | May 2005 | B2 |
6903362 | Wyeth et al. | Jun 2005 | B2 |
6909107 | Rodgers et al. | Jun 2005 | B2 |
6910907 | Layadi et al. | Jun 2005 | B2 |
6927410 | Chen | Aug 2005 | B2 |
6928022 | Cho et al. | Aug 2005 | B2 |
6933516 | Xu | Aug 2005 | B2 |
6936544 | Huang et al. | Aug 2005 | B2 |
6936840 | Sun et al. | Aug 2005 | B2 |
6937507 | Chen | Aug 2005 | B2 |
6943365 | Lowrey et al. | Sep 2005 | B2 |
6969866 | Lowrey et al. | Nov 2005 | B1 |
6972428 | Maimon | Dec 2005 | B2 |
6972430 | Casagrande et al. | Dec 2005 | B2 |
6977181 | Raberg et al. | Dec 2005 | B1 |
6992932 | Cohen et al. | Jan 2006 | B2 |
7023009 | Kostylev et al. | Apr 2006 | B2 |
7033856 | Lung et al. | Apr 2006 | B2 |
7038230 | Chen et al. | May 2006 | B2 |
7038938 | Kang et al. | May 2006 | B2 |
7042001 | Kim et al. | May 2006 | B2 |
7067837 | Hwang et al. | Jun 2006 | B2 |
7067864 | Nishida et al. | Jun 2006 | B2 |
7067865 | Lung et al. | Jun 2006 | B2 |
7078273 | Matsuoka et al. | Jul 2006 | B2 |
7115927 | Hideki et al. | Oct 2006 | B2 |
7122281 | Pierrat | Oct 2006 | B2 |
7122824 | Khouri et al. | Oct 2006 | B2 |
7126149 | Iwasaki et al. | Oct 2006 | B2 |
7132675 | Gilton | Nov 2006 | B2 |
7154774 | Bedeschi et al. | Dec 2006 | B2 |
7164147 | Lee et al. | Jan 2007 | B2 |
7166533 | Happ | Jan 2007 | B2 |
7169635 | Kozicki | Jan 2007 | B2 |
7202493 | Lung et al. | Apr 2007 | B2 |
7208751 | Ooishi et al. | Apr 2007 | B2 |
7214958 | Happ | May 2007 | B2 |
7220983 | Lung | May 2007 | B2 |
7229883 | Wang et al. | Jun 2007 | B2 |
7238994 | Chen et al. | Jul 2007 | B2 |
7248494 | Oh et al. | Jul 2007 | B2 |
7251157 | Osada et al. | Jul 2007 | B2 |
7253429 | Klersy et al. | Aug 2007 | B2 |
7269052 | Segal et al. | Sep 2007 | B2 |
7277317 | Le Phan et al. | Oct 2007 | B2 |
7291556 | Choi et al. | Nov 2007 | B2 |
7309630 | Fan et al. | Dec 2007 | B2 |
7321130 | Lung et al. | Jan 2008 | B2 |
7323708 | Lee et al. | Jan 2008 | B2 |
7332370 | Chang et al. | Feb 2008 | B2 |
7336526 | Osada et al. | Feb 2008 | B2 |
7351648 | Furukawa et al. | Apr 2008 | B2 |
7359231 | Venkataraman et al. | Apr 2008 | B2 |
7364935 | Lung et al. | Apr 2008 | B2 |
7365385 | Abbott | Apr 2008 | B2 |
7379328 | Osada et al. | May 2008 | B2 |
7385235 | Lung et al. | Jun 2008 | B2 |
7394088 | Lung | Jul 2008 | B2 |
7397060 | Lung | Jul 2008 | B2 |
7423300 | Lung et al. | Sep 2008 | B2 |
7426134 | Happ et al. | Sep 2008 | B2 |
7449710 | Lung | Nov 2008 | B2 |
20020070457 | Sun et al. | Jun 2002 | A1 |
20020113273 | Hwang et al. | Aug 2002 | A1 |
20030072195 | Mikolajick | Apr 2003 | A1 |
20030095426 | Hush et al. | May 2003 | A1 |
20030186481 | Lung | Oct 2003 | A1 |
20040026686 | Lung | Feb 2004 | A1 |
20040051094 | Ooishi | Mar 2004 | A1 |
20040165422 | Hideki et al. | Aug 2004 | A1 |
20040248339 | Lung | Dec 2004 | A1 |
20040256610 | Lung | Dec 2004 | A1 |
20050018526 | Lee | Jan 2005 | A1 |
20050029502 | Hudgens | Feb 2005 | A1 |
20050029587 | Harshfield | Feb 2005 | A1 |
20050062087 | Chen et al. | Mar 2005 | A1 |
20050093022 | Lung | May 2005 | A1 |
20050127349 | Horak et al. | Jun 2005 | A1 |
20050145984 | Chen et al. | Jul 2005 | A1 |
20050191804 | Lai et al. | Sep 2005 | A1 |
20050201182 | Osada et al. | Sep 2005 | A1 |
20050212024 | Happ | Sep 2005 | A1 |
20050212026 | Chung et al. | Sep 2005 | A1 |
20050215009 | Cho | Sep 2005 | A1 |
20050263829 | Song et al. | Dec 2005 | A1 |
20050270832 | Chu et al. | Dec 2005 | A1 |
20060006472 | Jiang | Jan 2006 | A1 |
20060038221 | Lee et al. | Feb 2006 | A1 |
20060066156 | Dong et al. | Mar 2006 | A1 |
20060073642 | Yeh et al. | Apr 2006 | A1 |
20060091476 | Pinnow et al. | May 2006 | A1 |
20060094154 | Lung | May 2006 | A1 |
20060108667 | Lung | May 2006 | A1 |
20060110878 | Lung et al. | May 2006 | A1 |
20060110888 | Cho et al. | May 2006 | A1 |
20060113521 | Lung | Jun 2006 | A1 |
20060118913 | Yi et al. | Jun 2006 | A1 |
20060124916 | Lung | Jun 2006 | A1 |
20060126395 | Chen et al. | Jun 2006 | A1 |
20060131555 | Liu et al. | Jun 2006 | A1 |
20060138467 | Lung | Jun 2006 | A1 |
20060154185 | Ho et al. | Jul 2006 | A1 |
20060157681 | Chen et al. | Jul 2006 | A1 |
20060163554 | Lankhorst et al. | Jul 2006 | A1 |
20060198183 | Kawahara et al. | Sep 2006 | A1 |
20060205108 | Maimon et al. | Sep 2006 | A1 |
20060211165 | Hwang et al. | Sep 2006 | A1 |
20060226409 | Burr et al. | Oct 2006 | A1 |
20060234138 | Fehlhaber et al. | Oct 2006 | A1 |
20060237756 | Park et al. | Oct 2006 | A1 |
20060284157 | Chen et al. | Dec 2006 | A1 |
20060284158 | Lung et al. | Dec 2006 | A1 |
20060284214 | Chen | Dec 2006 | A1 |
20060284279 | Lung et al. | Dec 2006 | A1 |
20060286709 | Lung et al. | Dec 2006 | A1 |
20060286743 | Lung et al. | Dec 2006 | A1 |
20060289848 | Dennison | Dec 2006 | A1 |
20070008786 | Scheuerlein | Jan 2007 | A1 |
20070030721 | Segal et al. | Feb 2007 | A1 |
20070037101 | Morioka | Feb 2007 | A1 |
20070096162 | Happ et al. | May 2007 | A1 |
20070096248 | Philipp et al. | May 2007 | A1 |
20070108077 | Lung et al. | May 2007 | A1 |
20070108429 | Lung | May 2007 | A1 |
20070108430 | Lung | May 2007 | A1 |
20070108431 | Chen et al. | May 2007 | A1 |
20070109836 | Lung | May 2007 | A1 |
20070109843 | Lung et al. | May 2007 | A1 |
20070111429 | Lung | May 2007 | A1 |
20070115794 | Lung | May 2007 | A1 |
20070117315 | Lai et al. | May 2007 | A1 |
20070121363 | Lung | May 2007 | A1 |
20070121374 | Lung et al. | May 2007 | A1 |
20070126040 | Lung | Jun 2007 | A1 |
20070131922 | Lung | Jun 2007 | A1 |
20070138458 | Lung | Jun 2007 | A1 |
20070147105 | Lung et al. | Jun 2007 | A1 |
20070153563 | Nirschl | Jul 2007 | A1 |
20070154847 | Chen et al. | Jul 2007 | A1 |
20070155172 | Lai et al. | Jul 2007 | A1 |
20070158632 | Ho | Jul 2007 | A1 |
20070158633 | Lai et al. | Jul 2007 | A1 |
20070158645 | Lung | Jul 2007 | A1 |
20070158690 | Ho et al. | Jul 2007 | A1 |
20070158862 | Lung | Jul 2007 | A1 |
20070161186 | Ho | Jul 2007 | A1 |
20070173019 | Ho et al. | Jul 2007 | A1 |
20070173063 | Lung | Jul 2007 | A1 |
20070176261 | Lung | Aug 2007 | A1 |
20070187664 | Happ | Aug 2007 | A1 |
20070201267 | Happ et al. | Aug 2007 | A1 |
20070215852 | Lung | Sep 2007 | A1 |
20070224726 | Chen et al. | Sep 2007 | A1 |
20070235811 | Furukawa et al. | Oct 2007 | A1 |
20070236989 | Lung | Oct 2007 | A1 |
20070246699 | Lung | Oct 2007 | A1 |
20070249090 | Philipp et al. | Oct 2007 | A1 |
20070257300 | Ho et al. | Nov 2007 | A1 |
20070262388 | Ho et al. | Nov 2007 | A1 |
20070274121 | Lung et al. | Nov 2007 | A1 |
20070285960 | Lung et al. | Dec 2007 | A1 |
20070298535 | Lung | Dec 2007 | A1 |
20080006811 | Philipp et al. | Jan 2008 | A1 |
20080012000 | Harshfield | Jan 2008 | A1 |
20080014676 | Lung et al. | Jan 2008 | A1 |
20080025089 | Scheuerlein et al. | Jan 2008 | A1 |
20080043520 | Chen | Feb 2008 | A1 |
20080094871 | Parkinson | Apr 2008 | A1 |
20080101110 | Happ et al. | May 2008 | A1 |
20080137400 | Chen et al. | Jun 2008 | A1 |
20080164453 | Breitwisch et al. | Jul 2008 | A1 |
20080165569 | Chen et al. | Jul 2008 | A1 |
20080165570 | Happ et al. | Jul 2008 | A1 |
20080165572 | Lung | Jul 2008 | A1 |
20080166875 | Lung | Jul 2008 | A1 |
20080179582 | Burr et al. | Jul 2008 | A1 |
20080180990 | Lung | Jul 2008 | A1 |
20080186755 | Lung et al. | Aug 2008 | A1 |
20080191187 | Lung et al. | Aug 2008 | A1 |
20080192534 | Lung | Aug 2008 | A1 |
20080197334 | Lung | Aug 2008 | A1 |
20080224119 | Burr et al. | Sep 2008 | A1 |
20080225489 | Cai et al. | Sep 2008 | A1 |
20090166600 | Park et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
WO-0079539 | Dec 2000 | WO |
WO-0145108 | Jun 2001 | WO |
WO-0225733 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20090242865 A1 | Oct 2009 | US |