This application claims foreign priority benefits under 35 U.S.C. §119 to co-pending German patent application number DE 10 2004 024 552.5, filed 18 May 2004. This related patent application is herein incorporated by reference in its entirety.
1. Field of the Invention
The invention relates to a memory cell arrangement having at least one first memory cell and one second memory cell having respective components that are at least partially nested, and to a memory cell array having a multiplicity of such memory cell arrangements.
2. Description of the Related Art
Dynamic random access memories (DRAMs) predominantly use single-transistor memory cells. A single transistor-transistor memory cell generally comprises a selection transistor and a storage capacitor configured to store information in the form of electrical charges. In this case, a DRAM memory comprises a matrix of single-transistor memory cells, which are connected in the form of rows and columns. The row connections are usually referred to as word lines, and the column connections are usually referred to as bit lines. In this case, the selection transistor and the storage capacitor in the memory cell are connected to one another in such a manner that the storage capacitor's charge can be read in and out using a bit line when the selection transistor is driven using a word line.
The constant trend toward ever more powerful DRAM memories necessitates increasingly higher integration densities for the memory cells. Memory cell concepts using three dimensions are increasingly used to reduce the area required by the memory cells. The storage capacitors are thus increasingly made in the form of trench capacitors beneath the associated selection transistor or in the form of stacked capacitors above the associated selection transistor, resulting in a considerable saving in the chip area needed to form the memory cells. Memory cell concepts in which the selection transistors are also arranged vertically are furthermore known.
However, even the known three-dimensional memory cell arrangements have the disadvantage of requiring a relatively large amount of area to form the memory cell.
Therefore, there is a need for a memory cell arrangement that is distinguished by a reduced area requirement.
According to one aspect of the invention, a memory cell arrangement having at least one first and one second memory cell, which respectively have a storage capacitor and a selection transistor, is formed in such a manner that the components in the first memory cell and the components in the second memory cell are at least partially nested inside one another in the semiconductor substrate. In comparison with conventional memory cells, the inventive nested formation of two memory cells at least partially on the same chip area means that a smaller amount of area is needed to form the memory cells, thus, making it possible to miniaturize the DRAM memories further.
In one embodiment, the present invention provides a memory cell arrangement having at least one first and one second memory cell, which respectively has a storage capacitor and a selection transistor. The storage capacitors in the first and second memory cells are, in particular, arranged in such a manner that they are at least partially nested inside one another. Since the storage capacitors, in particular, require a large amount of area on account of the storage capacitance required for reliable charge detection, interleaving the storage capacitors in the two memory cells makes it possible to achieve a densely packed and structurally convenient cell layout with a greatly reduced area requirement.
In one embodiment, the storage capacitors in the first and second memory cells are at least partially formed in a common trench in the semiconductor substrate. Such a cell layout is distinguished by simplified production with a reduced number of trenches for forming the storage capacitors. In addition, this storage capacitor layout makes it possible to achieve a maximum saving in memory cell area.
In one embodiment, the capacitor electrodes of the storage capacitors in the first and second memory cells are arranged in such a manner that they are nested inside one another in the semiconductor substrate in the following order (from the outside inward): outer electrode of a first storage capacitor, inner electrode (which is connected to a first associated selection transistor) of the first storage capacitor, outer electrode of the second storage capacitor and inner electrode (which is connected to a second associated selection transistor) of the second storage capacitor. This arrangement makes it possible for the capacitor electrodes of the two storage capacitors to be arranged in a particularly space-saving manner such that they are nested inside one another and, in addition, permits a simple design within the scope of planar technology.
In another embodiment, on the basis of the nested memory cell arrangement, a memory cell matrix is arranged in such a manner that the two memory cells in each memory cell arrangement are associated with one column and two adjacent rows, with the external capacitor electrodes of the storage capacitors in two adjacent rows respectively being connected to one another. This makes it possible to produce, in a space-saving manner, a common outer electrode in the form of a continuous layer for the respective storage capacitors which are arranged in the common trench. This in turn permits simple and space-saving production.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Aspects of the invention will be explained with reference to the production of dynamic memory cells in a DRAM memory. In this case, the individual components in the DRAM memory cells may be formed using silicon planar technology that comprises a sequence of individual processes which respectively act on the entire area of the surface of a silicon wafer using suitable masking layers to deliberately change the silicon substrate locally. In this case, a multiplicity of DRAM memory cells are simultaneously formed during production of DRAM memory cells.
DRAM memories generally use a single-transistor memory cell, the circuit diagram of which is shown in
The second source/drain electrode 23 of the selection transistor 2 is connected to a first capacitor electrode 11 of the storage capacitor 1 via a connecting line 4. A second capacitor electrode 12 of the storage capacitor 1 is in turn connected to a capacitor plate 5 which is common to all of the storage capacitors in the DRAM memory cell array. The first source/drain electrode 21 of the selection transistor 2 is also connected to a bit line 7 configured to enable read-in and read-out the information stored in the storage capacitor 1 in the form of charges. In this case, the read-in and read-out operations are controlled by using a word line 6 that simultaneously forms the gate electrode 25 of the selection transistor 2 to produce a current-conducting channel in the active region 22 between the first source/drain electrode 21 and the second source/drain electrode 23 by applying a voltage.
Three-dimensional structures are generally used as the storage capacitors in DRAM memory cells to reduce the memory cell area. The fundamental implementations of three-dimensional storage capacitors are trench capacitors and stacked capacitors. Trench capacitors comprise a trench which is etched into the semiconductor substrate and then filled with a highly conductive material used as an internal capacitor electrode. By contrast, the external capacitor electrode is formed such that it is buried in the semiconductor substrate and is isolated from the internal capacitor electrode by a dielectric layer. One source/drain electrode of the selection transistor is electrically connected to the internal capacitor electrode via a capacitor connection, e.g., the “buried strap”, which is usually in the form of a diffusion region in the upper trench region. The selection transistor is then generally formed such that it adjoins the trench capacitor in a planar manner on the semiconductor surface, with the source/drain electrodes of the selection transistor in the form of diffusion regions on the semiconductor surface. However, it is also possible to form the selection transistor vertically above the trench capacitor in the trench to save additional memory cell area.
As an alternative, however, the storage capacitor may be arranged in the form of a stacked capacitor above the selection transistor, with the internal capacitor electrode generally the form of a crown and connected to one source/drain electrode of the selection transistor. The external capacitor electrode is then generally a conductive layer isolated from the internal capacitor electrode by a dielectric layer.
To save additional memory cell area and ensure additional miniaturization of the DRAM memories, one embodiment of the invention provides for the DRAM memory cells to be in the form of dual memory cells, with the components, i.e., the selection transistors and/or the storage capacitors, in the two memory cells formed such that they are nested inside one another. In one aspect, the storage capacitors for the two memory cells may be formed such that they are nested inside one another. This may be effected for trench capacitors by arranging the two storage capacitors in a common trench and by forming the capacitor electrodes in the following order (from the outside inward): external capacitor electrode of a first storage capacitor, internal capacitor electrode of the first storage capacitor, external capacitor electrode of a second storage capacitor and internal capacitor electrode of the second storage capacitor. Storage capacitors (in the form of stacked capacitors) in a dual memory cell arrangement may be formed in such a manner that the storage capacitors are arranged such that they are nested inside one another in a common well, with the order of the capacitor electrodes (from the outside inward) corresponding to that for the trench capacitors.
Each second source/drain electrode 23A, 23B of the selection transistors 2A, 2B is respectively connected, via a capacitor connection 4A, 4B, to an internal capacitor electrode 11A, 11B of the respectively associated trench capacitor. The internal capacitor electrodes are formed in the common trench 10. As the cross section in
A memory cell array in a DRAM memory comprises bit lines, which may run in vertical rows, and word lines, which may run in horizontal rows. According to one embodiment of the invention, referring to
As an alternative to the embodiment shown in
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
DE 102004024552.5 | May 2004 | DE | national |