The present invention relates generally to semiconductor devices and, more particularly, to the use of implants in memory cell semiconductor devices.
Non-volatile memory devices are currently in widespread use in electronic components that require the retention of information when electrical power is terminated. Non-volatile memory devices include read-only-memory (ROM), programmable-read-only memory (PROM), erasable-programmable-read-only memory (EPROM), and electrically-erasable-programmable-read-only-memory (EEPROM) devices. EEPROM devices differ from other non-volatile memory devices in that they can be electrically programmed and erased. Flash EEPROM devices are similar to EEPROM devices in that memory cells can be programmed and erased electrically. In Flash EEPROM devices, a group or block of memory cells may be programmed and/or erase together.
Product development efforts in EEPROM device technology have focused on increasing the programming speed, lowering programming and reading voltages, increasing data retention time, reducing cell erasure times and reducing cell dimensions. One conventional structure used for fabricating an EEPROM device is an oxide-nitride-oxide (ONO) structure. One EEPROM device that utilizes the ONO structure is a silicon-oxide-nitride-oxide-silicon (SONOS) type device. In a SONOS type device, an ONO stack is formed on a silicon substrate. A silicon control gate is then formed over the ONO stack.
In SONOS devices, during programming, electrical charge is transferred from the substrate to the silicon nitride layer in the ONO structure. Voltages are applied to the gate and drain creating vertical and lateral electric fields, which accelerate the electrons along the length of the channel. As the electrons move along the channel, some of them gain sufficient energy to jump over the potential barrier of the bottom silicon oxide layer and become trapped in the silicon nitride layer. Electrons are trapped near the drain region because the electric fields are the strongest near the drain. Reversing the potentials applied to the source and drain will cause electrons to travel along the channel in the opposite direction and be injected into the silicon nitride layer near the source region. Because silicon nitride is not electrically conductive, the charge introduced into the silicon nitride layer tends to remain localized. Accordingly, depending upon the application of voltage potentials, electrical charge can be stored in discrete regions within a single continuous silicon nitride layer.
According to an aspect of the invention, a method of forming implants for a memory cell includes forming an oxide-nitride-oxide (ONO) stack over a substrate and implanting first impurities in the substrate adjacent each side of the ONO stack using a first implantation energy and a first tilt angle to produce first pocket implants. The method further includes implanting second impurities in the substrate adjacent each side of the ONO stack using a second implantation energy and a second tilt angle to produce second pocket implants, where the second implantation energy is substantially larger than the first implantation energy and where the second tilt angle is substantially larger than the first tilt angle.
According to another aspect of the invention, a method of forming a memory cell includes forming a column over a substrate, the column including a first oxide layer, a charge storage layer and a second oxide layer. The method further includes forming a bit line in the substrate adjacent a side of the column and implanting a first pocket of impurities through the bit line adjacent the side of the column using a low implantation energy and a small tilt angle. The method also includes implanting a second pocket of impurities through the bit line adjacent the side of the column using a high implantation energy and a large tilt angle.
Other advantages and features of the present invention will become readily apparent to those skilled in this art from the following detailed description. The embodiments shown and described provide illustration of the best mode contemplated for carrying out the invention. The invention is capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawings are to be regarded as illustrative in nature, and not as restrictive.
Reference is made to the attached drawings, wherein elements having the same reference number designation may represent like elements throughout.
The following detailed description of the invention refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims and their equivalents.
Consistent with aspects of the invention, dual pocket implants may be implanted in bit lines disposed on each side of a memory cell. First pockets may be implanted in the bit lines at a low implantation energy at a small tilt angle. Second pockets may be implanted in the bit lines at high implantation energy at a high tilt angle. Use of the dual pocket implants permits independent control of threshold voltage (VT) and program/erase speed for the memory cell.
A charge storage layer 115 may be formed on bottom oxide layer 110 using, for example, existing deposition processes, such as conventional CVD processes. In one exemplary embodiment, charge storage layer 115 may include a nitride charge storage layer, such as, for example, a silicon nitride (e.g., Si3N4). In other embodiments, charge storage layer 115 may include other known dielectric materials that may be used to store a charge. The thickness of charge storage layer 115 may range, for example, from about 40 Å to about 100 Å. In still other alternatives, charge storage layer 115 may include a conductive material, such as polycrystalline silicon, used to form a floating gate electrode.
A top oxide layer 120 may be formed on charge storage layer 115. Top oxide layer 120 may be formed on charge storage layer 115 using, for example, an existing thermal oxidation process. Top oxide layer 120 may include oxide materials, such as, for example, a silicon oxide, or a silicon oxynitride. The thickness of top oxide layer 120 may range, for example, from about 30 Å to about 100 Å.
A mask layer 125 may be formed on top oxide layer 120. Mask layer 125 may be formed using, for example, existing deposition processes, such as a CVD process. Mask layer 125 may include, for example, a polycrystalline silicon material, though other materials may be used. The thickness of mask layer 125 may range, for example, from about 300 Å to about 1000 Å. A photo-resist layer 130 may then be formed over mask layer 125 in a desired column pattern using existing photolithographic processes.
As shown in
First pockets that include a right pocket 405 and a left pocket 505 may then be formed in each bit line 305, as shown in
Second pockets that include a right pocket 605 and a left pocket 705 may then be formed in each bit line 305, as shown in
Implantation of pockets 405, 505, 605 and 705 in respective bit lines 305 for a memory cell allow for independent control of VT targeting and program/erase speed control. Generally, a higher implantation dose has better program/erase speed, but also higher VT. Higher VT can be detrimental to some aspects of device operation (e.g., less sense margin, worse data retention, etc.). Hence, one goal of the present invention is to reduce implantation dosage to lower VT. Consistent with principles of the invention, implantation dosage of second pockets 605 and 705 may be relatively low to keep a lower VT and implantation dosage of first pockets 405 and 505 may be higher to control program/erase speeds (and maybe short channel effects). Also, a deeper implantation pocket (i.e., using higher energy) requires a lower implantation dosage to maintain about the same VT.
In some implementations, the order of implantation of pockets 405 and 505 and 605 and 705, as described above, may be reversed. In addition, one or more thermal steps to activate the implants may be performed between each implantation. Alternatively, one thermal step may be performed after all the implantations to activate the implants. For example, an anneal cycle, such as a rapid thermal anneal (RTA) process at a temperature ranging from about 900° C. to about 1050° C. for a period ranging from about 1 to about 10 seconds, may be used.
As shown in
As shown in
In an exemplary implementation, during operation of each cell 1005, voltages may be applied to gate electrode 905, and bit lines 305 on either side of gate electrode 905. The applied voltages may cause electrical charge from bit lines 305 on either side of cell 1005 to propagate across a channel region (i.e., a region of substrate 105 between the bit lines on either side of cell 1005) and to tunnel from the channel region through the bottom oxide layer 110 for retention in charge storage layer 115. The layered stack structure that includes bottom oxide layer 110, charge storage layer 115, and top oxide layer 120 permits channel erase in cell 1005, where charge in gate electrode 905 may be discharged via a channel region.
In an exemplary implementation consistent with the invention, each memory cell 1005, as illustrated in
In the previous descriptions, numerous specific details are set forth, such as specific materials, structures, chemicals, processes, etc., in order to provide a thorough understanding of the present invention. However, the present invention can be practiced without resorting to the details specifically set forth herein. In other instances, well known processing structures have not been described in detail, in order not to unnecessarily obscure the thrust of the present invention. In practicing the present invention, conventional photolithographic, etching and deposition techniques may be employed, and hence, the details of such techniques have not been set forth herein in detail.
The foregoing description of embodiments of the present invention provides illustration and description, but is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. For example, while series of acts have been described above, the order of the acts may vary in other implementations consistent with the present invention.
Only the preferred embodiments of the invention and a few examples of its versatility are shown and described in the present disclosure. It is to be understood that the invention is capable of use in various other combinations and environments and is capable of modifications within the scope of the inventive concept as expressed herein. No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items. Where only one item is intended, the term “one” or similar language is used. The scope of the invention is defined by the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
6030869 | Odake et al. | Feb 2000 | A |
6215148 | Eitan | Apr 2001 | B1 |
6329235 | Kuo | Dec 2001 | B1 |
6348711 | Eitan | Feb 2002 | B1 |
6391730 | Kluth et al. | May 2002 | B1 |
6429063 | Eitan | Aug 2002 | B1 |
6465315 | Yu | Oct 2002 | B1 |
6589847 | Kadosh et al. | Jul 2003 | B1 |
6664588 | Eitan | Dec 2003 | B2 |
6756276 | Xiang et al. | Jun 2004 | B1 |
7170084 | Xiang et al. | Jan 2007 | B1 |
20020000606 | Eitan | Jan 2002 | A1 |
20020020890 | Willer | Feb 2002 | A1 |
20020072176 | Park et al. | Jun 2002 | A1 |
20040110351 | Narasimha | Jun 2004 | A1 |
20050148114 | Rhodes | Jul 2005 | A1 |
20060105489 | Rhodes | May 2006 | A1 |