In the following description, numerous specific details are given to provide a thorough understanding of the invention. However, it will be apparent that the invention may be practiced without these specific details. In order to avoid obscuring the present invention, some well-known system configurations, and process steps are not disclosed in detail. Likewise, the drawings showing embodiments of the apparatus are semi-diagrammatic and not to scale and, particularly, some of the dimensions are for the clarity of presentation and are shown greatly exaggerated in the figures. In addition, where multiple embodiments are disclosed and described having some features in common, for clarity and ease of illustration, description, and comprehension thereof, similar and like features one to another will ordinarily be described with like reference numerals.
The term “horizontal” as used herein is defined as a plane parallel to the conventional integrated circuit surface, regardless of its orientation. The term “vertical” refers to a direction perpendicular to the horizontal as just defined. Terms, such as “above”, “below”, “bottom”, “top”, “side” (as in “sidewall”), “higher”, “lower”, “upper”, “over”, and “under”, are defined with respect to the horizontal plane. The term “on” means there is direct contact among elements.
The term “system” means the method and the apparatus of the present invention. The term “processing” as used herein includes deposition of material, patterning, exposure, development, etching, cleaning, molding, and/or removal of the material or as required in forming a described structure.
Referring now to
Referring now to
High-density core regions typically include one or more of the memory systems 202. Low-density peripheral portions typically include input/output (I/O) circuitry and programming circuitry for individually and selectively addressing a location in each of the memory systems 202. The programming circuitry is represented in part by and includes one or more x-decoders 206 and y-decoders 208, cooperating with I/O circuitry 210 for connecting the source, gate, and drain of selected addressed memory cells to predetermined voltages or impedances to effect designated operations on the memory cell, e.g., programming, reading, and erasing, and deriving necessary voltages to effect such operations.
For illustrative purposes, the device 200 is shown as a memory device, although it is understood that the device 200 may other semiconductor devices having other functional blocks, such as a digital logic block, a processor, or other types of memories. Also for illustrative purposes, the device 200 is described as a single type of semiconductor device, although it is understood that the device 200 may be a multichip module utilizing the present invention with other types of devices of similar or different semiconductor technologies, such as power devices or microelectromechanical systems (MEMS). Further for illustrative purposes, the device 200 is described as a semiconductor device, although it is understood that the device 200 may be a board level product including the present invention.
Referring now to
Referring now to
For illustrative purposes, each of the memory cell stack 402 is shown having one of the charge storage region 404 for storing electrical charges, although it is understood that any number of the charge storage regions may be provided. It is also understood that the charge storage region 404 may provide storage for any number of electrical charges.
The memory cell stack 402 also includes the semiconductor substrate 204, such as a p-type substrate, having a first region 408, such as an n-type region, and a second region 410, such as an n-type region. The first region 408 may be a source and the second region 410 may be the drain or vice versa. Depending on the overall memory array connection, the first region 408, the second region 410, or both may connect to the bit lines 304 of
The memory cell stack 402 also includes the word lines 306, such as polysilicon, n-type polysilicon, p-type polysilicon, or metal, acting as control gates in cooperation with the bit lines 304 for the decoding processes, such as reading, programming and erasing. Depending upon a signal on the word lines 306 and the connection of the bit lines 304 to an electrical source or drain, the memory row 400 may read, program or erase the charge storage region 404.
Referring now to
The charge-storage stack 502 provides a region between a first region 508, such as an n-type region, and a second region 510, such as an n-type region, for storage of electrical charges. The semiconductor substrate 504 and the semiconductor gate 506 provide access for reading and erasing storage locations of the electrical charges.
The charge-storage stack 502 has multiple layers. A first insulator layer 512, such as a bottom tunneling oxide layer of silicon dioxide (SiO2), of the charge-storage stack 502 is over the semiconductor substrate 504. A charge trap layer 514 of the charge-storage stack 502 is over the first insulator layer 512. The charge trap layer 514 provides regions for storage of the electrical charges. The charge trap layer 514 includes a charge trapping material, such as a silicon rich nitride (SRN or SiRN), silicon nitride (SiXNY), or multiple layers of nitride with different percentages of Si. A second insulator layer 520 is a top blocking oxide layer of silicon dioxide (SiO2) of the charge-storage stack 502 and on the charge trap layer 514.
For illustrative purposes, the charge trap layer 514 is shown as having two layers, although it is understood that the number and types of layers may differ, such as nitride layer on top of SiRN, a layer of SiRN, or a gradient of similar material with different concentrations of silicon or nitrogen from bottom to the top.
For the memory cell stack 500, leakage and charge-trapping efficiency are two major parameters considered in the memory systems 202 of
Referring now to
Referring now to
The silicon-rich nitride may be formed by a chemical vapor deposition process (CVD) using NH3 and SiCl2H2 but not limited to the two chemicals. A ratio of the gases, such as NH3:SiCl2H2, range from 1:40 to 1:1 can produce silicon-rich nitride with a ratio of Si to N higher than 0.75.
Referring now to
The oxidation process with SPA forms a better interface between the second insulator layer 520 and the charge trap layer 514 improving the quality and reliability of the memory cell stack 500 of
Referring now to
It has been discovered that the present invention thus has numerous aspects.
It has been discovered that the present invention has improved erase and program performance as well as data retention utilizing the slot plane antenna (SPA) plasma technique to form the second insulator layer, such as a top blocking oxide layer, from the charge trap layer, such as a silicon rich nitride or silicon nitride charge trap layer.
It has been discovered that the SPA growth is superior to thermal oxidation. Thermal oxidation at high temperature consumes silicon in the silicon nitride by converting it to silicon oxide. The high temperature causes the silicon nitride to silicon oxide interface to be rough because of uneven consumption of silicon and the penetration of steam into the silicon nitride layer when used alone as the trapping layer or when used above a silicon rich nitride trapping layer. Thermal oxidation also reduces the silicon in silicon rich nitride when a uniform or gradient silicon rich nitride is used as the trapping layer.
It has also been discovered that the low temperature growth will be more uniform so the silicon nitride to silicon oxide interface to be smoother than the thermal oxide interface.
Further, it has also been discovered that the low temperature reduces oxygen diffusion into the silicon nitride layer to the point that the silicon is not reduced. This result from SPA oxidation of the charge trap layer and the improved uniformity of the interface provide a substantially uniform thickness of the second insulator layer, such as the top blocking oxide layer. The uniformity is a characteristic of the oxide grown by SPA that is not achievable by a thermal oxidation process or a deposition process.
An aspect is that the present invention improves the interface quality between the top blocking oxide layer and the charge trap layer. The SPA technique improves the uniformity of the interface between the layers.
Another aspect of the present invention eliminates high temperature manufacturing steps required by thermal oxidation. These high temperatures in thermal oxidation change silicon content in the charge trap layer and are limiters to scaling and 300 mm wafer manufacturing.
Yet another important aspect of the present invention is that it valuably supports and services the historical trend of reducing costs, simplifying systems, and increasing performance.
These and other valuable aspects of the present invention consequently further the state of the technology to at least the next level.
Thus, it has been discovered that the memory cell system method and apparatus of the present invention furnish important and heretofore unknown and unavailable solutions, capabilities, and functional aspects for memory systems. The resulting processes and configurations are straightforward, cost-effective, uncomplicated, highly versatile, accurate, sensitive, and effective, and can be implemented by adapting known components for ready, efficient, and economical manufacturing, application, and utilization.
While the invention has been described in conjunction with a specific best mode, it is to be understood that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the aforegoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations, which fall within the scope of the included claims. All matters hithertofore set forth herein or shown in the accompanying drawings are to be interpreted in an illustrative and non-limiting sense.
This application claims the benefit of U.S. patent application Ser. No. 11/277,008 filed Mar. 20, 2006. This application contains subject matter related to a co-pending U.S. patent application by Meng Ding, Robert B. Ogle, Jr., Chi Chang, Lei Xue, and Mark Randolph entitled “Memory Cell System Using Silicon-Rich Nitride”. The related application is assigned to Spansion LLC and Advanced Micro Devices, Inc. and is identified by docket number AF01766.