Memory device with programmable control for activation of read amplifiers

Information

  • Patent Application
  • 20080008020
  • Publication Number
    20080008020
  • Date Filed
    July 03, 2007
    17 years ago
  • Date Published
    January 10, 2008
    17 years ago
Abstract
An embodiment of the invention relate to a memory device including a memory plane composed of memory cells located at the intersection of lines and columns, and a dummy path designed to output a signal to activate read amplifiers arranged at the bottom of the columns in the memory plane, said dummy path including dummy memory cells connected between two dummy bit lines means of selecting at least one dummy cell designed to discharge at least one of the dummy bit lines, and control means connected to the two dummy bit lines to generate said activation signal, characterised in that said device includes means of programming the number of selected cells to discharge at least said dummy bit line, to adjust the time at which said activation signal is output.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

Characteristics and advantages of various embodiments of the invention will become clearer after reading the following description given as an illustrative and non-limitative example, with reference to the appended FIGS. 1-7 in which:



FIG. 1 diagrammatically shows a known SRAM type memory device equipped with a dummy path to output an activation signal to memory read amplifiers;



FIG. 2 shows a known architecture of a standard memory cell in the memory plane according to FIG. 1;



FIG. 3 shows an example configuration according to the state of the art, of a dummy memory cell of the dummy path activated by the dummy word line;



FIG. 4 shows a variant embodiment of the cell in FIG. 3;



FIG. 5 shows a dummy memory cell selected by the dummy word line to discharge the two dummy bit lines and modified according to one embodiment of the invention;



FIG. 6 shows a cell according to FIG. 5, simplified according to a variant embodiment, and



FIG. 7 shows an embodiment of the invention for programming dummy memory cells selected to discharge the dummy bit line(s).





DETAILED DESCRIPTION

Generation of the signal to activate read amplifiers arranged at the bottom of columns in the memory plane is based on the discharge current from the dummy bit lines (or from a single dummy bit line in one variant), that controls changeover of the inverter of the control means provided to output the activation signal.


Thus, depending on the time necessary for the inverter to reach the changeover threshold, the signal to activate the read amplifiers will be output more or less quickly at the output from the inverter. But the discharge time of the dummy bit lines used to control changeover of the inverter is proportional to the number of dummy memory cells selected in the dummy path to discharge the dummy bit lines.


Thus, a principle of one or more embodiments of the invention is being able to program the number of dummy memory cells selected by the dummy word line that will actually be used to discharge the dummy bit lines. The embodiments of the invention thus attempt to create a programmable delay for outputting the activation signal by varying only the number of dummy memory cells used to discharge the dummy bit lines.


To achieve this, FIG. 5 shows a dummy memory cell according to one example embodiment of the invention, modified so that its activation can be programmed when it is selected by the dummy word line, to discharge the two dummy bit lines DBL0 and DBL1.


Therefore, the principle of an embodiment of the invention is shown in FIG. 5, based on a dummy memory cell configured to discharge the two dummy bit lines simultaneously, which are then connected together at the input of the inverter of the control means provided to output the read amplifiers activation signal.


Note that in one embodiment, a single side of the dummy memory cell is used to discharge a single dummy bit line instead of both dummy bit lines, to generate the activation signal (based on the embodiment in FIG. 4). Such an embodiment could be envisaged without going outside the framework of an embodiment of the invention.


Thus, with reference to FIG. 5, the dummy memory cell includes four memory transistors forming a first inverter and a second inverter, each composed of an NMOS transistor, N4 and N5 respectively, and a PMOS transistor, P4 and P5 respectively, connected in series between the power supply potential Vdd and the ground potential. The corresponding input to each of the two memory cell inverters is connected to the dummy word line DWL. The cell also includes the two access transistors N2 and N3. The drain of each access transistor N2 and N3 is connected to the output of one of the two inverters, N4/P4 and N5/P5 respectively, and its source is connected to one of the dummy bit lines, DBL1 and DBL0 respectively.


According to embodiments of the invention, the access transistors N2 and N3 of the memory cell are controlled by Decode programming means in the memory cell, so as to program activation of the cell concerned. Therefore each of the two access transistors in the cell receives the binary programming signal Decode on its gate.


Thus configured, if the power supply potential Vdd is applied on the DWL line to select the cell, and if the Decode signal applied to the memory cell is programmed so as to activate the access transistors N2 and N3 in the cell (Decode=logical 1), the transistors N3 and N5, and N2 and N4 respectively, become conducting and a current will discharge the two dummy bit lines DBL0 and DBL1 that were previously precharged, and gradually set their potential to the ground. The two dummy bit lines are connected together such that their discharge current will control the input of the inverter (for example) of the control means provided to output the read amplifiers activation signal.


Thus, by applying the potential Vdd onto the dummy word line DWL, all dummy memory cells CELD1 to CELDn connected to the dummy word line and that will discharge the two dummy bit lines DBL0 and DBL1 are selected, and the Decode programming signal applied to each of these cells is used to program activation of a predetermined number of cells that will actually be used among all these dummy memory cells connected to the dummy word line, to discharge the dummy bit lines. By adjusting the number of dummy memory cells CELD1 to CELDn programmed in selection in this manner, the time to discharge the dummy bit lines can be programmed so that the time at which the activation signal of memory plane read amplifiers is output can be adjusted.


The configuration shown in the example in FIG. 5, with the Decode signal controlling the gates of the access transistors of the cell, is preferred to an alternative configuration that could be envisaged that would consist of applying the DWL signal onto the gate of access transistors N2 and N3, and the Decode signal at the input of the cell inverters. This last configuration can cause a charge sharing problem.


More precisely, if an unprogrammed dummy memory cell (Decode=0) is selected (DWL=1), its internal node will discharge at the same time as the dummy bit line. During the next access, since the internal node of this cell is discharged, as soon as the dummy word line DWL is activated, some of the charges in the dummy bit line will go onto the internal node. Discharge of the dummy bit line will then be due partly to this parasite charge sharing phenomenon between the dummy bit line and this unprogrammed dummy cell, and not only when the dummy memory cells are being read. This problem can be annoying if there is a large number of unprogrammed dummy memory cells.



FIG. 6 shows a variant embodiment of the memory cell in FIG. 5, in which the PMOS transistors P4 and P5 respectively have been eliminated. The cell structure is thus simplified.


According to this example embodiment, the dummy memory cell programmed in selection includes a first memory transistor N4, of which a source is connected to the ground, a gate is connected to the dummy word line DWL and a drain is connected to the drain of the first access transistor N2 of the cell, the gate of said access transistor is connected to the Decode programming means and its source is connected to the dummy bit line DBL1. The source of a second memory transistor N5 of the cell is connected to the ground, its gate is connected to the dummy word line DWL and its drain is connected to the drain of the second access transistor N3 of the cell, of which the gate is connected to the Decode programming means and the source is connected to the other dummy bit line DBL0.


The disclosed memory devices, including a dummy memory cell configured as shown in FIGS. 5 or 6, may be part of an integrated circuit, which may be part of an electronic system, such as a computer system. For example, the integrated circuit may be configured as a memory circuit and may be coupled to a controller to form part of a computer system.



FIG. 7 shows an example embodiment for programming activation as shown in FIG. 5, for a given number of dummy memory cells among all the cells selected to discharge the dummy bit line(s).


According to this example embodiment, sixteen dummy memory cells designed to discharge the dummy bit line(s) DBL, are arranged in five groups, with a predetermined number of cells, G0, G1, G2, G3 and G4 respectively, along the dummy column, all of the dummy memory cells in each group sharing the same dummy word line DWL used to select the cells that will be used to discharge the dummy bit line(s).


Group G0 includes a dummy memory cell, group G1 includes two dummy memory cells, group G2 includes four dummy memory cells, group G3 includes eight dummy memory cells and group G4 includes one dummy memory cell.


Advantageously, each group of dummy memory cells has its own Decode type programming signal, DC0, DC1, DC2, DC3 respectively, the dummy cell in the last group G4 receiving the signal Vdd as the programming signal, such that there is always at least one dummy cell (the group G4 cell) programmed in selection and therefore active to discharge the dummy bit line(s) DBL. Thus, each cell in a given group receives the programming signal associated with this group.


In this way, depending on the value of the binary programming signals DC0 to DC3 applied to each group of cells respectively, it is possible to simultaneously program activation of one to sixteen selected dummy memory cells to discharge the dummy bit line(s) DBL.


For example, if the selection potential vdd is applied on the dummy word line DWL and the programming signal DC0 is active (DC0=logical 1), while all other programming signals associated with other groups are inactive (DC1=DC2=DC3=logical 0), there will be two dummy memory cells that will actually be used to discharge the dummy bit line(s) DBL. According to another example, if the programming signal DC1 is active (DC1=logical 1) and all other programming signals are inactive (DC0=DC2=DC3=logical 0), in this case there will be three dummy memory cells actually used to discharge the dummy bit line(s) DBL, etc.


Due to the programming means used to program the number of dummy memory cells that will be used to discharge the dummy bit line(s), it then becomes possible to adjust the time at which the read amplifiers activation signal is output, without any special circuitry being provided for this purpose in the control means. This adjustment of the time at which the read amplifiers activation signal is output depends on a simple programming of binary signals used to activate a given number of dummy memory cells selected by the dummy word line, that will then be used to discharge the dummy bit line(s).


Furthermore, the generated delay varies depending on variations in process parameters in the same way as the discharge of a conventional bit line.


Although the present invention has been disclosed and described by way of some embodiments, it is apparent to those skilled in the art that several modifications to the described embodiments, as well as other embodiments of the present invention are possible without departing from the spirit and scope of the invention.

Claims
  • 1. A memory device comprising: a memory plane composed of memory cells located at the intersection of lines and columns in the memory plane;a dummy path designed to output a signal to activate read amplifiers arranged at the bottom of the columns in the memory plane, said dummy path including dummy memory cells connected between two corresponding dummy bit lines, means for selecting at least one dummy memory cell designed to discharge the two dummy bit lines simultaneously, and control means connected to the two dummy bit lines to generate said activation signal;means for programming the number of dummy memory cells selected to discharge the two dummy bit lines simultaneously; andwherein a dummy memory cell includes a first memory transistor, of which a source is connected to a ground potential, a gate is connected to the means for selecting and a drain is connected to a drain of a first access transistor, of which a gate is connected to the means for selecting and a source is connected to one of the dummy bit lines, and a second memory transistor of which a source is connected to a ground potential, a gate is connected to the means for selecting and a drain is connected to a drain of a second access transistor, of which a gate is connected to the means for programming and a source is connected to the other of the dummy bit lines.
  • 2. Device set forth in claim 1, wherein the means for programming include at least one binary signal designed to be applied to the selected dummy memory cells.
  • 3. Device set forth in claim 2, wherein the dummy memory cells are connected in groups of a predetermined number of cells along the dummy path, the binary programming signals being associated with each group of corresponding cells, so that each can activate all cells in the corresponding group.
  • 4. Device set forth in claim 1, wherein the means for selecting include a dummy word line of the dummy path.
  • 5. Device set forth in claim 1, wherein the control means to output the signal to activate read amplifiers in the memory plane include an inverter, the input of which is controlled by the discharge current of the dummy bit lines connected together and to be discharged.
  • 6. A memory device, comprising: a dummy memory structure including a plurality of dummy memory cells coupled to at least one dummy bit line and a dummy word line, the dummy memory structure operable to discharge a current through the at least one dummy bit line in a selected time, the selected time a function of the number of the dummy memory cells that are programmed;a memory controller coupled to the dummy memory structure and operable to output a read activation signal responsive to the current; anda memory cell array including a plurality of memory cells, the memory cell array coupled to the memory controller to receive the read activation signal.
  • 7. The memory device of claim 6: wherein the plurality of dummy memory cells are arranged in groups, each of the groups including a predetermined number of the dummy memory cells;further comprising a programming signal source coupled to the dummy memory structure and operable to output a programming signal selected to activate one of the groups.
  • 8. The memory device of claim 8 wherein the at least one dummy bit line comprises two dummy bit lines.
  • 9. The memory device of claim 8 wherein the at least one dummy bit line comprises a single dummy bit line.
  • 10. The memory device of claim 6: wherein the at least one dummy bit line comprises first and second dummy bit lines; andwherein each of the dummy memory cells comprises: a first inverter including an input coupled to the dummy word line and an output;a first access transistor including a drain coupled to the output of the first inverter, a gate coupled to a programming signal source, and a source coupled to the first dummy bit line;a second inverter including an input coupled to the dummy word line and an output; anda second access transistor including a drain coupled to the output of the second inverter, a gate coupled to the programming signal source, and a source coupled to the second dummy bit line.
  • 11. The memory device of claim 10 wherein the first inverter and the second inverter each comprises: an NMOS transistor and a PMOS transistor connected in series between a power supply potential and a ground potential.
  • 12. The memory device of claim 6: wherein the at least one dummy bit line comprises first and second dummy bit lines; andwherein each of the dummy memory cells comprises: a first inverter including an input coupled to a programming signal source and an output;a first access transistor including a drain coupled to the output of the first inverter, a gate coupled to the dummy word line, and a source coupled to the first dummy bit line;a second inverter including an input coupled to the programming signal source and output; anda second access transistor including a drain coupled to the output of the second inverter, a gate coupled to the dummy word line, and a source coupled to the second dummy bit line.
  • 13. The memory device of claim 6: wherein the at least one dummy bit line comprises first and second dummy bit lines; andwherein each of the dummy memory cells comprises: a first memory transistor including a source coupled to a ground potential, a gate coupled to the dummy word line, and a drain;a first access transistor including a drain coupled to the drain of the first memory transistor, a gate coupled to a programming signal source, and a source coupled to the first dummy bit line;a second memory transistor including a source coupled to a ground potential, a gate coupled to the dummy word line, and a drain; anda second access transistor including a drain coupled to the drain of the second memory transistor, a gate coupled to the programming signal source, and a source coupled to the second dummy bit line.
  • 14. The memory device of claim 6 wherein the controller comprises an inverter including an input coupled to the at least one dummy bit line to receive the current.
  • 15. The memory device of claim 6, further comprising: a plurality of read amplifiers coupled to the controller and operable to read the plurality of memory cells of the memory array responsive to the read activation signal.
  • 16. A system, comprising: a controller; anda memory device coupled to the controller, the memory device including: a dummy memory structure including a plurality of dummy memory cells coupled to at least one dummy bit line and a dummy word line, the dummy memory structure operable to discharge a current through the at least one dummy bit line in a selected time, the selected time a function of the number of the dummy memory cells that are programmed;a memory controller coupled to the dummy memory structure and operable to output a read activation signal responsive to the current; anda memory cell array including a plurality of memory cells, the memory cell array coupled to the memory controller to receive the read activation signal.
  • 17. A method, comprising: programming a selected first number of dummy memory cells from among a plurality dummy memory cells to set a first discharge time for discharging at least one dummy bit line; anddischarging at least one dummy bit line coupled to the plurality of dummy memory cells in the first discharge time.
  • 18. The method of claim 16, further comprising: re-programming a selected second number of dummy memory cells to set a second discharge time for discharging the at least one dummy bit line, the second discharge time not equal to the first discharge time; anddischarging the at least one dummy bit line in the second discharge time.
  • 19. The method of claim 16 wherein programming a selected first number of dummy memory cells comprises selectively programming the selected first number of dummy memory cells as a group responsive to a programming signal.
  • 20. The method of claim 16, further comprising: activating read amplifiers responsive to receiving a discharge current from the at least one dummy bit line.
Priority Claims (1)
Number Date Country Kind
06/06122 Jul 2006 FR national