The present invention relates generally to integrated circuit technology, including dynamic random access memories (DRAMs) and electrically erasable and programmable read only memories (EEPROMS), and particularly to a floating gate transistor memory that is dynamically electrically alterable and programmable, and methods of fabrication and use.
Dynamic random access memories (DRAMs) are data storage devices that store data as charge on a storage capacitor. A DRAM typically includes an array of memory cells. Each memory cell includes a storage capacitor and an access transistor for transferring charge to and from the storage capacitor. Each memory cell is addressed by a word line and accessed by a bit line. The word line controls the access transistor such that the access transistor controllably couples and decouples the storage capacitor to and from the bit line for writing and reading data to and from the memory cell.
The storage capacitor must have a capacitance that is large enough to retain a charge sufficient to withstand the effects of parasitic capacitances, noise due to circuit operation, and access transistor reverse-bias junction leakage currents between periodic data refreshes. Such effects can result in erroneous data. Obtaining a large capacitance typically requires a storage capacitor having a large area. However, a major goal in DRAM design is to minimize the area of a DRAM memory cell to allow cells to be more densely packed on an integrated circuit die so that more data can be stored on smaller integrated circuits.
In achieving the goal of increasing DRAM array capacity by increasing cell density, the sufficient capacitance levels of the DRAM storage capacitors must be maintained. A “stacked storage cell” design can increase the cell density to some degree. In this technique, two or more capacitor conductive plate layers, such as polycrystalline silicon (polysilicon or poly), are deposited over a memory cell access transistor on a semiconductor wafer. A high dielectric constant material is sandwiched between these capacitor plate layers. Such a capacitor structure is known as a stacked capacitor cell (STC) because the storage capacitor plates are stacked on top of the access transistor. However, formation of stacked capacitors typically requires complicated process steps. Stacked capacitors also typically increase topographical features of the integrated circuit die, making subsequent lithography and processing, such as for interconnection formation, more difficult. Alternatively, storage capacitors can be formed in deep trenches in the semiconductor substrate, but such trench storage capacitors also require additional process complexity. There is a need in the art to further increase memory storage density without adding process complexity or additional topography.
Electrically erasable and programmable read only memories (EEPROMs) provide nonvolatile data storage. EEPROM memory cells typically use field-effect transistors (FETs) having an electrically isolated (floating) gate that affects conduction between source and drain regions of the FET. A gate dielectric is interposed between the floating gate and an underlying channel region between source and drain regions. A control gate is provided adjacent to the floating gate, separated therefrom by an intergate dielectric.
In such memory cells, data is represented by charge stored on the polysilicon floating gates, such as by hot electron injection or Fowler-Nordheim tunneling during a write operation. Fowler-Nordheim tunneling is typically used to remove charge from the polysilicon floating gate during an erase operation. However, the relatively large electron affinity of the polysilicon floating gate presents a relatively large tunneling barrier energy at its interface with the underlying gate dielectric. The large tunneling barrier energy provides longer data retention times than realistically needed. For example, a data charge retention time at 85° C. is estimated to be in millions of years for some floating gate memory devices. The large tunneling barrier energy also increases the voltages and time needed to store and remove charge to and from the polysilicon floating gate. “Flash” EEPROMs, which have an architecture that allows the simultaneous erasure of many floating gate transistor memory cells, require even longer erasure times to accomplish this simultaneous erasure. The large erasure voltages needed can result in hole injection into the gate dielectric. This can cause erratic overerasure, damage to the gate dielectric, and introduction of trapping states in the gate dielectric. The high electric fields that result from the large erasure voltages can also result in reliability problems, leading to device failure. There is a need in the art to obtain floating gate transistors that allow the use of lower programming and erasure voltages and shorter programming and erasure times.
In the drawings, like numerals describe substantially similar components throughout the several views.
In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. In the drawings, like numerals describe substantially similar components throughout the several views. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention. The terms wafer and substrate used in the following description include any semiconductor-based structure having an exposed surface with which to form the integrated circuit structure of the invention. Wafer and substrate are used interchangeably to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
The present invention discloses a memory cell such as, for example, a dynamic electrically alterable programmable read only memory (DEAPROM) cell. The memory cell has a floating electrode, which is defined as an electrode that is “electrically isolated” from conductors and semiconductors by an insulator such that charge storage upon and removal from the floating electrode depends upon charge conduction through the insulator. In one embodiment, described below, the floating electrode is a floating gate electrode in a floating gaze field-effect transistor, such as used in flash electrically erasable and programmable read only memories (EEPROMs). However, a capacitor or any other structure having a floating electrode and adjacent insulator could also be used according to the techniques of the present invention described below. According to one aspect of the present invention, a barrier energy between the floating electrode and the insulator is lower than Vie barrier energy between polycrystalline silicon (polysilicon) and silicon dioxide (SiO2), which is approximately 3.3 eV. According to another aspect of the present invention, the shorter retention time of data charges on the floating electrode, resulting from the smaller barrier energy, is accommodated by refreshing the data charges on the floating electrode. In this respect the memory operates similar to a memory cell in a dynamic random access memory (DRAM). These and other aspects of the present invention are described in more detail below.
The present invention includes a memory cell that allows the use of lower programming and erasure voltages and shorter programming and erasure times by providing a storage electrode for storing charge and providing an adjacent insulator having a barrier energy with the storage electrode of less than approximately 3.3 eV. According to one aspect of the invention, the barrier energy can be established at a predetermined value by selecting various materials for the storage electrode and the insulator, such as to obtain a desired data charge retention time, an erase time, or an erase voltage. In one embodiment, the insulator has a larger electron affinity than silicon dioxide. In another embodiment, the storage electrode has a smaller electron affinity than polycrystalline silicon.
In one embodiment, the memory cell includes a floating gate transistor, having a barrier energy between the floating gate and an insulator of less than approximately 3.3 eV, such as obtained by selecting the materials of the floating gate and the insulator. According to another aspect of the present invention, the transistor is adapted for dynamic refreshing of charge stored on the floating gate. A refresh circuit allows dynamic refreshing of charge stored on the floating gate. The barrier energy can be lowered to a desired value by selecting the appropriate material composition of the floating gate. As a result, lower programming and erasure voltages and shorter programming and erasure times are obtained.
Another aspect of the present invention provides a method of using a floating gate transistor having a barrier energy of less than approximately 3.3 eV at an interface between a floating gate electrode and an adjacent insulator. Data is stored by changing the charge of the floating gate. Data is refreshed based on a data charge retention time established by the barrier energy. Data is read by detecting a conductance between a source and a drain. The large transconductance gain of the memory cell of the present invention provides a more easily detected signal and reduces the required data storage capacitance value and memory cell size when compared to a conventional dynamic random access memory (DRAM) cell.
The present invention also includes a method of forming a floating gate transistor. Source and drain regions are formed. Materials are selected for a floating gate and a gate insulator such that a barrier energy at an interface therebetween is less than approximately 3.3 eV. A gate insulator is formed from the gate insulator material. A floating gate is formed from the gate material, such that the floating gate is isolated from conductors and semiconductors. According to one aspect of the present invention, the floating gate and gate insulator materials are selected based on a desired data charge retention time. If the charge stored on the floating gate is refreshed, the floating gate and gate insulator materials can be selected to obtain a relatively short data charge retention time, thereby obtaining the advantages of shorter write/programming and erase times. The shorter write/programming and erase times make operation of the present memory speed competitive with a DRAM.
The present invention also includes a memory device that is capable of providing short programming and erase times, low programming and erase voltages, and lower electric fields in the memory cell for improved reliability. The memory device includes a plurality of memory cells. Each memory cell includes a transistor. Each transistor includes a source region, a drain region, a channel region between the source and drain regions, and a floating gate that is separated from the channel region by an insulator. An interfacial barrier energy between the floating gate and the insulator is less than approximately 3.3 eV. The transistor also includes a control gate located adjacent to the floating gate and separated therefrom by an intergate dielectric. The memory device includes flash electrically erasable and programmable read only memory (EEPROM), dynamic random access memory (DRAM), and dynamically electrically alterable and programmable read only memory (DEAPROM) embodiments.
The memory cell of the present invention, having a barrier energy between the floating electrode and the insulator that is lower than the barrier energy between polysilicon and SiO2, provides large transconductance gain, an easily detected signal, and reduces the required data storage capacitance value and memory cell size. The lower barrier energy increases tunneling current and also advantageously reduces the voltage required for writing and erasing the floating gate transistor memory cells. For example, conventional polysilicon floating gate transistors typically require complicated and noisy on-chip charge pump circuits to generate the large erasure voltage, which typically far exceeds other voltages required on the integrated circuit. The present invention allows the use of lower erasure voltages that are more easily provided by simpler on-chip circuits. Reducing the erasure voltage also lowers the electric fields, minimizing reliability problems that can lead to device failure, and better accommodating downward scaling of device dimensions. Alternatively, the thickness of the gate insulator can be increased from the typical thickness of a silicon dioxide gate insulator to improve reliability or simplify processing, since the lower barrier energy allows easier transport of charge across the gate insulator by Fowler-Nordheim tunneling.
According to another aspect of the invention, the shorter retention time of data charges on the floating electrode, resulting from the smaller barrier energy, is accommodated by refreshing the data charges on the floating electrode. By decreasing the data charge retention time and periodically refreshing the data, the write and erase operations can be several orders of magnitude faster. In this respect, the memory operates similar to a memory cell in DRAM, but avoids the process complexity, additional space needed, and other limitations of forming stacked or trench DRAM capacitors.
The memory cell of the present invention can be made smaller than a conventional DRAM memory cell. Moreover, because the storage capacitor of the present invention is integrally formed as part of the transistor, rather than requiring complex and costly non-CMOS stacked and trench capacitor process steps, the memory of the present invention should be cheaper to fabricate than DRAM memory cells, and should more easily scale downward as CMOS technology advances.
FET 200 includes a source 205, a drain 210, a floating gate 215 electrode, and a control gate 220 electrode. A gate insulator 225 is interposed between floating gate 215 and substrate 230. An intergate insulator 235 is interposed between floating gate 215 and control gate 220. In one embodiment, substrate 230 is a bulk semiconductor, such as silicon. In another embodiment, substrate 230 includes a thin semiconductor surface layer formed on an underlying insulating portion, such as in a semiconductor-on-insulator (SOI) or other thin film transistor technology. Source 205 and drain 210 are formed by conventional complementary metal-oxide-semiconductor (CMOS) processing techniques. Source 205 and drain 210 are separated by a predetermined length for forming an inversion channel 240 therebetween.
ΦGI=χ215−χ225 (1)
A barrier energy ΦSG, which describes the barrier energy at the interface between substrate 230 and gate insulator 225, is given by a difference in electron affinities, as illustrated in Equation 2.
ΦSG=χ230−χ225 (2)
Silicon (monocrystalline or polycrystalline Si) has an electron affinity χ215≈4.2 eV. Silicon dioxide (SiO2) has an electron affinity, χ225, of about 0.9 eV. The resulting barrier energy at a conventional Si—SiO2 interface between a floating gate and a gate insulator is approximately equal to 3.3 eV. One aspect of the present invention provides a barrier energy ΦGI that is less than the 3.3 eV barrier energy of a conventional Si—SiO2 interface.
According to one aspect of the invention, the interface between floating gate 215 and gate insulator 225 provides a smaller barrier energy ΦGI than the 3.3 eV barrier energy at an interface between polysilicon and silicon dioxide, such as by an appropriate selection of the material composition of one or both of floating gate 215 and gate insulator 225. In one embodiment, the smaller barrier energy ΦGI is obtained by forming floating gate 215 from a material having a smaller electron affinity χ215 than polysilicon. In one embodiment, for example, polycrystalline or microcrystalline silicon carbide (SiC) is used as the material for forming floating gate 215. In another embodiment, the smaller barrier energy ΦGI is obtained by forming gate insulator 225 from a material having a higher electron affinity χ225 than SiO2. In one embodiment, for example, amorphous SiC is used as the material for forming gate insulator 225. In yet another embodiment, the smaller barrier energy ΦGI is obtained by a combination of forming floating gate 215 from a material having a smaller electron affinity χ215 than polysilicon and also forming gate insulator 225 from a material having a higher electron affinity χ225 than SiO2.
The smaller barrier energy ΦGI provides current conduction across gate insulator 225 that is easier than for a polysilicon-SiO2 interface. The present invention includes any mechanism of providing such easier current conduction across gate insulator 225, including, but not limited to “hot” electron injection, thermionic emission, Schottky emission, Frenkel-Poole emission, and Fowler-Nordheim tunneling. Such techniques for transporting charge carriers across an insulator, such as gate insulator 225, are all enhanced by providing a smaller barrier energy ΦGI according to the techniques of the present invention. These techniques allow increased current conduction, current conduction at lower voltages across gate insulator 225 and lower electric fields in gate insulator 225, shorter data write and erase times, use of a thicker and more reliable gate insulator 225, and other advantages explained below.
The Fowler-Nordheim tunneling current density in gate insulator 225 is illustrated approximately by Equation 3 below.
J=AE2e(−B/E) (3)
In Equation 3, J is the current density in units of amperes/cm2, E is the electric field in gate insulator 225 in units of volts/cm and A and B are constants, which are particular to the material of gate insulator 225, that depend on the effective electron mass in the gate insulator 225 material and on the barrier energy ΦGI. The constants A and B scale with the barrier energy ΦGI, as illustrated approximately by Equations 4 and 5.
Aα(1/ΦGI) (4)
Bα(1/ΦGI)3/2 (5)
For a conventional floating gate FET having a 3.3 eV barrier energy at the interface between the polysilicon floating gate and the SiO2 gate insulator, A=5.5×10−16 amperes/volt2 and B=7.07×107 Volts/cm. One aspect of the present invention includes selecting a smaller barrier energy ΦGI such as, by way of example, but not by way of limitation, ΦGI≈1.08 eV. The constants A and B for ΦGI≈1.08 eV can be extrapolated from the constants A and B for the 3.3 eV polysilicon-SiO2 barrier energy using Equations 4 and 5. The barrier energy ΦGI≈1.08 eV yields the resulting constants A=1.76×10−15 amperes/volt2 and B=1.24×107 Volts/cm.
In Equation 3, J is the current density in units of amperes/cm2, E is the electric field in gate insulator 225 in units of volts/cm and A and B are constants, which are particular to the material of gate insulator 225, that depend on the effective electron mass in the gate insulator 225 material and on the barrier energy ΦGI. The constants A and B scale with the barrier energy ΦGI, as illustrated approximately by Equations 4 and 5, which are disclosed in S. R. Pollack et al., “Electron Transport Through Insulating Thin Films,” Applied Solid State Science, Vol. 1, Academic Press, New York, (1969), p. 354.
For a conventional floating gate FET having a 3.3 eV barrier energy at the interface between the polysilicon floating gate and the SiO2 gate insulator, A=5.5×10−16 amperes/Volt2 and B=7.07×107 Volts/cm, as disclosed in D. A. Baglee, “Characteristics and Reliability of 100 Å Oxides,” Proc. 22nd Reliability Symposium, (1984), p. 152. One aspect of the present invention includes selecting a smaller barrier energy ΦGI such as, by way of example, but not by way of limitation, ΦGI≈1.08 eV. The constants A and B for ΦGI≈1.08 eV can be extrapolated from the constants A and B for the 3.3 eV polysilicon-SiO2 barrier energy using Equations 4 and 5. The barrier energy ΦGI≈1.08 eV yields the resulting constants A=1.76×10−15 amperes/Volt2 and B=1.24×107 Volts/cm.
The lower barrier energy ΦGI and increased tunneling current advantageously provides faster write and erase times. This is particularly advantageous for “flash” EEPROMs or DEAPROMs in which many floating gate transistor memory cells must be erased simultaneously, requiring a longer time to transport the larger quantity of charge. For a flash EEPROM using a polysilicon floating gate transistor having an underlying SiO2 gate insulator 225, the simultaneous erasure of a block of memory cells requires a time that is on the order of milliseconds. The write and erase time of the floating gate FET 200 is illustrated approximately by Equation 6.
In Equation 6, t is the write/erase time, J225 and J235 are the respective tunneling current densities in gate dielectric 225 and intergate dielectric 235, Q is the charge density in Coulombs/cm2 on floating gate 215. Equation 6 is evaluated for a specific voltage on control gate 220 using Equations 7 and 8.
In Equations 7 and 8, V220 is the voltage on control gate 220, E225 and E235 are the respective electric fields in gate insulator 225 and intergate insulator 235, d225 and d235 are the respective thicknesses of gate insulator 225 and intergate insulator 235, and ε225 and ε235 are the respective permittivities of gate insulator 225 and intergate insulator 235.
Line 705 is similar to line 700 in all respects except that line 705 illustrates a floating gate FET 200 in which gate insulator 225 comprises a material having a higher electron affinity χ225 than SiO2, thereby providing a lower barrier energy ΦGI at the interface between polysilicon floating gate 215 and gate insulator 225. The increased tunneling current results in shorter write/erase times than those illustrated by line 700.
Line 710 is similar to line 705 in all respects except that line 710 illustrates a floating gate FET 200 in which gate insulator 225 has a lower barrier energy ΦGI than for line 705, or intergate insulator 235 has a higher permittivity ε235 than for line 705, or control gate 220 has a larger area than floating gate 215, such as illustrated by way of example by the floating gate FET 800 in the cross-sectional view of
As illustrated in
The lower barrier energy ΦGI and increased tunneling current also advantageously reduces the voltage required for writing and erasing the floating gate transistor memory cells 110. For example, conventional polysilicon floating gate transistors typically require complicated and noisy on-chip charge pump circuits to generate the large erasure voltage, which typically far exceeds other voltages required on the integrated circuit. The present invention allows the use of lower erasure voltages that are more easily provided by simpler on-chip circuits. Reducing the erasure voltage also lowers the electric fields, minimizing reliability problems that can lead to device failure, and better accommodating downward scaling of device dimensions. In one embodiment, the barrier energy ΦGI is selected, as described above, to obtain an erase voltage of less than the 12 Volts required by typical EEPROM memory cells.
Alternatively, the thickness of the gate insulator 225 can be increased from the typical thickness of a silicon dioxide gate insulator to improve reliability or simplify processing, since the lower barrier energy ΦGI allows easier transport of charge across the gate insulator 225 by Fowler-Nordheim tunneling.
The lower barrier energy ΦGI also decreases the data charge retention time of the charge stored on the floating gate 215, such as from increased thermal excitation of stored charge over the lower barrier ΦGI. However, conventional polysilicon floating gates and adjacent SiO2 insulators (e.g., 90 Å thick) have a data charge retention time estimated in the millions of years at a temperature of 85 degrees C., and estimated in the 1000 hour range even at extremely high temperatures such as 250 degrees C. Since such long data charge retention times are longer than what is realistically needed, a shorter data charge retention time can be accommodated in order to obtain the benefits of the smaller barrier energy ΦGI. In one embodiment of the present invention, by way of example, but not by way of limitation, the barrier energy ΦGI is lowered to ΦGI≈1.08 eV by appropriately selecting the composition of the materials of floating gate 215 and gate insulator 225, as described below. As a result, an estimated data charge retention time of approximately 40 seconds at a high temperature, such as 250 degrees C., is obtained.
According to one aspect of the present invention, the data stored on the DEAPROM floating gate memory cell 110 is periodically refreshed at an interval that is shorter than the data charge retention time. In one embodiment, for example, the data is refreshed every few seconds, such as for an embodiment having a high temperature retention time of approximately 40 seconds for ΦGI≈1.08 eV. The exact refresh rate can be experimentally determined and tailored to a particular process of fabricating the DEAPROM. By decreasing the data charge retention time and periodically refreshing the data, the write and erase operations can be several orders of magnitude faster, as described above with respect to
In
The DEAPROM memory cell 110 can be smaller than the DRAM memory cell of
For example, the current for floating gate FET 200 operating in the saturation region can be approximated by Equation 9.
In Equation 9, IDS is the current between drain 210 and source 205, Co is the capacitance per unit area of the gate insulator 225, W/L is the width/length aspect ratio of FET 200, VG is the gate voltage applied to control gate 220, and VT is the turn-on threshold voltage of FET 200.
For an illustrative example, but not by way of limitation, a minimum-sized FET having W/L=1, can yield a transconductance gain of approximately 71 μA/Volt for a typical process. In this illustrative example, sufficient charge is stored on floating gate 215 to change the effective threshold voltage VT by approximately 1.4 Volts, thereby changing the current IDS by approximately 100 microamperes. This significant change in current can easily be detected, such as by sampling or integrating over a time period of approximately 10 nanoseconds, for example, to obtain a detected data charge signal of 1000 fC. Thus, the DEAPROM memory cell 110 is capable of yielding a detected data charge signal that is approximately an order of magnitude larger than the typical 30 fC to 100 fC data charges typically stored on DRAM stacked or trench capacitors. Since DEAPROM memory cell 110 requires a smaller capacitance value than a conventional DRAM memory cell, DEAPROM memory cell 110 can be made smaller than a conventional DRAM memory cell. Moreover, because the CMOS-compatible DEAPROM storage capacitor is integrally formed as part of the transistor, rather than requiring complex and costly non-CMOS stacked and trench capacitor process steps, the DEAPROM memory of the present invention should be cheaper to fabricate than DRAM memory cells, and should more easily scale downward as CMOS technology advances.
In one embodiment, the present invention provides a DEAPROM having a storage element including a gate insulator 225 that includes an amorphous silicon carbide (a-SiC). For example, one embodiment of a memory storage element having an a-SiC gate insulator 225 is described in Forbes et al. U.S. Patent application Ser. No. 08/903,453 entitled CARBURIZED SILICON GATE INSULATORS FOR INTEGRATED CIRCUITS, filed on the same day as the present patent application, and which disclosure is herein incorporated by reference. The a-SiC inclusive gate insulator 225 provides a higher electron affinity χ225 than the approximately 0.9 eV electron affinity of SiO2. For example, but not by way of limitation, the a-SiC inclusive gate insulator 225 can provide an electron affinity χ225≈3.24 eV.
An a-SiC inclusive gate insulator 225 can also be formed using other techniques. For example, in one embodiment gate insulator 225 includes a hydrogenated a-SiC material synthesized by ion-implantation of C2H2 into a silicon substrate 230. In another embodiment gate insulator 225 includes an a-SiC film that is deposited by laser ablation at room temperature using a pulsed laser in an ultrahigh vacuum or nitrogen environment. In another embodiment, gate insulator 225 includes an a-SIC film that is formed by low-energy ion-beam assisted deposition to minimize structural defects and provide better electrical characteristics in the semiconductor substrate 230. The ion beam can be generated by electron cyclotron resonance from an ultra high purity argon (Ar) plasma.
In another embodiment, gate insulator 225 includes an a-SiC film that is synthesized at low temperature by ion beam sputtering in a reactive gas environment with concurrent ion irradiation. According to one technique, more than one ion beam, such as an Ar ion beam, are used. A first Ar ion beam is directed at a Si target material to provide a Si flux for forming SiC gate insulator 225. A second Ar ion beam is directed at a graphite target to provide a C flux for forming SiC gate insulator 225. The resulting a-SiC gate insulator 225 is formed by sputtering on substrate 230. In another embodiment, gate insulator 225 includes an SiC film that is deposited on substrate 230 by DC magnetron sputtering at room temperature using a conductive, dense ceramic target. In another embodiment, gate insulator 225 includes a thin a-Si1-xCx:H film that is formed by HF plasma ion sputtering of a fused SiC target in an Ar—H atmosphere. In another embodiment, radio frequency (RF) sputtering is used to produce a-Sic films. Bandgaps of a-Si, a-SiC, a-Si:H, and a-SiC:H have been found to be 1.22 eV, 1.52 eV, 1.87 eV, and 2.2 eV respectively.
In another embodiment, gate insulator 225 is formed by chemical vapor deposition (CVD) and includes an a-SiC material. According to one technique, gate insulator 225 includes a-Si1-xCx:H deposited by plasma enhanced chemical vapor deposition (PECVD). According to another technique, mixed gases of silane and methane can be used to form a-Si1-xCx:H gate insulator 225. For example, the source gas can include silane in methane with additional dilution in hydrogen. In another embodiment, gate insulator 225 includes a clean a-Si1-xCx material formed by hot-filament assisted CVD. In another embodiment, gate insulator 225 includes a-SiC formed on a crystalline Si substrate 230 by inductively coupled plasma CVD, such as at 450 degrees Celsius, which can yield a-SiC rather than epitaxially grown polycrystalline or microcrystalline SiC. The resulting a-SiC inclusive gate insulator 225 can provide an electron affinity χ225≈3.24 eV, which is significantly larger than the 0.9 eV electron affinity obtainable from a conventional SiO2 gate insulator.
Gate insulator 225 can be etched by RF plasma etching using CF4O2 in SF6O2. Self-aligned source 205 and drain 210 can then be formed using conventional techniques for forming a FET 200 having a floating (electrically isolated) gate 215, or in an alternate embodiment, an electrically interconnected (driven) gate.
In one embodiment, the present invention provides a DEAPROM having a memory cell 110 that includes a FET 200 having an at least partially crystalline (e.g., monocrystalline, polycrystalline, microcrystalline, nanocrystalline, or combination thereof) SiC floating gate 215. For example, one embodiment of a memory cell 110 that includes a memory storage element having a polycrystalline or microcrystalline SiC floating gate 215 is described in Forbes et al. U.S. patent application Ser. No. 08/903,4856 entitled SILICON CARBIDE GATE TRANSISTOR AND FABRICATION PROCESS, filed on the same day as the present patent application, and which disclosure is herein incorporated by reference. The SiC floating gate 215 provides a lower electron affinity χ225≈3.7 to 3.8 eV and smaller resulting barrier energy ΦGI than a polysilicon gate material having an electron affinity χ215≈4.2 eV. For example, using a SiO2 gate insulator 225, a barrier energy ΦGI≈2.6 to 2.7 eV is obtained using an SiC floating gate 215, as compared to a barrier energy ΦGI≈3.3 eV for a conventional polysilicon floating gate material at an interface with an SiO2 gate insulator 225.
According to one aspect of the invention, floating gate 215 is formed from a silicon carbide compound Si1-xCx, in which the material composition x is varied. One embodiment of a memory storage element having a variable SiC composition floating gate 215 is described in Forbes et al. U.S. patent application Ser. No. 08/903,452 entitled TRANSISTOR WITH VARIABLE ELECTRON AFFINITY GATE AND METHODS OF FABRICATION AND USE, filed on the same day as the present patent application, and which disclosure is herein incorporated by reference. For example, but not by way of limitation, an SiC composition of about 0.75<x<1.0 yields an electron affinity of approximately between 1.7 eV<χ215<−0.4 eV. For an SiO2 gate insulator 225, a barrier 0.8 eV<ΦGI<−1.3 eV is obtained. In one such embodiment, floating gate FET 200 provides a data charge retention time on the order of seconds.
In one embodiment, floating gate 215 is formed by CVD of polycrystalline or microcrystalline SiC, which can be either in situ conductively doped during deposition, or conductively doped during a subsequent ion-implantation step. According to one aspect of the invention, for example, floating gate 215 is fanned of an SiC film that is deposited using low-pressure chemical vapor deposition (LPCVD). The LPCVD process uses either a hot-wall reactor or a cold-wall reactor with a reactive gas, such as a mixture of Si(CH3)4 and Ar. Examples of such processes have been disclosed. In other embodiments, floating gate 215 is formed of an SiC film that is deposited using other techniques such as, for example, enhanced CVD techniques known to those skilled in the art including low pressure rapid thermal chemical vapor deposition (LP-RTCVD) or by decomposition of hexamethyl disalene using ArF excimer laser irradiation, or by low temperature molecular beam epitaxy (MBE). Other examples of tuning SiC film floating gate 215 include reactive magnetron sputtering, DC plasma discharge, ion-beam assisted deposition, ion-beam synthesis of amorphous SiC films, laser crystallization of amorphous SiC, laser reactive ablation deposition, and epitaxial growth by vacuum anneal. The conductivity of the SiC film of floating gate 215 can be changed by ion implantation during subsequent process steps, such as during the self-aligned formation of source/drain regions for the n-channel and p-channel FETs.
In one embodiment, patterning and etching the SiC film, together with the underlying gate insulator 225, forms the resulting individual SiC floating gates 215. The SIC film is patterned using standard techniques and is etched using plasma etching, reactive ion etching (RIE) or a combination of these or other suitable methods. For example, the SiC film can be etched by RIE in a distributed cyclotron resonance reactor using a SF6/O2 gas mixture using SiO2 as a mask with a selectivity of 6.5. Such process is known in the art and is disclosed. Alternatively, the SiC film can be etched by RIE using the mixture SF6 and O2 and F2/Ar/O2. An example of such a process has been disclosed. The etch rate of the SiC film can be significantly increased by using magnetron enhanced RIE. Self-aligned source 205 and drain 210 regions can then be formed using conventional techniques for forming a FET 200 having a floating (electrically isolated) gate 215, or in an alternate embodiment, an electrically interconnected (driven) gate.
In one embodiment, the present invention provides a DEAPROM having a memory cell 110 that includes a FET 200 having an at least partially crystalline (e.g., monocrystalline, polycrystalline, microcrystalline, or nanocrystalline) silicon oxycarbide (SiOC) floating gate 215. For example, one embodiment of a memory cell 110 that includes a storage element having a polycrystalline or microcrystalline SiOC floating gate 215 is described in Forbes et al. U.S. patent application Ser. No. 08/902,132 entitled TRANSISTOR WITH SILICON OXYCARBIDE GATE AND METHODS OF FABRICATION AND USE, filed on the same day as the present patent application, and which disclosure is herein incorporated by reference.
In one embodiment, a material composition w of the SiO(2-2w)Cw floating gate 215 is selected such that floating gate 215 provides a lower electron affinity approximately between 0.9 eV<χ215<3.7 eV and smaller resulting barrier energy ΦGI than a polysilicon gate material having an electron affinity χ215≈4.2 eV. For example, using a SiO2 gate insulator 225, a barrier energy approximately between 0 eV<ΦGI<2.8 eV is obtained for an SiOC floating gate 215 as the SiOC composition w varies between w≈1 (i.e., approximately SiC) and w≈0 (i.e., approximately SiO2). By contrast, a conventional polysilicon floating gate material provides a barrier energy ΦGI≈3.3 eV at an interface with an SiO2 gate insulator 225.
In one embodiment floating gate 215 is formed of a monocrystalline, polycrystalline, microcrystalline, or nanocrystalline, SiOC thin film that is CVD deposited, such as by a Two Consecutive Decomposition and Deposition Chamber (TCDDC) system. One such example of depositing microcrystalline SiOC is disclosed in the unrelated technological field of solar cell applications.
In other embodiments, the SiOC film is deposited using other techniques such as, for example, low pressure chemical vapor deposition (LPCVD), or enhanced CVD techniques known to those skilled in the art including low pressure rapid thermal chemical vapor deposition (LP-RTCVD). The conductivity of the SiOC film floating gate 215 can be changed by ion implantation during subsequent process steps, such as during the self-aligned formation of source/drain regions for the n-channel and p-channel FETs. The SiOC film can be patterned and etched, together with the underlying gate insulator 225, such as by using plasma etching, reactive ion etching (RIE) or a combination of these or other suitable methods. The etch rate of SiOC film can be significantly increased by using magnetron enhanced RIE.
In one embodiment, the present invention provides a DEAPROM having a memory cell 110 including a FET 200 having an at least partially crystalline (e.g., monocrystalline, polycrystalline, microcrystalline, nanocrystalline, or combination thereof) gallium nitride (GaN) or gallium aluminum nitride (GaAlN) floating gate 215. For example, one embodiment of a memory storage element having a GaN or GaAlN floating gate 215 is described in Forbes et al. U.S. patent application Ser. No. 08/903,098 entitled DEAPROM AND TRANSISTOR WITH GALLIUM NITRIDE OR GALLIUM ALUMINUM NITRIDE GATE, filed on the same day as the present patent application, and which disclosure is herein incorporated by reference.
In one embodiment, a composition ν of a polycrystalline Ga1-νAlνN floating gate 215 is selected approximately between 0<ν<1 to obtain a desired baffler energy, as described below. The GaAlN floating gate 215 provides a lower electron affinity than polysilicon. The GaAlN floating gate 215 electron affinity can be approximately between 0.6 eV<χ215<2.7 eV as the GaAlN composition variable ν is decreased from 1 to 0. As a result, the GaAlN floating gate 215 provides a smaller resulting barrier energy ΦGI than a polysilicon gate material having an electron affinity χ215=4.2 eV. For example, Using a SiO2 gate insulator 225, a barrier energy approximately between −0.3 eV<ΦGI<1.8 eV is obtained using an GaAlN floating gate 215 as the GaAlN composition ν varies between ν=1 (i.e., approximately AlN) and ν=0 (i.e., approximately GaN). By contrast, a conventional polysilicon floating gate material provides a barrier energy ΦGI≈3.3 eV at an interface with an SiO2 gate insulator 225.
In one embodiment, substrate 230 is bulk silicon, although other bulk semiconductor and semiconductor-on-insulator (SOI) materials could also be used for substrate 230 such as, for example, sapphire, gallium arsenide (GaAs), GaN, AlN, and diamond. In one embodiment, gate insulator 225 is SiO2, although other dielectric materials could also be used for gate insulator 225, as described above, such as amorphous insulating GaN (a-GaN), and amorphous insulating AlN (a-AlN). The FET 200 using a GaAlN floating gate 215 has mobility and turn-on threshold voltage (VT) magnitude parameters that are advantageously influenced less by charge at SiO2—GaAlN interface surface states than at a conventional SiO2-polysilicon interface.
In one embodiment floating gate 215 is formed of a polycrystalline, microcrystalline, or nanocrystalline, GaN thin film that is CVD deposited on a chin (e.g., 500 Å thick) AlN buffer layer, such as by metal organic chemical vapor deposition (MOCVD), which advantageously yields improved crystal quality and reduced microscopic fluctuation of crystalline orientation.
In one embodiment, floating gate 215 is formed from a GaN film grown in a horizontal reactor operating at atmospheric pressure. Trimethyl gallium (TMG), trimethylaluminum (TMA), and ammonia (NH3) are used as source gases, and hydrogen (H2) is used as a carrier gas. The TMG, TMA, and NH3 are mixed just before the reactor, and the mixture is fed at high velocity (e.g., 110 cm/s) to a slanted substrate 230 through a delivery tube. The desired GaAlN composition v is obtained by controlling the concentration ratio of TMG to TMA. In one embodiment, a 500 Å AlN buffer layer is obtained by growth at 600 degrees Celsius at a deposition rate of 100 Å/minute for approximately 5 minutes, then a epitaxial crystalline or polycrystalline layer of GaN is deposited at 1000 degrees Celsius.
In another embodiment plasma-enhanced molecular beam epitaxy (PEMBE) is used to form a GaN or GaAlN floating gate 215, for example, by using electron cyclotron resonance (ECR) plasma during molecular beam epitaxy (MBE). The background pressure in the MBE chamber is typically less than 10−10 torr. Ga flux (e.g., 99.99999% pure) is supplied by a conventional Knudsen effusion cell. The semiconductor substrates 230 are heated to a temperature of approximately 850 degrees Celsius, and exposed to a nitrogen plasma (e.g., 35 Watt plasma power level) to clean the surface of the substrate 230 and form a thin AlN layer thereupon. The temperature is then lowered to approximately 550 degrees Celsius for growth of a thin (e.g., 300 Å) GaN buffer layer (e.g., using 20 Watt plasma power level for growth in a low active nitrogen overpressure environment). The temperature is then increased, such as to approximately 800 degrees Celsius, to form the remainder of the GaN or GaAlN film forming floating gate 225, such as at a deposition rate of approximately 0.22 microns/hour.
Each memory cell described herein has a floating electrode, such as a floating gate electrode in a floating gate field-effect transistor. According to one aspect of the invention, a baffler energy between the floating electrode and the insulator is lower than the barrier energy between polysilicon and SiO2, which is approximately 3.3 eV. Each memory cell also provides large transconductance gain, which provides a more easily detected signal and reduces the required data storage capacitance value. According to another aspect of the invention, the shorter retention time of data charges on the floating electrode, resulting from the smaller barrier energy, is accommodated by refreshing the data charges on the floating electrode. By decreasing the data charge retention time and periodically refreshing the data, the write and erase operations can be several orders of magnitude faster. In this respect, each memory operates similar to a memory cell in DRAM, but avoids the process complexity, additional space needed, and other limitations of forming stacked or french DRAM capacitors.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that the above-described embodiments can be used in combination, and any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.
This application is a Continuation of U.S. application Ser. No. 08/902,133, filed on Jul. 29, 1997 which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3792465 | Collins et al. | Feb 1974 | A |
4019197 | Lohstroh et al. | Apr 1977 | A |
4113515 | Kooi et al. | Sep 1978 | A |
4118795 | Frye et al. | Oct 1978 | A |
4384349 | McElroy | May 1983 | A |
4460670 | Ogawa et al. | Jul 1984 | A |
4462150 | Nishimura et al. | Jul 1984 | A |
4473836 | Chamberlain | Sep 1984 | A |
4507673 | Aoyama et al. | Mar 1985 | A |
4657699 | Nair | Apr 1987 | A |
4738729 | Yoshida et al. | Apr 1988 | A |
4768072 | Seki et al. | Aug 1988 | A |
4769686 | Horiuchi et al. | Sep 1988 | A |
4816883 | Baldi | Mar 1989 | A |
4841349 | Nakano | Jun 1989 | A |
4849797 | Ukai et al. | Jul 1989 | A |
4893273 | Usami | Jan 1990 | A |
4897710 | Suzuki et al. | Jan 1990 | A |
4929985 | Takasaki | May 1990 | A |
5032883 | Wakai et al. | Jul 1991 | A |
5049950 | Fujii et al. | Sep 1991 | A |
5111430 | Morie | May 1992 | A |
5145741 | Quick | Sep 1992 | A |
5235195 | Tran et al. | Aug 1993 | A |
5260593 | Lee | Nov 1993 | A |
5293560 | Harari | Mar 1994 | A |
5298796 | Tawel | Mar 1994 | A |
5317535 | Talreja et al. | May 1994 | A |
5336361 | Tamura et al. | Aug 1994 | A |
5366713 | Sichanugrist et al. | Nov 1994 | A |
5369040 | Halvis et al. | Nov 1994 | A |
5371383 | Miyata et al. | Dec 1994 | A |
5388069 | Kokubo | Feb 1995 | A |
5393999 | Malhi | Feb 1995 | A |
5407845 | Nasu et al. | Apr 1995 | A |
5415126 | Loboda et al. | May 1995 | A |
5424993 | Lee et al. | Jun 1995 | A |
5438211 | Nakamura et al. | Aug 1995 | A |
5438544 | Makino | Aug 1995 | A |
5441901 | Candelaria | Aug 1995 | A |
5449941 | Yamazaki et al. | Sep 1995 | A |
5455432 | Hartsell et al. | Oct 1995 | A |
5465249 | Cooper, Jr. et al. | Nov 1995 | A |
5467306 | Kaya et al. | Nov 1995 | A |
5477485 | Bergemont et al. | Dec 1995 | A |
5493140 | Iguchi | Feb 1996 | A |
5508543 | Hartstein et al. | Apr 1996 | A |
5530581 | Cogan | Jun 1996 | A |
5546351 | Tanaka et al. | Aug 1996 | A |
5557114 | Leas et al. | Sep 1996 | A |
5557122 | Shrivastava et al. | Sep 1996 | A |
5562769 | Dreifus et al. | Oct 1996 | A |
5580380 | Liu et al. | Dec 1996 | A |
5604357 | Hori | Feb 1997 | A |
5614748 | Nakajima et al. | Mar 1997 | A |
5623442 | Gotou et al. | Apr 1997 | A |
5629222 | Yamazaki et al. | May 1997 | A |
5654208 | Harris et al. | Aug 1997 | A |
5661312 | Weitzel et al. | Aug 1997 | A |
5670790 | Katoh et al. | Sep 1997 | A |
5672889 | Brown | Sep 1997 | A |
5698869 | Yoshimi et al. | Dec 1997 | A |
5698879 | Aritome et al. | Dec 1997 | A |
5714766 | Chen et al. | Feb 1998 | A |
5719410 | Suehiro et al. | Feb 1998 | A |
5734181 | Ohba et al. | Mar 1998 | A |
5738731 | Shindo et al. | Apr 1998 | A |
5740104 | Forbes | Apr 1998 | A |
5754477 | Forbes | May 1998 | A |
5774400 | Lancaster et al. | Jun 1998 | A |
5786250 | Wu et al. | Jul 1998 | A |
5789276 | Leas et al. | Aug 1998 | A |
5798548 | Fujiwara | Aug 1998 | A |
5801401 | Forbes | Sep 1998 | A |
5808336 | Miyawaki | Sep 1998 | A |
5828101 | Endo | Oct 1998 | A |
5846859 | Lee | Dec 1998 | A |
5858811 | Tohyama | Jan 1999 | A |
5861346 | Hamza et al. | Jan 1999 | A |
5877041 | Fuller | Mar 1999 | A |
5886368 | Forbes et al. | Mar 1999 | A |
5886376 | Acovic et al. | Mar 1999 | A |
5886379 | Jeong | Mar 1999 | A |
5898197 | Fujiwara | Apr 1999 | A |
5907775 | Tseng | May 1999 | A |
5910665 | Plumton et al. | Jun 1999 | A |
5912837 | Lakhani | Jun 1999 | A |
5926740 | Forbes et al. | Jul 1999 | A |
5976926 | Wu et al. | Nov 1999 | A |
5989958 | Forbes | Nov 1999 | A |
5990531 | Taskar et al. | Nov 1999 | A |
6018166 | Lin et al. | Jan 2000 | A |
6031263 | Forbes et al. | Feb 2000 | A |
6034001 | Shor et al. | Mar 2000 | A |
6049091 | Yokoyama | Apr 2000 | A |
6075259 | Baliga | Jun 2000 | A |
6084248 | Inoue | Jul 2000 | A |
6093937 | Yamazaki et al. | Jul 2000 | A |
6099574 | Fukuda et al. | Aug 2000 | A |
6130147 | Major et al. | Oct 2000 | A |
6144581 | Diorio et al. | Nov 2000 | A |
6163066 | Forbes et al. | Dec 2000 | A |
6166401 | Forbes | Dec 2000 | A |
6166768 | Fossum et al. | Dec 2000 | A |
6177706 | Shindo et al. | Jan 2001 | B1 |
6249020 | Forbes et al. | Jun 2001 | B1 |
6271566 | Tsuchiaki | Aug 2001 | B1 |
6297521 | Forbes et al. | Oct 2001 | B1 |
6307775 | Forbes et al. | Oct 2001 | B1 |
6309907 | Forbes et al. | Oct 2001 | B1 |
6324101 | Miyawaki | Nov 2001 | B1 |
6936849 | Forbes et al. | Aug 2005 | B1 |
7005344 | Forbes et al. | Feb 2006 | B2 |
20050146934 | Forbes et al. | Jul 2005 | A1 |
20060017095 | Forbes et al. | Jan 2006 | A1 |
20060024878 | Forbes et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
0291951 | Aug 1993 | EP |
0681333 | Nov 1995 | EP |
57-126175 | Aug 1982 | JP |
60-184681 | Sep 1985 | JP |
60-242678 | Dec 1985 | JP |
62-086867 | Apr 1987 | JP |
62-122275 | Jun 1987 | JP |
63-128760 | Jan 1988 | JP |
63-181473 | Jul 1988 | JP |
63-219172 | Sep 1988 | JP |
63-289960 | Nov 1988 | JP |
01-115162 | May 1989 | JP |
02-203564 | Aug 1990 | JP |
03-222367 | Oct 1991 | JP |
04-056769 | Feb 1992 | JP |
06013626 | Jan 1994 | JP |
06-224431 | Aug 1994 | JP |
06-302828 | Oct 1994 | JP |
07-115191 | May 1995 | JP |
07-226507 | Aug 1995 | JP |
7326718 | Dec 1995 | JP |
08-255878 | Oct 1996 | JP |
08-255878-TR | Oct 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20030205754 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08902133 | Jul 1997 | US |
Child | 10461593 | US |