The invention relates to the field of random access memory (RAM) devices formed using a resistance variable material.
Resistance variable memory elements, which include Programmable Conductive Random Access Memory (PCRAM) elements using chalcogenides, have been investigated for suitability as semi-volatile and non-volatile random access memory devices. A typical chalcogenide resistance variable memory element is disclosed in U.S. Pat. No. 6,348,365 to Moore and Gilton.
In a typical chalcogenide resistance variable memory element, a conductive material, for example, silver, tin and copper, is incorporated into a chalcogenide glass. The resistance of the chalcogenide glass can be programmed to stable higher resistance and lower resistance states. An unprogrammed chalcogenide variable resistance element is normally in a higher resistance state. A write operation programs the element to a lower resistance state by applying a voltage potential across the chalcogenide glass and forming a conductive pathway. The element may then be read by applying a voltage pulse of a lesser magnitude than required to program it; the resistance across the memory device is then sensed as higher or lower to define two logic states.
The programmed lower resistance state of a chalcogenide variable resistance element can remain intact for an indefinite period, typically ranging from hours to weeks, after the voltage potentials are removed; however, some refreshing may be useful. The element can be returned to its higher resistance state by applying a reverse voltage potential of about the same order of magnitude as used to write the device to the lower resistance state. Again, the higher resistance state is maintained in a semi- or non-volatile manner once the voltage potential is removed. In this way, such an element can function as a variable resistance memory having at least two resistance states, which can define two respective logic states, i.e., at least a bit of data.
One exemplary chalcogenide resistance variable device uses a germanium selenide (i.e., GexSe100−x) chalcogenide glass as a backbone. The germanium selenide glass has, in the prior art, incorporated silver (Ag) and silver selenide (Ag2+/−xSe) layers in the memory element.
A metal material 41, such as silver, is formed over glass material 51. An irradiation process and/or thermal process are used to cause diffusion of metal ions into the glass material 51. A second conductive electrode 61 is formed over dielectric material 13 and residual metal material 41.
The element 1 is programmed by applying a sufficient voltage across electrodes 12 and 61 to cause the formation of a conductive path between the two electrodes 12 and 61, by virtue of a conductor (i.e., such as silver) that is present in metal ion laced glass layer 51. In the illustrated example, with the programming voltage applied across electrodes 12 and 61, the conductive pathway forms from electrode 12 towards electrode 61.
It is desirable to have additional methods of forming memory elements. In particular, it is desirable to have techniques for forming memory elements in a high density.
Exemplary embodiments of the invention provide memory elements having a resistance variable material and methods for forming the same. The method includes forming a plurality of first electrodes over a substrate and forming a blanket material stack over the first electrodes. The stack includes a plurality of layers, at least one layer of the stack includes a resistance variable material. The method also includes forming a first conductive layer on the stack and etching the conductive layer and at least one of the layers of the stack to form a first pattern of material stacks. The etched first conductive layer forming a plurality of second electrodes with a portion of the resistance variable material located between each of the first and second electrodes.
The foregoing and other advantages and features of the invention will become more apparent from the detailed description of exemplary embodiments provided below with reference to the accompanying drawings in which:
In the following detailed description, reference is made to various specific embodiments of the invention. These embodiments are described with sufficient detail to enable those skilled in the art to practice the invention. It is to be understood that other embodiments may be employed, and that various structural, logical and electrical changes may be made without departing from the spirit or scope of the invention.
The term “substrate” used in the following description may include any supporting structure including, but not limited to, a semiconductor substrate that has an exposed substrate surface. A semiconductor substrate should be understood to include silicon-on-insulator (SOI), silicon-on-sapphire (SOS), doped and undoped semiconductors, epitaxial layers of silicon supported by a base semiconductor foundation, and other semiconductor structures. When reference is made to a semiconductor substrate or wafer in the following description, previous process steps may have been utilized to form regions or junctions in or over the base semiconductor or foundation. The substrate need not be semiconductor-based, but may be any support structure suitable for supporting an integrated circuit, including, but not limited to, metals, alloys, glasses, polymers, ceramics, and any other supportive materials as is known in the art. Additionally, for purposes of this specification, a substrate can include layers and structures over a semiconductor substrate, wafer, or other material, such as conductive lines and/or insulating layers.
The invention is now explained with reference to the figures, which illustrate exemplary embodiments and throughout which like reference numbers indicate like features.
The array 200 is supported by a substrate 210. Over the substrate 210, though not necessarily directly so, is a first (e.g., a bottom) electrode 212 for each memory element 101a, 101b. This electrode 212 is preferably tungsten (W). An insulating layer 214 is between the first electrodes 212 and can be, for example, silicon nitride (Si3N4), a low dielectric constant material, an insulating glass, or an insulating polymer, but is not limited to such materials.
Memory elements 201 are formed over each first electrode 212. The memory elements are generally represented by the reference numeral 201 and generally correspond to each portion of a memory stack 240 (described below) addressable by a first and second electrode 212, 251, respectively. The memory elements 201 can be formed directly over each first electrode 212 such that one memory element 201 corresponds to each first electrode 212; or can be offset from the first electrodes 212, as shown in
In the exemplary embodiment shown in
Optionally, over the chalcogenide material layer 241 is a layer of metal-chalcogenide 242, such as tin-chalcogenide (e.g., tin selenide) or a silver chalcogenide (e.g., silver selenide). For purposes of the illustrated embodiment, the optional metal-chalcogenide layer 242 is a tin-chalcogenide layer, for example tin selenide. It is also possible that other chalcogenide materials may be substituted for selenium, such as sulfur, oxygen, or tellurium. The metal-chalcogenide layer 242 may be about 100 Å to about 400 Å thick; however, its thickness depends, in part, on the thickness of the underlying chalcogenide material layer 241. The ratio of the thickness of the metal-chalcogenide layer 242 to that of the underlying chalcogenide material layer 241 should be between about 5:1 and about 1:3.
An optional metal layer 243 is provided over the metal-chalcogenide layer 242, with silver (Ag) being the exemplary metal. This metal layer 243, if employed, is desirably between about 300 Å and about 500 Å thick. In the illustrated embodiment, the metal-chalcogenide layer 242 and the metal layer 243 form a portion of the element stacks 202.
The memory stack 240 can include additional layers (not shown). For example, stack 240 can include a second chalcogenide material layer over the metal layer 243. Such a second chalcogenide layer can be a same material as chalcogenide material layer 241, or it can be a different material.
Over the metal layer 243 is a second electrode 251, which is included in the element stack 202. The second electrode 251 can be made of the same material as the first electrode 212, but is not required to be so. In the exemplary embodiment shown in
In the illustrated embodiment, the electrodes 251 are electrode lines extending across at least a portion of the array 200, as shown in the
Between the element stacks 202 and over the chalcogenide material layer 241, is an etch stop layer. The etch stop layer 231 facilitates the formation of the element stacks 202 as described in more detail below in connection with
While the invention is not to be bound by any specific theory, it is believed that upon application of a conditioning voltage, metal ions from the metal-chalcogenide layer 242 form one or more conducting channels within the chalcogenide material layer 241. Specifically, the conditioning step comprises applying a potential across the memory elements 201 such that material from the metal-chalcogenide layer 242 is incorporated into the chalcogenide material layer 241, thereby forming conducting channels corresponding to each element 201 through the layer 241. Movement of ions from the layer 242 into or out of a respective conducting channel during subsequent programming of a particular element 201 forms a conductive pathway, which causes a detectible resistance change across that memory element 201.
In the illustrated example, the layers 242, 243 are conductive. Therefore, to avoid second electrodes 251 from being shorted together, layers 242, 243 are patterned in a similar manner to the second electrodes 251 to form element stacks 202. Accordingly, in the illustrated embodiment, the layers 242, 243, 251 are formed as lines. Layers 242, 243, 251 could instead be formed in an alternative pattern as desired. Where stack 240 includes different layers and/or different material, the conductive layers of the stack 240 can be pattered in a similar manner to the second electrodes 251. Other layers of the stack 240, e.g., layers of resistance variable material, such as a layer of chalcogenide glass that supports the formation of conductive pathways, can be blanket layers shared by more than one element 201 of the array 200, or can be patterned in a similar manner to the second electrodes 251 if desired.
As shown by
At least one layer of a memory stack 240 is formed over the insulating layer 214 and first electrodes 212, as depicted in
As shown in
The etch stop layer 231 is patterned in a first pattern to provide openings 231a over the layer 241. The openings can be made directly over the first electrodes 212 or, as shown in
As shown in
Referring to
As illustrated in
An etching step is used to remove portions of layers 251, 243 and 242. The etching stops at the etch stop layer 231, leaving stacks 202 as shown in
Additional steps may be performed to complete the memory array 200. For example, an insulating layer (not shown) may be formed over and between the stacks 202. Also, depending on the composition and/or properties of the etch stop layer 231, it may be desirable to ultimately remove the etch stop layer 231. Also, other processing steps can be conducted to electrically couple the array 200 to circuitry for accessing electrodes 212, 251 (e.g., access circuitry described in U.S. Patent Application, assigned to Micron Technology, Inc.) and peripheral circuitry (not shown), e.g., forming conductive via 270 (
In the case of a computer system, the processor system 400 may include peripheral devices such as a floppy disk drive 454 and a compact disc (CD) ROM drive 456, which also communicate with CPU 444 over the bus 452. Memory circuit 448 is preferably constructed as an integrated circuit, which includes a memory array 200 (
The above description and drawings are only to be considered illustrative of exemplary embodiments, which achieve the features and advantages of the present invention. Modification and substitutions to specific process conditions and structures can be made without departing from the spirit and scope of the present invention. Accordingly, the invention is not to be considered as being limited by the foregoing description and drawings, but is only limited by the scope of the appended claims.
This application is a divisional of application Ser. No. 11/111,917, filed Apr. 22, 2005, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3271591 | Ovshinsky | Sep 1966 | A |
3622319 | Sharp | Nov 1971 | A |
3743847 | Boland | Jul 1973 | A |
3961314 | Klose et al. | Jun 1976 | A |
3966317 | Wacks et al. | Jun 1976 | A |
3983542 | Ovshinsky | Sep 1976 | A |
3988720 | Ovshinsky | Oct 1976 | A |
4177474 | Ovshinsky | Dec 1979 | A |
4267261 | Hallman et al. | May 1981 | A |
4269935 | Masters et al. | May 1981 | A |
4312938 | Drexler et al. | Jan 1982 | A |
4316946 | Masters et al. | Feb 1982 | A |
4320191 | Yoshikawa et al. | Mar 1982 | A |
4405710 | Balasubramanyam et al. | Sep 1983 | A |
4419421 | Wichelhaus et al. | Dec 1983 | A |
4499557 | Holmberg et al. | Feb 1985 | A |
4597162 | Johnson et al. | Jul 1986 | A |
4608296 | Keem et al. | Aug 1986 | A |
4637895 | Ovshinsky et al. | Jan 1987 | A |
4646266 | Ovshinsky et al. | Feb 1987 | A |
4664939 | Ovshinsky | May 1987 | A |
4668968 | Ovshinsky et al. | May 1987 | A |
4670763 | Ovshinsky et al. | Jun 1987 | A |
4671618 | Wu et al. | Jun 1987 | A |
4673957 | Ovshinsky et al. | Jun 1987 | A |
4678679 | Ovshinsky | Jul 1987 | A |
4696758 | Ovshinsky et al. | Sep 1987 | A |
4698234 | Ovshinsky et al. | Oct 1987 | A |
4710899 | Young et al. | Dec 1987 | A |
4728406 | Banerjee et al. | Mar 1988 | A |
4737379 | Hudgens et al. | Apr 1988 | A |
4766471 | Ovshinsky et al. | Aug 1988 | A |
4769338 | Ovshinsky et al. | Sep 1988 | A |
4775425 | Guha et al. | Oct 1988 | A |
4788594 | Ovshinsky et al. | Nov 1988 | A |
4795657 | Formigoni et al. | Jan 1989 | A |
4800526 | Lewis | Jan 1989 | A |
4809044 | Pryor et al. | Feb 1989 | A |
4818717 | Johnson et al. | Apr 1989 | A |
4843443 | Ovshinsky et al. | Jun 1989 | A |
4845533 | Pryor et al. | Jul 1989 | A |
4847674 | Sliwa et al. | Jul 1989 | A |
4853785 | Ovshinsky et al. | Aug 1989 | A |
4891330 | Guha et al. | Jan 1990 | A |
5128099 | Strand et al. | Jul 1992 | A |
5159661 | Ovshinsky et al. | Oct 1992 | A |
5166758 | Ovshinsky et al. | Nov 1992 | A |
5177567 | Klersy et al. | Jan 1993 | A |
5219788 | Abernathey et al. | Jun 1993 | A |
5238862 | Blalock et al. | Aug 1993 | A |
5272359 | Nagasubramanian et al. | Dec 1993 | A |
5296716 | Ovshinsky et al. | Mar 1994 | A |
5314772 | Kozicki | May 1994 | A |
5315131 | Kishimoto et al. | May 1994 | A |
5335219 | Ovshinsky et al. | Aug 1994 | A |
5341328 | Ovshinsky et al. | Aug 1994 | A |
5350484 | Gardner et al. | Sep 1994 | A |
5359205 | Ovshinsky | Oct 1994 | A |
5360981 | Owen et al. | Nov 1994 | A |
5406509 | Ovshinsky et al. | Apr 1995 | A |
5414271 | Ovshinsky et al. | May 1995 | A |
5500532 | Kozicki et al. | Mar 1996 | A |
5512328 | Yoshimura et al. | Apr 1996 | A |
5512773 | Wolf et al. | Apr 1996 | A |
5534711 | Ovshinsky et al. | Jul 1996 | A |
5534712 | Ovshinsky et al. | Jul 1996 | A |
5536947 | Klersy et al. | Jul 1996 | A |
5543737 | Ovshinsky | Aug 1996 | A |
5591501 | Ovshinsky et al. | Jan 1997 | A |
5596522 | Ovshinsky et al. | Jan 1997 | A |
5687112 | Ovshinsky | Nov 1997 | A |
5694054 | Ovshinsky et al. | Dec 1997 | A |
5714768 | Ovshinsky et al. | Feb 1998 | A |
5726083 | Takaishi | Mar 1998 | A |
5751012 | Wolstenholme et al. | May 1998 | A |
5761115 | Kozicki et al. | Jun 1998 | A |
5789277 | Zahorik et al. | Aug 1998 | A |
5814527 | Wolstenholme et al. | Sep 1998 | A |
5818749 | Harshfield | Oct 1998 | A |
5825046 | Czubatyj et al. | Oct 1998 | A |
5841150 | Gonzalez et al. | Nov 1998 | A |
5846889 | Harbison et al. | Dec 1998 | A |
5851882 | Harshfield | Dec 1998 | A |
5869843 | Harshfield | Feb 1999 | A |
5896312 | Kozicki et al. | Apr 1999 | A |
5912839 | Ovshinsky et al. | Jun 1999 | A |
5914893 | Kozicki et al. | Jun 1999 | A |
5920788 | Reinberg | Jul 1999 | A |
5933365 | Klersy et al. | Aug 1999 | A |
5998066 | Block et al. | Dec 1999 | A |
6011757 | Ovshinsky | Jan 2000 | A |
6031287 | Harshfield | Feb 2000 | A |
6072716 | Jacobson et al. | Jun 2000 | A |
6077729 | Harshfield | Jun 2000 | A |
6084796 | Kozicki et al. | Jul 2000 | A |
6087674 | Ovshinsky et al. | Jul 2000 | A |
6117720 | Harshfield | Sep 2000 | A |
6141241 | Ovshinsky et al. | Oct 2000 | A |
6143604 | Chiang et al. | Nov 2000 | A |
6177338 | Liaw et al. | Jan 2001 | B1 |
6236059 | Wolsteinholme et al. | May 2001 | B1 |
RE37259 | Ovshinsky | Jul 2001 | E |
6297170 | Gabriel et al. | Oct 2001 | B1 |
6300684 | Gonzalez et al. | Oct 2001 | B1 |
6316784 | Zahorik et al. | Nov 2001 | B1 |
6329606 | Freyman et al. | Dec 2001 | B1 |
6339544 | Chiang et al. | Jan 2002 | B1 |
6348365 | Moore et al. | Feb 2002 | B1 |
6350679 | McDaniel et al. | Feb 2002 | B1 |
6376284 | Gonzalez et al. | Apr 2002 | B1 |
6388324 | Kozicki et al. | May 2002 | B2 |
6391688 | Gonzalez et al. | May 2002 | B1 |
6404665 | Lowery et al. | Jun 2002 | B1 |
6414376 | Thakur et al. | Jul 2002 | B1 |
6418049 | Kozicki et al. | Jul 2002 | B1 |
6420725 | Harshfield | Jul 2002 | B1 |
6423628 | Li et al. | Jul 2002 | B1 |
6429064 | Wicker | Aug 2002 | B1 |
6437383 | Xu | Aug 2002 | B1 |
6440837 | Harshfield | Aug 2002 | B1 |
6462984 | Xu et al. | Oct 2002 | B1 |
6469364 | Kozicki | Oct 2002 | B1 |
6473332 | Ignatiev et al. | Oct 2002 | B1 |
6480438 | Park | Nov 2002 | B1 |
6487106 | Kozicki | Nov 2002 | B1 |
6487113 | Park et al. | Nov 2002 | B1 |
6501111 | Lowery | Dec 2002 | B1 |
6507061 | Hudgens et al. | Jan 2003 | B1 |
6511862 | Hudgens et al. | Jan 2003 | B2 |
6511867 | Lowery et al. | Jan 2003 | B2 |
6512241 | Lai | Jan 2003 | B1 |
6514805 | Xu et al. | Feb 2003 | B2 |
6531373 | Gill et al. | Mar 2003 | B2 |
6534781 | Dennison | Mar 2003 | B2 |
6545287 | Chiang | Apr 2003 | B2 |
6545907 | Lowery et al. | Apr 2003 | B1 |
6555860 | Lowery et al. | Apr 2003 | B2 |
6563164 | Lowery et al. | May 2003 | B2 |
6566700 | Xu | May 2003 | B2 |
6567293 | Lowery et al. | May 2003 | B1 |
6569705 | Chiang et al. | May 2003 | B2 |
6570784 | Lowery | May 2003 | B2 |
6576921 | Lowery | Jun 2003 | B2 |
6586761 | Lowery | Jul 2003 | B2 |
6589714 | Maimon et al. | Jul 2003 | B2 |
6590807 | Lowery | Jul 2003 | B2 |
6593176 | Dennison | Jul 2003 | B2 |
6597009 | Wicker | Jul 2003 | B2 |
6605527 | Dennison et al. | Aug 2003 | B2 |
6613604 | Maimon et al. | Sep 2003 | B2 |
6621095 | Chiang et al. | Sep 2003 | B2 |
6625054 | Lowery et al. | Sep 2003 | B2 |
6635914 | Kozicki et al. | Oct 2003 | B2 |
6638820 | Moore | Oct 2003 | B2 |
6642102 | Xu | Nov 2003 | B2 |
6646297 | Dennison | Nov 2003 | B2 |
6649928 | Dennison | Nov 2003 | B2 |
6667900 | Lowery et al. | Dec 2003 | B2 |
6671710 | Ovshinsky et al. | Dec 2003 | B2 |
6673648 | Lowrey | Jan 2004 | B2 |
6673700 | Dennison et al. | Jan 2004 | B2 |
6674115 | Hudgens et al. | Jan 2004 | B2 |
6687153 | Lowery | Feb 2004 | B2 |
6687427 | Ramalingam et al. | Feb 2004 | B2 |
6690026 | Peterson | Feb 2004 | B2 |
6696355 | Dennison | Feb 2004 | B2 |
6707712 | Lowery | Mar 2004 | B2 |
6714954 | Ovshinsky et al. | Mar 2004 | B2 |
6855975 | Gilton | Feb 2005 | B2 |
6867114 | Moore et al. | Mar 2005 | B2 |
6867996 | Campbell et al. | Mar 2005 | B2 |
6870751 | Van Brocklin et al. | Mar 2005 | B2 |
6894304 | Moore | May 2005 | B2 |
6969633 | Dennison | Nov 2005 | B2 |
7057923 | Furkay et al. | Jun 2006 | B2 |
7071021 | Harshfield et al. | Jul 2006 | B2 |
7208751 | Ooishi | Apr 2007 | B2 |
7427770 | Daley | Sep 2008 | B2 |
20020000666 | Kozicki et al. | Jan 2002 | A1 |
20020072188 | Gilton | Jun 2002 | A1 |
20020106849 | Moore | Aug 2002 | A1 |
20020123169 | Moore et al. | Sep 2002 | A1 |
20020123170 | Moore et al. | Sep 2002 | A1 |
20020123248 | Moore et al. | Sep 2002 | A1 |
20020127886 | Moore et al. | Sep 2002 | A1 |
20020132417 | Li | Sep 2002 | A1 |
20020160551 | Harshfield | Oct 2002 | A1 |
20020163828 | Krieger et al. | Nov 2002 | A1 |
20020168820 | Kozicki et al. | Nov 2002 | A1 |
20020168852 | Harshfield et al. | Nov 2002 | A1 |
20020190289 | Harshfield et al. | Dec 2002 | A1 |
20020190350 | Kozicki et al. | Dec 2002 | A1 |
20030001229 | Moore et al. | Jan 2003 | A1 |
20030027416 | Moore | Feb 2003 | A1 |
20030032254 | Gilton | Feb 2003 | A1 |
20030035314 | Kozicki | Feb 2003 | A1 |
20030035315 | Kozicki | Feb 2003 | A1 |
20030038301 | Moore | Feb 2003 | A1 |
20030043631 | Gilton et al. | Mar 2003 | A1 |
20030045049 | Campbell et al. | Mar 2003 | A1 |
20030045054 | Campbell et al. | Mar 2003 | A1 |
20030047765 | Campbell | Mar 2003 | A1 |
20030047772 | Li | Mar 2003 | A1 |
20030047773 | Li | Mar 2003 | A1 |
20030048519 | Kozicki | Mar 2003 | A1 |
20030048744 | Ovshinsky et al. | Mar 2003 | A1 |
20030049912 | Campbell et al. | Mar 2003 | A1 |
20030068861 | Li et al. | Apr 2003 | A1 |
20030068862 | Li et al. | Apr 2003 | A1 |
20030095426 | Hush et al. | May 2003 | A1 |
20030096497 | Moore et al. | May 2003 | A1 |
20030107105 | Kozicki | Jun 2003 | A1 |
20030117831 | Hush | Jun 2003 | A1 |
20030128612 | Moore et al. | Jul 2003 | A1 |
20030137869 | Kozicki | Jul 2003 | A1 |
20030143782 | Gilton et al. | Jul 2003 | A1 |
20030155589 | Campbell et al. | Aug 2003 | A1 |
20030155606 | Campbell et al. | Aug 2003 | A1 |
20030156447 | Kozicki | Aug 2003 | A1 |
20030156463 | Casper et al. | Aug 2003 | A1 |
20030201469 | Lowrey | Oct 2003 | A1 |
20030209728 | Kozicki et al. | Nov 2003 | A1 |
20030209971 | Kozicki et al. | Nov 2003 | A1 |
20030210564 | Kozicki et al. | Nov 2003 | A1 |
20030212724 | Ovshinsky et al. | Nov 2003 | A1 |
20030212725 | Ovshinsky et al. | Nov 2003 | A1 |
20040035401 | Ramachandran et al. | Feb 2004 | A1 |
20050074933 | Lowrey | Apr 2005 | A1 |
20050180189 | Happ et al. | Aug 2005 | A1 |
20050287698 | Li et al. | Dec 2005 | A1 |
20060049390 | Ufert et al. | Mar 2006 | A1 |
20060175640 | Happ et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
5-6126916 | Oct 1981 | JP |
WO 9748032 | Dec 1997 | WO |
WO 9928914 | Jun 1999 | WO |
WO 0048196 | Aug 2000 | WO |
WO 0221542 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070059882 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11111917 | Apr 2005 | US |
Child | 11599471 | US |