The present invention relates to a pattern recognition method, and more particularly, to a memory-guide simulate pattern recognition in a video sequence and a motion detection method.
A visual perception system of human has a prominent advantage in pattern recognition. A higher-level memory and selection system can enable the human vision to quickly focus on motion and continuous motion changes. This mechanism is realized through a global time sequence feature guidance in short-term memory and long-term memory, which is called memory guidance. Based on this mechanism, pattern recognition for continuous motion state is realized through fusing spatial positions and motion trajectories of targets at different moments. For example, in
In addition, the pattern recognition in real and complex scenes still has a problem that the noise is difficult to be suppressed. The method of modeling all data in the sequence at one time is used in most of the current machine vision methods to identify the change of the motion pattern in the current frame. In this process, a lot of motion noises in the real scene are introduced into the result, and this motion noise is not only large and difficult to be suppressed, which seriously affects the accuracy of pattern recognition and motion detection results. A lot of works inspire us to solve this problem, such as a time filter that simulates visual center-periphery difference, a motion significance model based on spectral difference, etc. However, these models cannot describe the motion trajectory in the entire time sequence, and have weak ability to suppress motion noises, thereby resulting in more noise interference.
Benefiting from the development of the latest biological research, it is found that the pattern recognition of human vision depends largely on the historical experience in memory, and the global context information in short-term or long-term memory enables the pattern recognition to be more convenient and efficient. This finding highlights the important effect of the global context information on pattern recognition. This important effect is mainly reflected in the fact that it not only can accurately detect the motion change pattern and obtain the motion trajectory, but also can suppress the motion noises caused by camera shake and so on. Therefore, it is necessary to model this mechanism, a new pattern recognition model is invented to accurately detect the motion at the current moment and calibrate the motion trajectory, and in the final pattern recognition result, the motion change and the motion trajectory at the current moment and the historical moment in memory are accurately detected at the same time. The fundamental basis of the present invention lies in that the change caused by the motion is not only related to a sample adjacent to a time domain, but also related to the global context. Therefore, in addition to the short-term memory segment, the long-term memory segment also needs to be introduced into a pattern recognition process to obtain the change state of motion in the entire time sequence in one detection process.
Object of the present invention: the present invention provides a memory guide simulated pattern recognition method in a time sequence to solve the problems existing in the prior art, which can obtain a target motion state in the entire time sequence in one recognition process, and can solve the problem that noises are difficult to be suppressed in motion detection of complex natural scene.
Technical Solution: a memory guide simulated pattern recognition method comprises the following steps.
S1: simulating a memory invocation mechanism and a process thereof to segment a historical time sequence and then combine the historical time segment with a frame at the current moment to form a sequence segment as an element for pattern recognition; for a video sequence, we can obtain multiple sequence segments that are independent of each other without overlapping and are processed in parallel;
S2: simulating a visual motion saliency detection mechanism and a process thereof to extract motion saliency in each sequence segment and obtain motion information in the short-term sequence by detection; for the time sequence in each memory segment, a visual motion significance model is used to detect motion changes in the sequence segment; and
S3: simulating a memory decline mechanism and a process thereof to weigh the motion information in different segments, weigh and fuse the motion information among all the sequence segments, and output the motion information at the current moment and a motion trajectory in the entire time sequence as a pattern recognition result comprehensively.
For the motion detection result in each segment and in view of a time delay between the memory segment and the current moment, the motion detection result in the sequence segment with a larger time delay is deemed to have a weaker time correlation with the time of the current moment, and a corresponding weight value assigned is smaller; on the contrary, the motion detection result in the sequence segment with a smaller time delay is deemed to have a stronger time correlation with the time of the current moment, and a corresponding weight value assigned is larger. A motion detection accuracy at the current moment can be improved by weighted cumulative fusion, and the motion trajectory in a whole memory time sequence interval can be obtained, so as to comprehensively obtain an overall pattern recognition result.
Compared with the general pattern recognition method for integrally modeling the time sequence, the present invention conducts pattern recognition by using sequence segment as the element for motion detection and fusion. This strategy can accurately detect the motion information at the current moment and generate the track information of the motion state change in the entire time sequence, can calibrate the track and the time information of motion, and has the ability of suppressing motion noises.
The present invention is further described with reference to detailed embodiments, it shall be understood that these embodiments are only for the purpose of illustrating the present invention and are not intended to limit the scope of the present invention, and after reading the present invention, modifications of various equivalent forms of the present invention made by those skilled in the art fall within the scope defined by the appended claims of the present application.
As shown in
Firstly, according to the findings {circumflex over (1)} and {circumflex over (2)}, if a point is recognized as having a change in the motion pattern, then stable motion change of the point shall be detected in segments of both the short-term memory and the long-term memory. In order to simulate this mechanism, the time sequence in memory is firstly segmented, and continuous samples at the same spatial position and time are arranged to form a sequence segment. For the point at the current moment, the motion is only considered to occur at the position thereof in the case of difference from all the samples in memory. A segmentation process is shown in
where Xni(i=1, 2, . . . , l) is the sequence segment, xn is the point investigated at the current moment, xn−1, xn−1, . . . , xn−1 is the sample in the memory, k is a length of the time sequence (a minimum value is set as 16), and l is the memory storage amount (a minimum value is set as 10).
So far, the segmentation of all time sequences in the memory is completed.
In each sequence segment, the visual motion significance model based on time Fourier transformation is used to detect the motion information in each sequence segment. The visual motion significance model based on time Fourier transformation considers that the fluctuation of a phase spectrum in a time sequence frequency spectrum corresponds to the change of the sequence information in a time domain. Therefore, the motion information can be detected through calculating the phase spectrum. The method mainly comprises the following steps:
the first step is to construct a sequence segment consisting of a current time point and a historical moment sample:
Xni={xn,xn−(i−1)×k−1,xn−(i−1)×k−2,xn−(i−1)×k−3, . . . ,xn−i×k}i=1,2, . . . ,l (2)
the second step is to calculate Fourier transformation and corresponding phase spectrum for the sequence segment:
fni=F(Xni)pni=angle(fni) i=1,2, . . . ,l (3)
the third step is to calculate inverse Fourier transformation for the obtained phase spectrum:
ℑni=g(t)*F−1(pni) i=1,2, . . . , l (4)
where F and F1 respectively indicates Fourier transformation and inverse Fourier transformation, pni represents the phase spectrum of the sequence segment Xni, ℑni is an inverse Fourier transformation result of the phase spectrum, and g(t) is a one-dimensional Gaussian filter (typical variance σ=5). In order to accurately detect the motion information and suppress the motion noises in the background, threshold filtering needs to be further conducted on ℑni.
The fourth step is to conduct threshold filtering on an inverse transformation result of the phase spectrum, and if a value of ℑni is greater than a threshold value, the motion information appears at the corresponding position, otherwise, no motion change is considered:
where T is the threshold value, and a typical value is set as:
T=μni+2×ρni (6)
where and μni and ρni are respectively an average value and a variance of ●ni.
Then, according to the finding {circumflex over (3)}, motion detection results in multiple sequence segments are fused to form a memory-guided motion detection result, taking into account not only the sudden motion change in the short time but also the stable motion change in the long time. This mechanism can be formally modeled as the accumulation of motion detection results in all l sequence segments:
where En is the accumulation of the motion detection results. The obtained results are shown in
According to the finding {circumflex over (4)}, the intensity of the motion information in human brain shall decrease with time, which is called memory decline. The present invention adopts a weighted method to simulate the decline mechanism. For any sequence segment, the intensity corresponding to the detected motion information is inversely proportional to the time delay between the segment and the current moment. This weight and decline can be calculated as follows:
where wni is the weight corresponding to the motion detection result in the ith segment, a is a modulation parameter, and a value range is 0<α<1. Since the intensity of {tilde over (S)}ni decreases with the increase of time delay, the time when the motion occurs can be calibrated.
In addition, according to the finding {circumflex over (4)}, the motion information at the current time can be combined with the motion information at the historical moment to form the motion trajectory, and the present invention formally simulates this mechanism as the accumulation of motion information after decline:
where {tilde over (S)}n is a motion trajectory diagram. In order to suppress the noises introduced in a track generation process and a motion information decline process, the original motion detection cumulative result is multiplied with the declined motion detection cumulative result:
{tilde over (S)}ni={tilde over (S)}n×En (10)
where {tilde over (S)}ni is the track after noise suppression, and the obtained result is shown in
So far, the matching and characterization of the motion trajectory at all moments in the memory are completed, and the recognition of the motion trajectory and the motion state at the historical moment is completed.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0643658 | Aug 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/109001 | 12/8/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/028102 | 2/15/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8649558 | Gleicher | Feb 2014 | B2 |
8891009 | Lu | Nov 2014 | B2 |
9699371 | Eslami | Jul 2017 | B1 |
10074015 | Grundmann | Sep 2018 | B1 |
20110134245 | Khizhnichenko | Jun 2011 | A1 |
20130289824 | Mudalige | Oct 2013 | A1 |
20160078287 | Auge et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
101311947 | Nov 2008 | CN |
103793054 | May 2014 | CN |
104461000 | Mar 2015 | CN |
Entry |
---|
International Search Report filed in PCT/CN2016/109001 dated May 3, 2017. |
Number | Date | Country | |
---|---|---|---|
20190164013 A1 | May 2019 | US |