The following invention relates to electronic storage of data. More particularly, the present invention relates to systems and methods for memory allocation and writing in devices recording vehicle events.
Video recording systems are commonly used to monitor places where it may be desirable to monitor security levels. For example, in a security zone, breaches of security may be recorded if video monitors area arranged around the space to be monitored. When an incident occurs, a video record of the related activity is available from the recording system.
During periods when no breaches of security occur, a considerable amount of data is still generated by the video recording system, which has little or no value. Thus, such data can be readily discarded without loss. The act of ‘discarding’ data amounts to merely rewriting new data over old recorded data. Indeed, most video security systems are arranged with a recording medium that is reused continuously.
When a video camera generates an amount of image data sufficient to fully consume the available memory, newly collected data is recorded at the beginning of the memory. Therefore, the act of writing newly acquired data causes old data to be discarded; that is, the old data is lost to the ‘write’ operation of the newly collected data.
In old videotape systems, this is sometimes called a ‘round robin’ arrangement. A memory medium fashioned as a tape in a continuous loop provides data storage for those video security systems. In such systems the tape has no end and no-beginning, but instead the tape continuously passes by a recording head where new images are written to the tape and at the same time old images are discarded.
When an incident of interest occurs, the tape may be stopped to prevent loss of data which relates to the relevant incident. The related images may be recovered from the tape and transferred to a permanent medium, while the tape is returned to the video system for further recording. Such re-use of memory is well known in the prior art.
In a round-robin scheme, the data that is overwritten, or discarded, is the data which came into the system earliest, or was ‘first in’ the system. This arrangement is sometimes referred to as “first-in, first overwritten,” which is analogous to the “first-in, first-out” arrangement in electronic buffer systems. In both cases, we will refer to this method as FIFO.
A FIFO base system is generally a very good system for buffer management, because the oldest data in a buffer is typically the least valuable. Therefore, the oldest data, or the least valuable data, may be discarded without regard for its loss. However, in buffer systems the earliest received data, or the ‘first-in’ data, may not always be the least valuable data. In some instances it may be advisable not to overwrite the oldest data, but rather to provide an overwrite scheme which preserves certain portions of interest of the oldest data.
With specific reference to the monitoring of vehicle activities, vehicle event recorders are video recorder systems mounted within the vehicle to provide a video record related to the environment surrounding a vehicle during its operation. These systems are known in the art and are employed, for example, in conjunction with police activity. Many police departments in the United States are equipped with vehicle event recorders, which capture activity, sometimes criminal, occurring in the proximity of a police vehicle.
The application of vehicle event recorders is not limited to police vehicles. More and more commercial vehicles are now equipped with systems that record activity associated with the use of the vehicle and within the environments in which the vehicle is used. These systems are particularly advantageous with fleet vehicles that are subject to heavy professional use and frequent incidents, including traffic accidents, theft, and vandalism, among others. With a video record, vehicle fleet managers are better equipped to manage and control costs associated with operations of large vehicle fleets. Safety is improved, driver performance is improved, a better understanding of accidents is achieved, and other benefits are derived from the use of vehicle recorder systems.
Vehicle recorder systems are described, for example, in U.S. Pat. Nos. 6,389,340, 6,405,112, 6,449,540, and 6,718,239, all to Rayner. In general, these inventions relate to a small device mounted on the vehicle rearview mirror to capture video images of traffic incidents ahead of the vehicle.
In particular, the '112 patent discloses a system that includes a vehicle operator performance monitor, which records a video of the vehicle operator, and which may be used to determine how the operator's actions affect use of the vehicle.
The '540 patent instead is an event recorder mounted in a vehicle, which includes one or more wave pattern detectors for detection and recognition of a predetermined wave produced outside the vehicle, and for producing a trigger signal denoting the presence of the predetermined wave. In particular, a detective wave is a wave of the type produced by a police or fire department emergency vehicle. Detection of this wave triggers a capture function which stores video images a long-term storage memory.
The '329 patent includes a video recorder system having a one-way hash function to perform a validation function. This way, the integrity of the recorded video data can be protected.
Finally, the '340 patent teaches a recording system having a certain relationship between two different types of memory. A first memory is arranged to store video for the short-term and to transfer some of that stored video in response to a trigger event. Data from this short term memory is transferred to a more durable and long term memory, and the short term memory is continuously overwritten in a scheme described by Rayner as “first-in, first-overwritten”. This way, Rayner teaches the coupling of a high-speed, high-performance volatile semiconductor memory with a flashlight memory good for long-term storage of large amounts of data even when power is removed. As will be described in detail later, Rayner's first in first overwritten scheme necessarily creates a loss of important and valuable data.
While systems and inventions in the prior art are designed to achieve particular goals and objectives, these inventions also include limitations which prevent their use in more extended applications, and cannot be used to realize the advantages and objectives of the inventions taught hereinafter.
It is an object of the present invention to provide high-performance memory allocation systems for vehicle event recorders.
It also is an object of the present invention to provide for set memory allowances and for extended recording periods.
It is a further object to provide memory overwrite schemes that provide a time dilation on either end of a recording period.
These and other objects of the present invention are accomplished by apparatus and methods for allocating memory in vehicle event recording systems that provide improved memory allocation and writing schemes to preserve data over extended time periods, thereby improving prior art devices and methods that cannot record events over a large time range when equipped with a memory of a predetermined size.
One difference between memory allocation of the present invention and the prior art can be seen in relation to time dilation, which may be applied on the extremities of discrete capture periods. In one embodiment, a memory of limited size is subject to an advanced managed loop memory allocation scheme and the rate of storage frame is adjusted throughout a predetermined capture time period. At the extremities of a time period, a frame capture process is subject to a reduced frame rate. In the proximity to an event of interest, or an ‘event moment’, the frame rate—is increased to improve detail around that particular time, enabling a greater temporal range at the expense of temporal resolution. Losses in temporal resolution are however pushed away from the event moment and allocated to the extremities of the capture time period.
An overwrite scheme selects which frames are expired and subject to being discarded. At any random moment, video is continuously captured at a maximum frame rate. However, these frames are not stored into memory in a conventional first-in, first overwritten manner, but rather, these frames are added to the memory locations which are determined to be available in accordance with the overwrite scheme. Therefore, the oldest frames are not necessarily those that are overwritten. Quite to the contrary, an overwrite action may be applied to a frame which is newer than at least one other frame stored in the memory.
As a result, newly acquired frames are placed into memory in processes which necessarily cause older frames to be discarded. However, the newly captured frames are written to memory positions in an ‘interleaved’ fashion, whereby some of older frames are preserved. When a capture event occurs, data in the memory may be transferred to a more permanent storage. When data is transferred, a timeline is reconstructed. The recorded timeline is unique in that it contains various frame rates over the capture period. At both the beginning and at the end of the capture period, the frame rate is modest. At the point of greatest interest in the capture period, the frame rate is the highest. This throttling of frame rate provides for a memory of given size to accommodate a timeline of greater temporal extent.
These and other objects and advantages of the present inventions will become better understood upon consideration of the following description, taken in conjunction with the accompanying drawings, in which:
The present invention relates to apparatus and methods are provided for overwriting memory in vehicle event recorder systems. Embodiments are described hereinafter, that are constructed in accordance with the principles of the present invention, In order to facilitate the understanding of the described embodiments, definitions are provided for terms that may not be readily available in popular dictionaries.
Vehicle Event Recorders: Video image recording systems which are responsive to triggers indicative of some event of interest.
Time Dilation: An expansion of a video sequence timeline by way of frame rate manipulation.
Trigger: Electronic means for setting some instant in time associated with a particular event of interest and further for causing initiation of some associative processes.
Expanded Timeline Definition: A prescribed set of rules which sets forth and defines a timeline associated with a video frames sequence having more than one frame rate associated with any particular portion of the timeline.
Overwrite Manager: A computer module determining, in accordance with an expanded timeline definition, which data recorded in memory and associated with a particular video frame is to be discarded and may be overwritten with data from a newly collected video frame.
Video event recorder systems are typically built around and deployed with memories of limited sizes, in order to contain cost. While mass storage and mass storage management may be included in such devices, for example, a computer-type hard drive, these types of components remains quite expensive, causing overall systems to double in cost if such memories were included. Instead, a ‘lightweight’ memory solution is envisioned in the present invention, in which an abbreviated memory or memory buffer is used to temporarily store information collected during a predetermined time of service, for example a day, of a vehicle equipped with this type of video event recorder. Upon return to base, a vehicle may transfer the information collected to a different memory for management and analysis. Accordingly, the present invention makes it possible to equip vehicles with video event recorders having very inexpensive cameras and memory.
Memories of such video event recording systems are preferably handled in the following manner. A memory system is divided into two portions: a fast, managed loop memory buffer, and a temporary mass storage memory.
Video continuously received from a video camera may be put into the fast memory buffer. However, the amount of data generated by a video system is quite extensive and most of the time totally uninteresting, but certain portions of the video may become of great interest. For example, when a vehicle is involved in a traffic accident, the captured video may yield important clues as to fault, cause, identity, and response, among others. In this event, it is important to preserve video data associated with these select video capture periods.
To this end, a trigger is arranged, whereby the occurrence of some incident of interest, such as an automobile accident, causes data stored in the memory buffer to be transferred to a more permanent memory facility. Old data in the memory buffer is continuously overwritten by new data received from the video camera in real-time. In common and simplistic versions, this step is performed in a “first-in, first-overwritten” manner.
Because the memory buffer is limited in its capacity to store video frames, “first in first overwritten” schemes provide a timeline of limited extent. For example, at a frame rate of four frames per second, a given memory buffer may be suitable for storing 30 seconds of video frame data, or a 30 second video timeline. In ‘first-in, first overwritten’ schemes, this timeline may be arranged as 15 seconds of continuous video before a trigger event and 15 seconds of continuous video after a trigger event.
However, a continuous frame rate throughout the entire event capture period need not be maintained. It is possible to have a modest frame rate at times associated with the capture period extremities, and a high frame rate during periods around an event trigger. Therefore, the storage frame rate may be adjusted throughout a prescribed capture time period, allowing for an extended temporal range. Instead of a 30 second timeline, is entirely possible to have a 48 second timeline for the same memory. Such a timeline may be embodied as 12 seconds of video at a frame rate of one frame per second for the periods of time furthest apart from the event trigger, both before and after. In addition, the video sequence may include video for 24 continuous seconds, 12 seconds before and 12 seconds after an event trigger, at a video frame rate of four frames per second. This way, the temporal range is extended but the temporal resolution is compromised in the time periods furthest from the trigger event.
To create such a managed loop memory buffer management system, an overwrite scheme is provided to select which frames are ‘expired’ and no longer part of the particular extended timeline scheme. It should be remembered that video is continuously captured at all times, and that video is captured at the maximum frame rate, because it is not known in advance when an event trigger will occur. Accordingly, the system always captures video at the maximum frame rate as the capture frame rate cannot be adjusted in view of any event trigger which may come in the future.
Video captured at the maximum frame rate is put into the memory and as it is put in the memory it displaces previously recorded video frames. These frames are added to the memory locations determined to be available in accordance with a prescribed overwrite scheme such as the one mentioned above. However, this step is provided differently from a first in first overwritten scheme. In the presently described embodiment, most frames being overwritten are actually newer than at least one other frame stored elsewhere in the memory buffer. Newly captured frames are written to memory positions in a pseudo-‘interleaved’ fashion while some of older frames are preserved.
When a trigger event occurs, data in memory is transferred from the memory buffer to a memory of more permanent nature. When such data is transferred, an expanded timeline is reconstructed as a timeline having at least two frame rates. At the extremities of the capture period timeline, the frame rate is reduced. At and about the point of greatest interest (trigger event) the frame rate is maximized during the capture period. This ‘throttling’ of frame rate provides for a memory of preset size to accommodate a timeline of greater temporal extent, although in some places resolution may be reduced.
Referring now to
The memory related to
In general, the memory of
A timeline 1 is associated timeline 1 with this memory, and is comprised of a 30 second time interval. The timeline is marked in the Figure from 0 to 30. A one second interval 2 is illustrated at the beginning of the timeline. Further, that one second interval is divided into quadrants, representing a quarter of a second interval 3. For the video systems of immediate interest, his quarter of a second interval nicely accommodates a single video frame (implicitly setting a frame rate of four frames per second). While most modern video systems have far higher performance than recording four frames per second, four frames per second is a useful rate for vehicle recorder systems, which tend to have limited memories in the interest of maintaining a low cost. Further, the kinds of events being recorded in vehicle recorder systems are appropriately captured with frame rates of a few frames per second.
When video images are captured by a camera, frame-by-frame, each frame images can be recorded into a memory bin 4. A first frame is recorded and put into a first memory bin. Thereafter, a quarter of second later, a second frame is recorded and put into an another memory bin, for example, an adjacent bin. This frame-by-frame recording scheme may continue for up to 30 seconds before all memory bins becomes full and the supply of empty bins is exhausted. In
The FIFO memory management scheme is very useful. When a new video frame is collected by the video camera, it is placed into memory at the same location as the oldest frame in the memory which is discarded in the overwrite step. Therefore, the FIFO memory management scheme implies that the oldest video information in the memory is the least valuable.
The memory described is a buffer memory, that is, this memory temporarily holds the data of a video series for some specified time, but also continuously discards previously recorded information. When the buffer contains a data set associated with an important event, that data is transferred from the buffer memory to a more permanent memory before becoming subject to being lost by overwrite actions. A video series becomes ‘important’ when a detectable event occurs which implicitly indicates video is valuable; for example, if a vehicle is involved in a traffic accident, accelerometers can detect the accident and trigger a transfer of data from the buffer memory to a permanent memory.
In those vehicle event recorder systems, a trigger is sometimes arranged to indicate that such an event has occurred, that is, an event for which the video images associated therewith may be of extreme importance. In this case, the short term buffer memory of 120 video frames should be transferred to a more permanent long-term memory for example, a durable flash type memory.
At this point in time, no new frames are recorded to memory; overwrite is prevented, and the memory buffer is “locked”. Rather, the system pauses to transfer data in the buffer memory to a permanent flash memory. After data is successfully transferred to the flash memory, the buffer is “unlocked” and may be used again in the fashion described. As video data which was placed into buffer memory bins between time t=30 and time t=44, it caused older data to be displaced, overwritten and forever destroyed. Data which was recorded between t=0 and t=14 is completely lost and no access is possible any more to this information, which at one time resided in those memory bins, because that information was destroyed in the overwrite step. However, some of this information may be very valuable and, accordingly, it is quite undesirable to lose it entirely; in fact, some of this data may be more important than data which saved in its place.
Since the moments leading to a vehicle accident can explain a great deal about the what actually happened, it is highly desirable to have at least some limited information that relates to the accident scene at t=1, for example. If one can just see one frame at t=1, that may be extremely valuable in explaining what happened in the accident. Therefore, the FIFO scheme may actually destroy critically useful data.
This is also apparent from
In a FIFO system, all memory bins, indicated by reference numerals 44 and 45, are preserved in the memory buffer. Amongst the oldest recorded video frames remaining are those which reside in memory bins A and B, and which represent two adjacent frames, or frames captured within a quarter of a second from each other. Since these frames represent images very close in time, these frames are expected to be quite similar to each other. While it is sometimes desirable in video systems to have high temporal resolution, i.e. as many frames per second as possible, one will appreciate that at higher frame rates, a frame will contain very similar information as the frame closest thereto. Accordingly, where memory is limited, these adjacent frames lose their importance as most of the information contained in each frame is similarly contained in the adjacent frame. Thus, if we keep frame A and discard frame B, most of the information of frame B can be known by examining frame A.
On the other hand, frames D, E and F, which are discarded in a FIFO system, may actually contain extremely important information. Frame D is separated in time from frame E by one second. In a video scene, there may be considerable differences between one frame captured an entire second later than another frame. Further, frame D occurs a full 29 seconds before the trigger event. In a traffic accident, it can be quite useful to know about what was happening at time periods before and after a trigger moment. Thus, it may be possible in a memory having a finite number of memory bins to trade some of the bins associated with less important time slots for bins associated with time slots having a greater importance. If we discard frame B, and preserve frame D, we may gain a greater overall understanding of the incident being recorded. In effect, we can trade some time resolution (frame rate) at t=15, for improved overall temporal range to realize an extended timeline.
One skilled in the art will notice that if video data associated with a frame rate of one frame per second was preserved, in seconds 1-12, then 36 memory bins into would remain available, which would accommodate newly captured video data. Thus, rather than completely overriding the oldest video data in memory, one can perform an overwrite action on 3 of every 4 memory bins in the overwrite portion of the timeline, thereby maintaining ¼th of the oldest video data in those memory bins. That is to say, for the oldest video data in memory, it may be useful to save one frame per second. To this end, when the overwrite operation is executed, new data is written to three memory bins, before one bin is skipped, and the process is repeated.
Timeline 51 includes a trigger event 52 at time t=29. In one overwrite scheme of interest, it is required that a timeline be comprised of 12 seconds of low temporal resolution, 24 seconds full temporal resolution and a further 12 seconds of low temporal resolution. This is further defined in detail as: a 12 second period of one frame per second video, a 24 second period of four frames per second video, and finally a 12 second period of one frame per second; for a total video sequence of 48 seconds. Since it cannot be known at what time in the future an event trigger will occur, a data overwrite scheme must preserve data associated with various frames, of which a prescribed timeline is comprised. In the present example, continuous video data at a frame rate of four frames per second is preserved for a period of 12 seconds 54 before the trigger event; that data is in memory bins indicated by 53. While in the FIFO system one can preserve data at four frames per second for up to 15 seconds before and after the trigger event, in the system of the present embodiment only 12 seconds of four frames per second data be kept. However, it will be shown that the present embodiment enables the expansion of the total timeline of the video sequence to 48 seconds in contrast to the 30-second timeline of the FIFO system.
In the 31st second, the first overwrite operation begins. Whether or not a trigger has occurred, newly captured video data is written to every three out of four memory bins, leaving the fourth memory bin undisturbed. Therefore, old data is preserved, albeit at one quarter of the frame rate from which it was originally recorded. Video data after the trigger event is recorded in the memory bins 55 at a frame rate of four frames per second. Just because some bins are skipped, the frame rate of video data collected after the trigger event is not necessarily reduced. This is readily understood in consideration of the time point indicated by 57 which indicates the time t=41 seconds, while, without skipping bins, this point in memory would have been time t=45. Careful observation will prove that the bins indicated by 55 will accommodate data at four frames per second for the entire 12 seconds after the event trigger.
After the time point indicated by 57, several memory bins remain available for further overwrite operation before reaching the memory bins which contain data to be. preserved in agreement with the timeline definition 12/24/12. At least some of those memory bins up to the position indicated by 54 are available for overwrite. After the full 12 seconds of four frames per second video is recorded, it is desirable to continue recording video data at one frame per second for an additional 12 seconds. Data captured in this period can be stored in memory bins, which are scattered in various locations about the memory buffer.
More particularly,
All frames which precede t=5 are in condition for being discarded. that is, such frame lie outside the time range which is to be preserved. Accordingly, frames indicated for example as 69 have aged sufficiently and are may be erased. These are the frames which originally were preserved in the overwrite operation as skipped frames.
Video frames captured after the trigger event are also saved in the memory. For 12 seconds after the trigger event, t=29 to t=41, video is captured at a rate of four frames per second. Such a video data 65 is put into memory in accordance with the need to save particular frames of the oldest video data. When all video frames from the period t=29 to t=41 are properly recorded, the system continues to record data at the frame rate of one frame per second. This is different from the earlier operation, in which the overwrite action resulted in the preservation of one frame per second.
For the time period 12 seconds after the event trigger up to 24 seconds after the event trigger, data is put into memory at the reduced frame rate of one frame per second. Other frames may be captured by the camera, but are discarded before entering the memory or instantly thereupon. Thus, the frames represented by 67 are put into memory bins which are available in accordance with the “OK to erase” label in the drawing. A person skilled in the art will note that after three of these frames are placed in the memory, the fourth frame 68 cannot be placed into the memory in the same repeating geometric position. That is to say, those memory bins are not available for overwrite. Therefore, video captured after that time must be carefully managed and fit into the available memory bins.
Arrows 76 indicate that these frames may be placed in locations near the beginning of the memory, where data had once been stored but is now expired because the trigger event occurs at t=29. Once a trigger event is established, the bins which may be overwritten can be determined according to the particular rules defining the timeline.
The example of
While the example of
While the example presented of
The advantages offered by the above examples do not depend upon the particular values chosen in these examples. One should also recognize that because capturing/saving video at two different frame rates enables a user one to expand the timeline, capturing/saving video at three different frame rates also enables a user to expand the timeline with greater flexibility. Accordingly, the memory may be manages to preserve frames for some time periods at a rate of four frames per second, and in other time periods at a rate of two frames per second, and in still other time periods at a rate of one frame per second. This arrangement provides for very high temporal resolutions for the periods immediately surrounding an accident (trigger event), for medium level resolutions for periods further away from the trigger event, and finally for low temporal resolutions at the extremities of the time range.
In addition, asymmetric timeline definitions are possible, that is, the time periods on either side of the event trigger may not be equal in extent or in number. A timeline definition may be devised that has a long, high resolution period before the event trigger, and a short high resolution period after the event trigger.
A trigger event 82 occurring at some instant in time implicitly sets the time periods for any particular example, and time period 83 starts immediately after the trigger event and extends for 12 seconds. A second time period 84 extends from the trigger event to 12 seconds prior to the trigger event. In both of these time periods, video is captured and put into the memory buffer at a rate of four frames per second.
The number of shaded memory bins reflects a frame rate of 4 frames per second. Time periods at the extremities of the timeline, periods 85 and 86, are each also configured to be 12 seconds in length. However, since only one frame per second is collected in those time periods, the number of memory bins consumed is considerably smaller, i.e. ¼ of those consumed in the other time periods. This arrangement provides for a total timeline of 48 seconds, and in memory buffers that do not overwrite/store data at variable rates, the same memory size could only accommodate a timeline of 30 seconds. FIFO memories of the same size are restricted to 30 seconds.
A second example presented as 87 in
A third example is presented through the memory buffer of graphic 88, and illustrates that an asymmetric timeline definition may also be configured. The two periods with a high rate of video recording need not be the same in extent. In fact, video may be recorded at a high frame rate for a longer period after a trigger event than that in the period immediately preceding the trigger event. In the present example, video is recorded in the memory buffer for 16 seconds after the trigger event, but only for four seconds prior to the trigger event. Accordingly, the total high-resolution time period is the same as in the previous example, 20 seconds, but greatly favors preserving information after the trigger event, at the expense of information preceding the trigger event.
In a fourth example, there are six distinct time periods comprised in the timeline. Two 9 second periods occur symmetrically about an event trigger. In these time periods video may be captured a rate of four frames per second. Two additional periods each of 8 seconds may be used to record/overwrite data at a frame rate of two frames per second. Two additional 8 second periods are provided to store data at a frame rate of one frame per second. One skilled in the art will appreciate that in the timeline of this example, two of the 8 second periods are of different sizes with respect to memory capacity, i.e. greater number of bins, than the other two 8 second periods. This is consistent with the higher frame rate used in two of the 8 second periods.
One skilled in the art will also appreciate the great latitude available for managing a memory buffer of limited capacity to expand a timeline. One skilled in the art will further appreciates that where memory buffers deploy FIFO or ‘round-robin’ strategies for overwrite operations, very important data may be lost. FIFO and ‘round-robin’ strategies discriminate against the oldest data in a memory buffer, and in situations where the oldest data is not the least valuable, FIFO and round-robin systems are inferior to the system of the present invention.
Referring now to
In one embodiment, a trigger mechanism is the device arranged to provide an electrical signal that indo indicates that a particular video series should be transferred to permanent memory for long-term storage. A trigger may be an accelerometer operable for detecting abrupt changes in speed, for example, speed changes related to a traffic accident. Triggers may be activated by other events such as heavy braking or swerving maneuvers, and may be activated by means other than accelerometers. For example, a user panic button can be used to activate a trigger event.
When the user believes that a video series should be saved, he can hit a panic button to activate one type of trigger. It is not relevant what precisely causes a trigger to be activated, but rather how memory performs once a trigger event has occurred. Overwrite manager 93 is a control module that interfaces with the trigger and a video camera, and also with a buffer memory 94. An overwrite manager includes means where a timeline definition may be set and further means for executing overwrite operations in agreement with the stored timeline definitions. Further, an overwrite manager may additionally integrate with flush-module 95.
When a trigger event occurs, overwrite manager 93 continues to overwrite data to buffer memory 94 in accordance with the timeline definition, by way of an overwrite pointer which is associated with a cell subject to an impending overwrite action. Overwrite manager 93 sends a signal. 96 to flush module 95 that cause flush module 95 to copy buffer memory 94 and to transfer the video data set with the prescribed expanded timeline to high-capacity long-term storage 97. Overwrite manager 93 controls the algorithms and the necessary processing components for writing to buffer memory 94 and save selected data while purging redundant data in accordance with a particular expanded timeline definition.
In second sub-step 115, a determination is made as to which memory bin contains frame data that is no longer needed in agreement with the timeline definition. This determination made during each cycle. For every new frame entering the buffer memory, another frame becomes no longer necessary at the same instant.
Finally, in third sub-step 116, the bin which contained data that is no longer required is marked ‘open’. In following cycle 112, the next incoming frame is written to the appropriate bin. It is helpful to set a buffer memory pointer to direct the incoming frame to a bin marked ‘open’.
One skilled in the art will appreciate that advanced memory management schemes may be deployed to expand a recorded timeline in memory buffers having limited capacity.
While embodiments of the invention have been described above, it will be apparent to one skilled in the art that various changes and modifications may be made. The appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
673203 | Freund | Apr 1901 | A |
673795 | Hammer | May 1901 | A |
673907 | Johnson | May 1901 | A |
676075 | McDougall | Jun 1901 | A |
679511 | Richards | Jul 1901 | A |
681036 | Burg | Aug 1901 | A |
681283 | Waynick | Aug 1901 | A |
681998 | Swift | Sep 1901 | A |
683155 | Thompson | Sep 1901 | A |
683214 | Mansfield | Sep 1901 | A |
684276 | Lonergan | Oct 1901 | A |
685082 | Wood | Oct 1901 | A |
685969 | Campbell | Nov 1901 | A |
686545 | Selph | Nov 1901 | A |
689849 | Brown | Dec 1901 | A |
691982 | Sturgis | Jan 1902 | A |
692834 | Davis | Feb 1902 | A |
694781 | Prinz | Mar 1902 | A |
2943141 | Knight | Jun 1960 | A |
3634866 | Meyer | Jan 1972 | A |
3781824 | Caiati | Dec 1973 | A |
3812287 | Lemelson | May 1974 | A |
3885090 | Rosenbaum | May 1975 | A |
3992656 | Joy | Nov 1976 | A |
4054752 | Dennis | Oct 1977 | A |
4258421 | Juhasz | Mar 1981 | A |
4271358 | Schwarz | Jun 1981 | A |
4276609 | Patel | Jun 1981 | A |
4280151 | Tsunekawa | Jul 1981 | A |
4281354 | Conte | Jul 1981 | A |
4401976 | Stadelmayr | Aug 1983 | A |
4409670 | Herndon | Oct 1983 | A |
4420773 | Toyoda | Dec 1983 | A |
4425097 | Owens | Jan 1984 | A |
4456931 | Toyoda | Jun 1984 | A |
4489351 | d'Alayer de Costemore | Dec 1984 | A |
4496995 | Colles | Jan 1985 | A |
4500868 | Tokitsu | Feb 1985 | A |
4528547 | Rodney | Jul 1985 | A |
4533962 | Decker | Aug 1985 | A |
4558379 | Hutter | Dec 1985 | A |
4588267 | Pastore | May 1986 | A |
4593313 | Nagasaki | Jun 1986 | A |
4621335 | Bluish | Nov 1986 | A |
4625210 | Sagl | Nov 1986 | A |
4630110 | Cotton | Dec 1986 | A |
4632348 | Keesling | Dec 1986 | A |
4638289 | Zottnik | Jan 1987 | A |
4646241 | Ratchford | Feb 1987 | A |
4651143 | Yamanaka | Mar 1987 | A |
4671111 | Lemelson | Jun 1987 | A |
4718685 | Kawabe | Jan 1988 | A |
4754255 | Sanders | Jun 1988 | A |
4758888 | Lapidot | Jul 1988 | A |
4763745 | Eto | Aug 1988 | A |
4785474 | Bernstein | Nov 1988 | A |
4789904 | Peterson | Dec 1988 | A |
4794566 | Richards | Dec 1988 | A |
4804937 | Barbiaux | Feb 1989 | A |
4806931 | Nelson | Feb 1989 | A |
4807096 | Skogler | Feb 1989 | A |
4814896 | Heitzman | Mar 1989 | A |
4837628 | Sasaki | Jun 1989 | A |
4839631 | Tsuji | Jun 1989 | A |
4843463 | Michetti | Jun 1989 | A |
4843578 | Wade | Jun 1989 | A |
4853856 | Hanway | Aug 1989 | A |
4853859 | Morita | Aug 1989 | A |
4866616 | Takeuchi | Sep 1989 | A |
4876597 | Roy | Oct 1989 | A |
4883349 | Mittelhauser | Nov 1989 | A |
4896855 | Furnish | Jan 1990 | A |
4926331 | Windle | May 1990 | A |
4930742 | Schofield | Jun 1990 | A |
4936533 | Adams | Jun 1990 | A |
4939652 | Steiner | Jul 1990 | A |
4942464 | Milatz | Jul 1990 | A |
4945244 | Castleman | Jul 1990 | A |
4949186 | Peterson | Aug 1990 | A |
4980913 | Skret | Dec 1990 | A |
4987541 | Levente | Jan 1991 | A |
4992943 | McCracken | Feb 1991 | A |
5012335 | Cohodar | Apr 1991 | A |
5027104 | Reid | Jun 1991 | A |
5046007 | McCrery | Sep 1991 | A |
5050166 | Cantoni | Sep 1991 | A |
5056056 | Gustin | Oct 1991 | A |
5057820 | Markson | Oct 1991 | A |
5096287 | Kakinami | Mar 1992 | A |
5100095 | Haan | Mar 1992 | A |
5111289 | Lucas | May 1992 | A |
5140434 | Van | Aug 1992 | A |
5140436 | Blessinger | Aug 1992 | A |
5140438 | Kurahashi | Aug 1992 | A |
5144661 | Shamosh | Sep 1992 | A |
5178448 | Adams | Jan 1993 | A |
5185700 | Bezos | Feb 1993 | A |
5196938 | Blessinger | Mar 1993 | A |
5223844 | Mansell | Jun 1993 | A |
5224211 | Roe | Jun 1993 | A |
5262813 | Scharton | Nov 1993 | A |
5283433 | Tsien | Feb 1994 | A |
5294978 | Katayama | Mar 1994 | A |
5305214 | Komatsu | Apr 1994 | A |
5305216 | Okura | Apr 1994 | A |
5308247 | Dyrdek | May 1994 | A |
5309485 | Chao | May 1994 | A |
5311197 | Sorden | May 1994 | A |
5321753 | Gritton | Jun 1994 | A |
5327288 | Wellington | Jul 1994 | A |
5330149 | Haan | Jul 1994 | A |
5343527 | Moore | Aug 1994 | A |
5353023 | Mitsugi | Oct 1994 | A |
5361326 | Aparicio | Nov 1994 | A |
5387926 | Bellan | Feb 1995 | A |
5388045 | Kamiya | Feb 1995 | A |
5388208 | Weingartner | Feb 1995 | A |
5404330 | Lee | Apr 1995 | A |
5408330 | Squicciarini | Apr 1995 | A |
5422543 | Weinberg | Jun 1995 | A |
5430431 | Nelson | Jul 1995 | A |
5430432 | Camhi | Jul 1995 | A |
5435184 | Pineroli | Jul 1995 | A |
5445024 | Riley | Aug 1995 | A |
5445027 | Zorner | Aug 1995 | A |
5446659 | Yamawaki | Aug 1995 | A |
5455625 | Englander | Oct 1995 | A |
5455716 | Suman | Oct 1995 | A |
5465079 | Bouchard | Nov 1995 | A |
5473729 | Bryant | Dec 1995 | A |
5477141 | Naether | Dec 1995 | A |
5495242 | Kick | Feb 1996 | A |
5495243 | McKenna | Feb 1996 | A |
5497419 | Hill | Mar 1996 | A |
5499182 | Ousborne | Mar 1996 | A |
5504482 | Schreder | Apr 1996 | A |
5513011 | Matsumoto | Apr 1996 | A |
5515285 | Garrett | May 1996 | A |
5521633 | Nakajima | May 1996 | A |
5523811 | Wada | Jun 1996 | A |
5526269 | Ishibashi | Jun 1996 | A |
5530420 | Tsuchiya | Jun 1996 | A |
5532678 | Kin | Jul 1996 | A |
5537156 | Katayama | Jul 1996 | A |
5539454 | Williams | Jul 1996 | A |
5541590 | Nishio | Jul 1996 | A |
5544060 | Fujii | Aug 1996 | A |
5546191 | Hibi | Aug 1996 | A |
5546305 | Kondo | Aug 1996 | A |
5548273 | Nicol | Aug 1996 | A |
5552990 | Ihara | Sep 1996 | A |
5559496 | Dubats | Sep 1996 | A |
5568211 | Bamford | Oct 1996 | A |
5570087 | Lemelson | Oct 1996 | A |
5570127 | Schmidt | Oct 1996 | A |
5574424 | Nguyen | Nov 1996 | A |
5574443 | Hsieh | Nov 1996 | A |
D376571 | Kokat | Dec 1996 | S |
5581464 | Woll | Dec 1996 | A |
5586130 | Doyle | Dec 1996 | A |
5590948 | Moreno | Jan 1997 | A |
5596382 | Bamford | Jan 1997 | A |
5600775 | King | Feb 1997 | A |
5610580 | Lai | Mar 1997 | A |
5612686 | Takano | Mar 1997 | A |
5631638 | Kaspar | May 1997 | A |
5638273 | Coiner | Jun 1997 | A |
5642106 | Hancock | Jun 1997 | A |
5646856 | Kaesser | Jul 1997 | A |
5652706 | Morimoto | Jul 1997 | A |
RE35590 | Bezos | Aug 1997 | E |
5654892 | Fujii | Aug 1997 | A |
5659355 | Barron | Aug 1997 | A |
5666120 | Kline | Sep 1997 | A |
5667176 | Zamarripa | Sep 1997 | A |
5669698 | Veldman | Sep 1997 | A |
5671451 | Takahashi | Sep 1997 | A |
5677979 | Squicciarini | Oct 1997 | A |
5680117 | Arai | Oct 1997 | A |
5680123 | Lee | Oct 1997 | A |
5686889 | Hillis | Nov 1997 | A |
5689442 | Swanson | Nov 1997 | A |
5696705 | Zykan | Dec 1997 | A |
5706362 | Yabe | Jan 1998 | A |
5706909 | Bevins | Jan 1998 | A |
5712679 | Coles | Jan 1998 | A |
5717456 | Rudt | Feb 1998 | A |
5719554 | Gagnon | Feb 1998 | A |
5781145 | Williams | Jul 1998 | A |
5784007 | Pepper | Jul 1998 | A |
5784021 | Oliva | Jul 1998 | A |
5784521 | Nakatani | Jul 1998 | A |
5790403 | Nakayama | Aug 1998 | A |
5790973 | Blaker | Aug 1998 | A |
5793308 | Rosinski | Aug 1998 | A |
5793420 | Schmidt | Aug 1998 | A |
5793739 | Tanaka | Aug 1998 | A |
5793985 | Natarajan | Aug 1998 | A |
5794165 | Minowa | Aug 1998 | A |
5797134 | McMillan | Aug 1998 | A |
5798458 | Monroe | Aug 1998 | A |
5800040 | Santo | Sep 1998 | A |
5802545 | Coverdill | Sep 1998 | A |
5802727 | Blank | Sep 1998 | A |
5805079 | Lemelson | Sep 1998 | A |
5813745 | Fant | Sep 1998 | A |
5815071 | Doyle | Sep 1998 | A |
5815093 | Kikinis | Sep 1998 | A |
5819198 | Peretz | Oct 1998 | A |
5825284 | Dunwoody | Oct 1998 | A |
5825412 | Hobson | Oct 1998 | A |
5844505 | Van | Dec 1998 | A |
5877897 | Schofield | Mar 1999 | A |
5896167 | Omae | Apr 1999 | A |
5897606 | Miura | Apr 1999 | A |
5899956 | Chan | May 1999 | A |
5901806 | Takahashi | May 1999 | A |
5914748 | Parulski | Jun 1999 | A |
5919239 | Fraker | Jul 1999 | A |
5926210 | Hackett | Jul 1999 | A |
5928291 | Jenkins | Jul 1999 | A |
5938321 | Bos | Aug 1999 | A |
5946404 | Bakshi | Aug 1999 | A |
5948038 | Daly | Sep 1999 | A |
5959367 | OFarrell | Sep 1999 | A |
5978017 | Tino | Nov 1999 | A |
6002326 | Turner | Dec 1999 | A |
6006148 | Strong | Dec 1999 | A |
6008723 | Yassan | Dec 1999 | A |
6008841 | Charlson | Dec 1999 | A |
6009370 | Minowa | Dec 1999 | A |
6011492 | Garesche | Jan 2000 | A |
6028528 | Lorenzetti | Feb 2000 | A |
6037860 | Zander | Mar 2000 | A |
6037977 | Peterson | Mar 2000 | A |
6049079 | Noordam | Apr 2000 | A |
6060989 | Gehlot | May 2000 | A |
6064792 | Fox | May 2000 | A |
6067488 | Tano | May 2000 | A |
6076026 | Jambhekar | Jun 2000 | A |
6084870 | Wooten | Jul 2000 | A |
6088635 | Cox | Jul 2000 | A |
6092008 | Bateman | Jul 2000 | A |
6092193 | Loomis | Jul 2000 | A |
6100811 | Hsu | Aug 2000 | A |
6111254 | Eden | Aug 2000 | A |
6118768 | Bhatia | Sep 2000 | A |
6122738 | Millard | Sep 2000 | A |
6141611 | Mackey | Oct 2000 | A |
6144296 | Ishida | Nov 2000 | A |
6147598 | Murphy | Nov 2000 | A |
6151065 | Steed | Nov 2000 | A |
6163338 | Johnson | Dec 2000 | A |
6163749 | McDonough | Dec 2000 | A |
6167186 | Kawasaki | Dec 2000 | A |
6181373 | Coles | Jan 2001 | B1 |
6185490 | Ferguson | Feb 2001 | B1 |
6195605 | Tabler | Feb 2001 | B1 |
6200139 | Clapper | Mar 2001 | B1 |
6208919 | Barkesseh | Mar 2001 | B1 |
6211907 | Scaman | Apr 2001 | B1 |
6218960 | Ishikawa | Apr 2001 | B1 |
6246933 | Bague | Jun 2001 | B1 |
6246934 | Otake | Jun 2001 | B1 |
6252544 | Hoffberg | Jun 2001 | B1 |
6253129 | Jenkins | Jun 2001 | B1 |
6259475 | Ramachandran | Jul 2001 | B1 |
6263265 | Fera | Jul 2001 | B1 |
6298290 | Abe | Oct 2001 | B1 |
6300875 | Schafer | Oct 2001 | B1 |
5333759 | Mazzilli | Dec 2001 | A1 |
6333759 | Mazzilli | Dec 2001 | B1 |
6337622 | Sugano | Jan 2002 | B1 |
6349250 | Hart | Feb 2002 | B1 |
6353734 | Wright | Mar 2002 | B1 |
6356823 | Iannotti | Mar 2002 | B1 |
6360147 | Lee | Mar 2002 | B1 |
6366207 | Murphy | Apr 2002 | B1 |
6389339 | Just | May 2002 | B1 |
6389340 | Rayner | May 2002 | B1 |
6405112 | Rayner | Jun 2002 | B1 |
6405132 | Breed | Jun 2002 | B1 |
6408232 | Cannon | Jun 2002 | B1 |
6411874 | Morgan | Jun 2002 | B2 |
6421080 | Lambert | Jul 2002 | B1 |
6434510 | Callaghan | Aug 2002 | B1 |
6449540 | Rayner | Sep 2002 | B1 |
6456321 | Ito | Sep 2002 | B1 |
6459988 | Fan | Oct 2002 | B1 |
6470241 | Yoshikawa | Oct 2002 | B2 |
6472771 | Frese | Oct 2002 | B1 |
6493650 | Rodgers | Dec 2002 | B1 |
6505106 | Lawrence | Jan 2003 | B1 |
6507838 | Syeda-Mahmood | Jan 2003 | B1 |
6516256 | Hartmann | Feb 2003 | B1 |
6518881 | Monroe | Feb 2003 | B2 |
6525672 | Chainer | Feb 2003 | B2 |
6529159 | Fan | Mar 2003 | B1 |
6535804 | Chun | Mar 2003 | B1 |
6552682 | Fan | Apr 2003 | B1 |
6556905 | Mittelsteadt | Apr 2003 | B1 |
6559769 | Anthony | May 2003 | B2 |
6575902 | Burton | Jun 2003 | B1 |
6580983 | Laguer-Diaz | Jun 2003 | B2 |
6594576 | Fan | Jul 2003 | B2 |
6611740 | Lowrey | Aug 2003 | B2 |
6611755 | Coffee | Aug 2003 | B1 |
6624611 | Kirmuss | Sep 2003 | B2 |
6629029 | Giles | Sep 2003 | B1 |
6629030 | Klausner | Sep 2003 | B2 |
6636791 | Okada | Oct 2003 | B2 |
6664922 | Fan | Dec 2003 | B1 |
6679702 | Rau | Jan 2004 | B1 |
6684137 | Takagi | Jan 2004 | B2 |
6694483 | Nagata | Feb 2004 | B1 |
6701234 | Vogelsang | Mar 2004 | B1 |
6714894 | Tobey | Mar 2004 | B1 |
6718239 | Rayner | Apr 2004 | B2 |
6721640 | Glenn | Apr 2004 | B2 |
6728612 | Carver | Apr 2004 | B1 |
6732031 | Lightner | May 2004 | B1 |
6732032 | Banet | May 2004 | B1 |
6735503 | Ames | May 2004 | B2 |
6737954 | Chainer | May 2004 | B2 |
6738697 | Breed | May 2004 | B2 |
6739078 | Morley | May 2004 | B2 |
6741168 | Webb | May 2004 | B2 |
6745153 | White | Jun 2004 | B2 |
6747692 | Patel | Jun 2004 | B2 |
6748305 | Klausner | Jun 2004 | B1 |
6760757 | Lundberg | Jul 2004 | B1 |
6762513 | Landgraf | Jul 2004 | B2 |
6795017 | Puranik | Sep 2004 | B1 |
6795111 | Mazzilli | Sep 2004 | B1 |
6795759 | Doyle | Sep 2004 | B2 |
6798743 | Ma | Sep 2004 | B1 |
6804590 | Sato | Oct 2004 | B2 |
6810362 | Adachi | Oct 2004 | B2 |
6812831 | Ikeda | Nov 2004 | B2 |
6819989 | Maeda | Nov 2004 | B2 |
6831556 | Boykin | Dec 2004 | B1 |
6832140 | Fan | Dec 2004 | B2 |
6832141 | Skeen | Dec 2004 | B2 |
6836712 | Nishina | Dec 2004 | B2 |
6842762 | Raithel | Jan 2005 | B2 |
6847873 | Li | Jan 2005 | B1 |
6850823 | Eun | Feb 2005 | B2 |
6859695 | Klausner | Feb 2005 | B2 |
6862524 | Nagda | Mar 2005 | B1 |
6865457 | Mittelsteadt | Mar 2005 | B1 |
6867733 | Sandhu | Mar 2005 | B2 |
6873261 | Anthony | Mar 2005 | B2 |
6882313 | Fan | Apr 2005 | B1 |
6894606 | Forbes | May 2005 | B2 |
6895248 | Akyol | May 2005 | B1 |
6898492 | De Leon | May 2005 | B2 |
6898493 | Ehrman | May 2005 | B2 |
6919823 | Lock | Jul 2005 | B1 |
6922566 | Puranik | Jul 2005 | B2 |
6928348 | Lightner | Aug 2005 | B1 |
6931309 | Phelan | Aug 2005 | B2 |
6947817 | Diem | Sep 2005 | B2 |
6950122 | Mirabile | Sep 2005 | B1 |
6954223 | Miyazawa | Oct 2005 | B2 |
6988034 | Marlatt | Jan 2006 | B1 |
7012632 | Freeman | Mar 2006 | B2 |
7020548 | Saito | Mar 2006 | B2 |
7023333 | Blanco | Apr 2006 | B2 |
7039510 | Gumpinger | May 2006 | B2 |
7076348 | Bucher | Jul 2006 | B2 |
7079927 | Tano | Jul 2006 | B1 |
7082359 | Breed | Jul 2006 | B2 |
7082382 | Rose et al. | Jul 2006 | B1 |
7088387 | Freeman | Aug 2006 | B1 |
7095782 | Cohen | Aug 2006 | B1 |
7098812 | Hirota | Aug 2006 | B2 |
7100190 | Johnson | Aug 2006 | B2 |
7113853 | Hecklinger | Sep 2006 | B2 |
7117075 | Larschan | Oct 2006 | B1 |
7119832 | Blanco | Oct 2006 | B2 |
7155321 | Bromley | Dec 2006 | B2 |
7177738 | Diaz | Feb 2007 | B2 |
7209833 | Isaji | Apr 2007 | B2 |
7239252 | Kato | Jul 2007 | B2 |
7265663 | Steele | Sep 2007 | B2 |
7272179 | Siemens | Sep 2007 | B2 |
7308341 | Schofield | Dec 2007 | B2 |
7317974 | Luskin | Jan 2008 | B2 |
7348895 | Lagassey | Mar 2008 | B2 |
7349027 | Endo | Mar 2008 | B2 |
7370261 | Winarski | May 2008 | B2 |
7382933 | Dorai | Jun 2008 | B2 |
7386376 | Basir | Jun 2008 | B2 |
7389178 | Raz | Jun 2008 | B2 |
7457693 | Olsen | Nov 2008 | B2 |
7471189 | Vastad | Dec 2008 | B2 |
7536457 | Miller | May 2009 | B2 |
7561054 | Raz | Jul 2009 | B2 |
7623754 | McKain | Nov 2009 | B1 |
7659827 | Gunderson | Feb 2010 | B2 |
7667731 | Kreiner | Feb 2010 | B2 |
7702442 | Takenaka | Apr 2010 | B2 |
7725216 | Kim | May 2010 | B2 |
7768548 | Silvernail | Aug 2010 | B2 |
7804426 | Etcheson | Sep 2010 | B2 |
7821421 | Tamir | Oct 2010 | B2 |
7853376 | Peng | Dec 2010 | B2 |
7940250 | Forstall | May 2011 | B2 |
7974748 | Goerick | Jul 2011 | B2 |
8068979 | Breed | Nov 2011 | B2 |
8113844 | Huang | Feb 2012 | B2 |
8140358 | Ling | Mar 2012 | B1 |
8239092 | Plante | Aug 2012 | B2 |
8311858 | Everett | Nov 2012 | B2 |
8314708 | Gunderson | Nov 2012 | B2 |
8321066 | Becker | Nov 2012 | B2 |
8417562 | Siemens | Apr 2013 | B1 |
8508353 | Cook | Aug 2013 | B2 |
8538696 | Cassanova | Sep 2013 | B1 |
8564426 | Cook | Oct 2013 | B2 |
8564446 | Gunderson | Oct 2013 | B2 |
8571755 | Plante | Oct 2013 | B2 |
8606492 | Botnen | Dec 2013 | B1 |
8635557 | Geise | Jan 2014 | B2 |
8676428 | Richardson | Mar 2014 | B2 |
8744642 | Nemat-Nasser | Jun 2014 | B2 |
8775067 | Cho | Jul 2014 | B2 |
8803695 | Denson | Aug 2014 | B2 |
8849501 | Cook | Sep 2014 | B2 |
8855847 | Uehara | Oct 2014 | B2 |
8868288 | Plante | Oct 2014 | B2 |
8880279 | Plante | Nov 2014 | B2 |
8892310 | Palmer | Nov 2014 | B1 |
8989959 | Plante | Mar 2015 | B2 |
8996240 | Plante | Mar 2015 | B2 |
20010005217 | Hamilton | Jun 2001 | A1 |
20010005804 | Rayner | Jun 2001 | A1 |
20010018628 | Jenkins | Aug 2001 | A1 |
20010020204 | Runyon | Sep 2001 | A1 |
20010052730 | Baur | Dec 2001 | A1 |
20020019689 | Harrison | Feb 2002 | A1 |
20020027502 | Mayor | Mar 2002 | A1 |
20020029109 | Wong | Mar 2002 | A1 |
20020035422 | Sasaki | Mar 2002 | A1 |
20020044225 | Rakib | Apr 2002 | A1 |
20020059453 | Eriksson | May 2002 | A1 |
20020061758 | Zarlengo | May 2002 | A1 |
20020067076 | Talbot | Jun 2002 | A1 |
20020087240 | Raithel | Jul 2002 | A1 |
20020091473 | Gardner | Jul 2002 | A1 |
20020105438 | Forbes | Aug 2002 | A1 |
20020107619 | Klausner | Aug 2002 | A1 |
20020111725 | Burge | Aug 2002 | A1 |
20020111756 | Modgil | Aug 2002 | A1 |
20020118206 | Knittel | Aug 2002 | A1 |
20020120374 | Douros | Aug 2002 | A1 |
20020135679 | Scaman | Sep 2002 | A1 |
20020138587 | Koehler | Sep 2002 | A1 |
20020163532 | Thomas | Nov 2002 | A1 |
20020169529 | Kim | Nov 2002 | A1 |
20020169530 | Laguer-Diaz | Nov 2002 | A1 |
20020183905 | Maeda | Dec 2002 | A1 |
20030016753 | Kim | Jan 2003 | A1 |
20030028298 | Macky | Feb 2003 | A1 |
20030053433 | Chun | Mar 2003 | A1 |
20030055557 | Dutta | Mar 2003 | A1 |
20030065805 | Barnes | Apr 2003 | A1 |
20030067541 | Joao | Apr 2003 | A1 |
20030079041 | Parrella | Apr 2003 | A1 |
20030080713 | Kirmuss | May 2003 | A1 |
20030080878 | Kirmuss | May 2003 | A1 |
20030081121 | Kirmuss | May 2003 | A1 |
20030081122 | Kirmuss | May 2003 | A1 |
20030081127 | Kirmuss | May 2003 | A1 |
20030081128 | Kirmuss | May 2003 | A1 |
20030081934 | Kirmuss | May 2003 | A1 |
20030081935 | Kirmuss | May 2003 | A1 |
20030095688 | Kirmuss | May 2003 | A1 |
20030112133 | Webb | Jun 2003 | A1 |
20030125854 | Kawasaki | Jul 2003 | A1 |
20030144775 | Klausner | Jul 2003 | A1 |
20030154009 | Basir | Aug 2003 | A1 |
20030158638 | Yakes | Aug 2003 | A1 |
20030177187 | Levine | Sep 2003 | A1 |
20030187704 | Hashiguchi | Oct 2003 | A1 |
20030191568 | Breed | Oct 2003 | A1 |
20030195678 | Betters et al. | Oct 2003 | A1 |
20030214585 | Bakewell | Nov 2003 | A1 |
20030220835 | Barnes, Jr. | Nov 2003 | A1 |
20030222880 | Waterman | Dec 2003 | A1 |
20040008255 | Lewellen | Jan 2004 | A1 |
20040033058 | Reich | Feb 2004 | A1 |
20040039503 | Doyle | Feb 2004 | A1 |
20040039504 | Coffee | Feb 2004 | A1 |
20040044452 | Bauer | Mar 2004 | A1 |
20040044592 | Ubik | Mar 2004 | A1 |
20040054444 | Abeska | Mar 2004 | A1 |
20040054513 | Laird | Mar 2004 | A1 |
20040054689 | Salmonsen | Mar 2004 | A1 |
20040064245 | Knockeart | Apr 2004 | A1 |
20040070926 | Boykin | Apr 2004 | A1 |
20040083041 | Skeen | Apr 2004 | A1 |
20040088090 | Wee | May 2004 | A1 |
20040103008 | Wahlbin | May 2004 | A1 |
20040103010 | Wahlbin | May 2004 | A1 |
20040104842 | Drury | Jun 2004 | A1 |
20040111189 | Miyazawa | Jun 2004 | A1 |
20040138794 | Saito | Jul 2004 | A1 |
20040145457 | Schofield et al. | Jul 2004 | A1 |
20040153244 | Kellum | Aug 2004 | A1 |
20040153362 | Bauer | Aug 2004 | A1 |
20040167689 | Bromley | Aug 2004 | A1 |
20040179600 | Wells | Sep 2004 | A1 |
20040181326 | Adams | Sep 2004 | A1 |
20040184548 | Kerbiriou | Sep 2004 | A1 |
20040203903 | Wilson | Oct 2004 | A1 |
20040209594 | Naboulsi | Oct 2004 | A1 |
20040210353 | Rice | Oct 2004 | A1 |
20040230345 | Tzamaloukas | Nov 2004 | A1 |
20040230370 | Tzamaloukas | Nov 2004 | A1 |
20040230373 | Tzamaloukas | Nov 2004 | A1 |
20040230374 | Tzamaloukas | Nov 2004 | A1 |
20040233284 | Lesesky | Nov 2004 | A1 |
20040236474 | Chowdhary | Nov 2004 | A1 |
20040243285 | Gounder | Dec 2004 | A1 |
20040243308 | Irish | Dec 2004 | A1 |
20040243668 | Harjanto | Dec 2004 | A1 |
20040254689 | Blazic | Dec 2004 | A1 |
20040254698 | Hubbard | Dec 2004 | A1 |
20050021199 | Zimmerman | Jan 2005 | A1 |
20050043869 | Funkhouser | Feb 2005 | A1 |
20050060070 | Kapolka | Mar 2005 | A1 |
20050060071 | Winner | Mar 2005 | A1 |
20050065716 | Timko | Mar 2005 | A1 |
20050073585 | Ettinger | Apr 2005 | A1 |
20050078423 | Kim | Apr 2005 | A1 |
20050088291 | Blanco | Apr 2005 | A1 |
20050099498 | Lao | May 2005 | A1 |
20050100329 | Lao | May 2005 | A1 |
20050102074 | Kolls | May 2005 | A1 |
20050125117 | Breed | Jun 2005 | A1 |
20050131585 | Luskin | Jun 2005 | A1 |
20050131595 | Luskin | Jun 2005 | A1 |
20050131597 | Raz | Jun 2005 | A1 |
20050136949 | Barnes | Jun 2005 | A1 |
20050137757 | Phelan | Jun 2005 | A1 |
20050137796 | Gumpinger | Jun 2005 | A1 |
20050146458 | Carmichael | Jul 2005 | A1 |
20050149238 | Stefani | Jul 2005 | A1 |
20050149259 | Cherveny | Jul 2005 | A1 |
20050159964 | Sonnenrein | Jul 2005 | A1 |
20050166258 | Vasilevsky | Jul 2005 | A1 |
20050171692 | Hamblen | Aug 2005 | A1 |
20050174217 | Basir | Aug 2005 | A1 |
20050182538 | Phelan | Aug 2005 | A1 |
20050182824 | Cotte | Aug 2005 | A1 |
20050185052 | Raisinghani | Aug 2005 | A1 |
20050185936 | Lao | Aug 2005 | A9 |
20050192749 | Flann | Sep 2005 | A1 |
20050197748 | Holst | Sep 2005 | A1 |
20050200714 | Marchese | Sep 2005 | A1 |
20050203683 | Olsen | Sep 2005 | A1 |
20050206741 | Raber | Sep 2005 | A1 |
20050212920 | Evans | Sep 2005 | A1 |
20050216144 | Baldassa | Sep 2005 | A1 |
20050228560 | Doherty | Oct 2005 | A1 |
20050233805 | Okajima | Oct 2005 | A1 |
20050251304 | Cancellara | Nov 2005 | A1 |
20050258942 | Manasseh | Nov 2005 | A1 |
20050264691 | Endo | Dec 2005 | A1 |
20050283284 | Grenier | Dec 2005 | A1 |
20060001671 | Kamijo | Jan 2006 | A1 |
20060007151 | Ram | Jan 2006 | A1 |
20060011399 | Brockway | Jan 2006 | A1 |
20060015233 | Olsen | Jan 2006 | A1 |
20060022842 | Zoladek | Feb 2006 | A1 |
20060025897 | Shostak | Feb 2006 | A1 |
20060030986 | Peng | Feb 2006 | A1 |
20060040239 | Cummins | Feb 2006 | A1 |
20060047380 | Welch | Mar 2006 | A1 |
20060053038 | Warren | Mar 2006 | A1 |
20060055521 | Blanco | Mar 2006 | A1 |
20060057543 | Roald | Mar 2006 | A1 |
20060058950 | Kato | Mar 2006 | A1 |
20060072792 | Toda | Apr 2006 | A1 |
20060078853 | Lanktree | Apr 2006 | A1 |
20060092043 | Lagassey | May 2006 | A1 |
20060095175 | deWaal | May 2006 | A1 |
20060095199 | Lagassey | May 2006 | A1 |
20060095349 | Morgan | May 2006 | A1 |
20060103127 | Lie | May 2006 | A1 |
20060106514 | Liebl | May 2006 | A1 |
20060111817 | Phelan | May 2006 | A1 |
20060122749 | Phelan | Jun 2006 | A1 |
20060142913 | Coffee | Jun 2006 | A1 |
20060147187 | Takemoto | Jul 2006 | A1 |
20060161960 | Benoit | Jul 2006 | A1 |
20060168271 | Pabari | Jul 2006 | A1 |
20060178793 | Hecklinger | Aug 2006 | A1 |
20060200008 | Moore-Ede | Sep 2006 | A1 |
20060209090 | Kelly et al. | Sep 2006 | A1 |
20060209840 | Paatela | Sep 2006 | A1 |
20060212195 | Veith | Sep 2006 | A1 |
20060226344 | Werth | Oct 2006 | A1 |
20060229780 | Underdahl | Oct 2006 | A1 |
20060242680 | Johnson | Oct 2006 | A1 |
20060247833 | Malhotra | Nov 2006 | A1 |
20060253307 | Warren | Nov 2006 | A1 |
20060259218 | Wu | Nov 2006 | A1 |
20060261931 | Cheng | Nov 2006 | A1 |
20070001831 | Raz | Jan 2007 | A1 |
20070005404 | Raz | Jan 2007 | A1 |
20070027583 | Tamir | Feb 2007 | A1 |
20070027726 | Warren | Feb 2007 | A1 |
20070043487 | Krzystofczyk | Feb 2007 | A1 |
20070120948 | Fujioka | May 2007 | A1 |
20070124332 | Ballesty | May 2007 | A1 |
20070127833 | Singh | Jun 2007 | A1 |
20070132773 | Plante | Jun 2007 | A1 |
20070135979 | Plante | Jun 2007 | A1 |
20070135980 | Plante | Jun 2007 | A1 |
20070136078 | Plante | Jun 2007 | A1 |
20070142986 | Alaous | Jun 2007 | A1 |
20070143499 | Chang | Jun 2007 | A1 |
20070150138 | Plante | Jun 2007 | A1 |
20070150140 | Seymour | Jun 2007 | A1 |
20070173994 | Kubo | Jul 2007 | A1 |
20070179691 | Grenn | Aug 2007 | A1 |
20070183635 | Weidhaas | Aug 2007 | A1 |
20070208494 | Chapman | Sep 2007 | A1 |
20070216521 | Guensler | Sep 2007 | A1 |
20070219685 | Plante | Sep 2007 | A1 |
20070219686 | Plante | Sep 2007 | A1 |
20070241874 | Okpysh | Oct 2007 | A1 |
20070244614 | Nathanson | Oct 2007 | A1 |
20070257781 | Denson | Nov 2007 | A1 |
20070257782 | Etcheson | Nov 2007 | A1 |
20070257804 | Gunderson | Nov 2007 | A1 |
20070257815 | Gunderson | Nov 2007 | A1 |
20070260677 | DeMarco | Nov 2007 | A1 |
20070268158 | Gunderson | Nov 2007 | A1 |
20070271105 | Gunderson | Nov 2007 | A1 |
20070273480 | Burkman | Nov 2007 | A1 |
20070279214 | Buehler | Dec 2007 | A1 |
20070299612 | Kimura | Dec 2007 | A1 |
20080035108 | Ancimer | Feb 2008 | A1 |
20080059019 | Delia | Mar 2008 | A1 |
20080071827 | Hengel | Mar 2008 | A1 |
20080111666 | Plante | May 2008 | A1 |
20080122603 | Plante | May 2008 | A1 |
20080143834 | Comeau | Jun 2008 | A1 |
20080147267 | Plante et al. | Jun 2008 | A1 |
20080157510 | Breed | Jul 2008 | A1 |
20080167775 | Kuttenberger | Jul 2008 | A1 |
20080169914 | Albertson | Jul 2008 | A1 |
20080177436 | Fortson | Jul 2008 | A1 |
20080234920 | Nurminen | Sep 2008 | A1 |
20080252485 | Lagassey | Oct 2008 | A1 |
20080269978 | Shirole | Oct 2008 | A1 |
20080281485 | Plante | Nov 2008 | A1 |
20080309762 | Howard et al. | Dec 2008 | A1 |
20080319604 | Follmer | Dec 2008 | A1 |
20090009321 | McClellan | Jan 2009 | A1 |
20090043500 | Satoh | Feb 2009 | A1 |
20090043971 | Kim | Feb 2009 | A1 |
20090051510 | Follmer | Feb 2009 | A1 |
20090138191 | Engelhard | May 2009 | A1 |
20090157255 | Plante | Jun 2009 | A1 |
20090216775 | Ratliff et al. | Aug 2009 | A1 |
20090224869 | Baker | Sep 2009 | A1 |
20090290848 | Brown | Nov 2009 | A1 |
20090299622 | Denaro | Dec 2009 | A1 |
20090312998 | Berckmans | Dec 2009 | A1 |
20090326796 | Prokhorov | Dec 2009 | A1 |
20100030423 | Nathanson | Feb 2010 | A1 |
20100045451 | Periwal | Feb 2010 | A1 |
20100057342 | Muramatsu | Mar 2010 | A1 |
20100063672 | Anderson | Mar 2010 | A1 |
20100063850 | Daniel | Mar 2010 | A1 |
20100070175 | Soulchin | Mar 2010 | A1 |
20100085193 | Boss | Apr 2010 | A1 |
20100085430 | Kreiner | Apr 2010 | A1 |
20100087984 | Joseph | Apr 2010 | A1 |
20100100315 | Davidson | Apr 2010 | A1 |
20100153146 | Angell | Jun 2010 | A1 |
20100157061 | Katsman | Jun 2010 | A1 |
20100191411 | Cook | Jul 2010 | A1 |
20100220892 | Kawakubo | Sep 2010 | A1 |
20100250021 | Cook | Sep 2010 | A1 |
20100250060 | Maeda | Sep 2010 | A1 |
20100268415 | Ishikawa | Oct 2010 | A1 |
20100312464 | Fitzgerald | Dec 2010 | A1 |
20110035139 | Konlditslotis | Feb 2011 | A1 |
20110043624 | Haug | Feb 2011 | A1 |
20110060496 | Nielsen | Mar 2011 | A1 |
20110077028 | Wilkes | Mar 2011 | A1 |
20110091079 | Yu-Song | Apr 2011 | A1 |
20110093159 | Boling | Apr 2011 | A1 |
20110112995 | Chang | May 2011 | A1 |
20110121960 | Tsai | May 2011 | A1 |
20110125365 | Larschan | May 2011 | A1 |
20110130916 | Mayer | Jun 2011 | A1 |
20110153367 | Amigo | Jun 2011 | A1 |
20110161116 | Peak | Jun 2011 | A1 |
20110173015 | Chapman | Jul 2011 | A1 |
20110213628 | Peak | Sep 2011 | A1 |
20110224891 | Iwuchukwu | Sep 2011 | A1 |
20110251752 | DeLarocheliere | Oct 2011 | A1 |
20110273568 | Lagassey | Nov 2011 | A1 |
20110283223 | Vaittinen et al. | Nov 2011 | A1 |
20110304446 | Basson | Dec 2011 | A1 |
20120021386 | Anderson | Jan 2012 | A1 |
20120035788 | Trepagnier | Feb 2012 | A1 |
20120041675 | Juliver | Feb 2012 | A1 |
20120046803 | Inou | Feb 2012 | A1 |
20120071140 | Oesterling | Mar 2012 | A1 |
20120078063 | Moore-Ede | Mar 2012 | A1 |
20120081567 | Cote | Apr 2012 | A1 |
20120100509 | Gunderson | Apr 2012 | A1 |
20120109447 | Yousefi | May 2012 | A1 |
20120150436 | Rossano | Jun 2012 | A1 |
20120190001 | Knight | Jul 2012 | A1 |
20120210252 | Fedoseyeva | Aug 2012 | A1 |
20120277950 | Plante | Nov 2012 | A1 |
20130004138 | Kilar | Jan 2013 | A1 |
20130006469 | Green | Jan 2013 | A1 |
20130021148 | Cook | Jan 2013 | A1 |
20130030660 | Fujimoto | Jan 2013 | A1 |
20130073114 | Nemat-Nasser | Mar 2013 | A1 |
20130096731 | Tamari | Apr 2013 | A1 |
20130197774 | Denson | Aug 2013 | A1 |
20130274950 | Richardson | Oct 2013 | A1 |
20130317711 | Plante | Nov 2013 | A1 |
20130332004 | Gompert et al. | Dec 2013 | A1 |
20130345927 | Cook | Dec 2013 | A1 |
20140025254 | Plante | Jan 2014 | A1 |
20140046550 | Palmer | Feb 2014 | A1 |
20140047371 | Palmer | Feb 2014 | A1 |
20140098228 | Plante | Apr 2014 | A1 |
20140152828 | Plante | Jun 2014 | A1 |
20140226010 | Molin | Aug 2014 | A1 |
20140279707 | Joshua | Sep 2014 | A1 |
20140280204 | Avery | Sep 2014 | A1 |
20150035665 | Plante | Feb 2015 | A1 |
20150057836 | Plante | Feb 2015 | A1 |
20150105934 | Palmer | Apr 2015 | A1 |
20150134226 | Palmer | May 2015 | A1 |
Number | Date | Country |
---|---|---|
2469728 | Dec 2005 | CA |
2692415 | Aug 2011 | CA |
2692415 | Aug 2011 | CA |
4416991 | Nov 1995 | DE |
20311262 | Sep 2003 | DE |
202005008238 | Sep 2005 | DE |
102004004669 | Dec 2005 | DE |
0708427 | Apr 1996 | EP |
0840270 | May 1998 | EP |
0848270 | May 1998 | EP |
1170697 | Jan 2002 | EP |
1324274 | Jul 2003 | EP |
1355278 | Oct 2003 | EP |
1427165 | Jun 2004 | EP |
1818873 | Aug 2007 | EP |
2104075 | Sep 2009 | EP |
2268608 | Jan 1994 | GB |
2402530 | Dec 2004 | GB |
2451485 | Feb 2009 | GB |
2447184 | Jun 2011 | GB |
2446994 | Aug 2011 | GB |
58085110 | May 1983 | JP |
S5885110 | May 1983 | JP |
62091092 | Apr 1987 | JP |
S6291092 | Apr 1987 | JP |
S62166135 | Jul 1987 | JP |
02056197 | Feb 1990 | JP |
H0256197 | Feb 1990 | JP |
H04257189 | Sep 1992 | JP |
H05137144 | Jun 1993 | JP |
5294188 | Nov 1993 | JP |
H08124069 | May 1996 | JP |
H09163357 | Jun 1997 | JP |
H09272399 | Oct 1997 | JP |
10076880 | Mar 1998 | JP |
H1076880 | Mar 1998 | JP |
2002191017 | Jul 2002 | JP |
2002191017 | Jul 2002 | JP |
8809023 | Nov 1988 | WO |
9005076 | May 1990 | WO |
9427844 | Dec 1994 | WO |
9600957 | Jan 1996 | WO |
9701246 | Jan 1997 | WO |
9726750 | Jul 1997 | WO |
9937503 | Jul 1999 | WO |
9940545 | Aug 1999 | WO |
9962741 | Dec 1999 | WO |
0007150 | Feb 2000 | WO |
0028410 | May 2000 | WO |
0048033 | Aug 2000 | WO |
0077620 | Dec 2000 | WO |
0123214 | Apr 2001 | WO |
0125054 | Apr 2001 | WO |
0146710 | Jun 2001 | WO |
03045514 | Jun 2003 | WO |
2006022824 | Mar 2006 | WO |
2007067767 | Jun 2007 | WO |
2011055743 | May 2011 | WO |
Entry |
---|
Adaptec published and sold its VideoOh! DVD software USB 2.0 Edition in at least Jan. 24, 2003. |
Ambulance Companies Use Video Technology to Improve Driving Behavior, Ambulance Industry Journal, Spring 2003. |
Amended Complaint for Patent Infringement, Trade Secret Misappropriation, Unfair Competition and Conversion in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California, Document 34, filed Oct. 20, 2011, pp. 1-15. |
Amendment filed Dec. 23, 2009 during prosecution of U.S. Appl. No. 11/566,424. |
Answer to Amended Complaint; Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 47, filed Dec. 13, 2011, pp. 1-15. |
U.S. Appl. No. 11/296,906, filed Dec. 8, 2005, File History. |
U.S. Appl. No. 11/297,669, filed Dec. 8, 2005, File History. |
U.S. Appl. No. 11/297,889, filed Dec. 8, 2005, File History. |
U.S. Appl. No. 11/298,069, filed Dec. 9, 2005, File History. |
U.S. Appl. No. 11/299,028, filed Dec. 9, 2005, File History. |
U.S. Appl. No. 11/593,659, filed Nov. 7, 2006, File History. |
U.S. Appl. No. 11/593,682, filed Nov. 7, 2006, File History. |
U.S. Appl. No. 11/593,882, filed Nov. 7, 2006, File History. |
U.S. Appl. No. 11/595,015, filed Nov. 9, 2006, File History. |
U.S. Appl. No. 11/637,754, filed Dec. 13, 2006, File History. |
U.S. Appl. No. 11/637,755, filed Dec. 13, 2006, File History. |
Bill, ‘DriveCam—FAQ’, Dec. 12, 2003. |
Bill Siuru, ‘DriveCam Could Save You Big Bucks’, Land Line Magazine, May-Jun. 2000. |
Chris Woodyard, ‘Shuttles save with DriveCam’, Dec. 9, 2003. |
Dan Carr, Flash Video Template: Video Presentation with Navigation, Jan. 16, 2006, http://www.adobe.com/devnet/fiash/articles/vidtemplate—mediapreso—flash8.html. |
David Cullen, ‘Getting a real eyeful’, Fleet Owner Magazine, Feb. 2002. |
David Maher, ‘DriveCam Brochure Folder’, Jun. 6, 2005. |
David Maher, “DriveCam Brochure Folder”, Jun. 8, 2005. |
David Vogeleer et al., Macromedia Flash Professional 8Unleashed (Sams Oct. 12, 2005). |
Del Lisk, ‘DriveCam Training Handout Ver4’, Feb. 3, 2005. |
Drivecam, Inc., User's Manual for Drivecam Video Systems' Hindsight 20/20 Software Version 4.0 (2003). |
DriveCam, Inc.'s Infringement Contentions Exhibit A, U.S. Pat. No. 6,389,340, Document 34.1, Oct. 20, 2011. |
DriveCam, Inc.'s Infringement Contentions Exhibit B, U.S. Pat. No. 7,659,827. Aug. 19, 2011. |
DriveCam, Inc.'s Infringement Contentions Exhibit B, U.S. Pat. No. 7,804,426, Document 34.2, Oct. 20, 2011. |
DriveCam, Inc.'s Infringement Contentions Exhibit C, U.S. Pat. No. 7,659,827, Document 34.3, Oct. 20, 2011. |
DriveCam, Inc.'s Infringement Contentions Exhibit C, U.S. Pat. No. 7,804,426. Aug. 19, 2011. |
DriveCam, Inc.'s Infringement Contentions Exhibit D, Document 34.4, Oct. 20, 2011. |
DriveCam—Illuminator Data Sheet, Oct. 2, 2004. |
Drivecam.com as retrieved by the Internet Wayback Machine as of Mar. 5, 2005. |
DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Aug. 19, 2011. |
DriveCam Driving Feedback System, Mar. 15, 2004. |
DriveCam Extrinsic Evidence with Patent LR 4.1 .a Disclosures, Nov. 3, 2011. |
DriveCam Extrinsic Evidence with Patent LR 4.1 .a Disclosures, Nov. 8, 2011. |
Driver Feedback System, Jun. 12, 2001. |
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 53, filed Dec. 20, 2011, pp. 1-48. |
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 55, filed Jan. 1, 2012, pp. 86-103. |
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 55, filed Jan. 3, 2012, pp. 86-103. |
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11 -CV-00997 H (RBB), for the Southern District of California, Exhibit A, Document 55, filed Jan. 3, 2012, pp. 49-103. |
Franke, U., et al., Autonomous Driving Goes Downtown, IEEE Intelligent Systems, 13(6):40-48 (1988); Digital Object Identifier 10.1109/5254.736001. |
Gallagher, B., et al., Wireless Communications for Vehicle Safety: Radio Link Performance and Wireless Connectivity Methods, Vehicular Technology Magazine, IEEE, 1(4):4-24 (2006); Digital Object Identifier 10.1109/MVT.2006.343641. |
Gandhi, T., et al., Pedestrian Protection Systems: Issues, Survey, and Challenges, IEEE Transactions on Intelligent Transportation Systems, 8(3):413-430 (2007); Digital Object Identifier 10.1109/TITS.2007.903444. |
Gary and Sophia Rayner, Final Report for Innovations Deserving Exploratory Analysis (IDEA) Intelligent Transportation Systems (ITS) Programs' Project 84, I-Witness Black Box Recorder, San Diego, CA. Nov. 2001. |
GE published its VCR User's Guide for Model VG4255 in 1995. |
Glenn Oster, ‘Hindsight 20/20 v4.0 Software Installation’, 1 of 2, Jun. 20, 2003. |
Glenn Oster, ‘HindSight 20/20 v4.0 Software Installation’, 2 of 2, Jun. 20, 2003. |
Glenn Oster, ‘Illuminator Installation’, Oct. 3, 2004. |
Hans Fantel, Video; Search Methods Make a Difference in Picking VCR's, NY Times, Aug. 13, 1989. |
I/O Port Racing Supplies' website discloses using Traqmate's Data Acquisition with Video Overlay system in conjunction with professional driver coaching sessions (available at http://www.ioportracing.com/Merchant2/merchant.mvc?Screen=CTGY&Categorys- ub.--Code=coaching)., printed from site on Jan. 11, 2012. |
Inovate Motorsports, OT-1 16 Channel OBD-II Interface User Manual, Version 1.0, Nov. 28, 2007, pp. 3, 4, 21 & 27. |
Interior Camera Data Sheet', Oct. 26, 2001. |
International Search Report and Written Opinion issued in PCT/US07/68325 on Feb. 27, 2008. |
International Search Report and Written Opinion issued in PCT/US07/68328 on Oct. 15, 2007. |
International Search Report and Written Opinion issued in PCT/US07/68329 on Mar. 3, 2008. |
International Search Report and Written Opinion issued in PCT/US07/68332 on Mar. 3, 2008. |
International Search Report and Written Opinion issued in PCT/US07/68334 on Mar. 5, 2008. |
International Search Report for PCT/US2006/47055, Mailed Mar. 20, 2008 (2 pages). |
International Search Report issued in PCT/US2006/47042 mailed Feb. 25, 2008. |
J. Gallagher, ‘Lancer Recommends Tech Tool’, Insurance and Technology Magazine, Feb. 2002. |
Jean (DriveCam vendor), ‘DC Data Sheet’, Nov. 6, 2002. |
Jean (DriveCam vendor), ‘DriveCam brochure’, Nov. 6, 2002. |
Jean (DriveCam vendor), ‘Feedback Data Sheet’, Nov. 6, 2002. |
Jean (DriveCam vendor), ‘Hindsight 20-20 Data Sheet’, Nov. 4, 2002. |
Jessyca Wallace, ‘Analyzing and Processing DriveCam Recorded Events’, Oct. 6, 2003. |
Jessyca Wallace, ‘Overview of the DriveCam Program’, Dec. 15, 2005. |
Jessyca Wallace, ‘The DriveCam Driver Feedback System’, Apr. 6, 2004. |
Joint Claim Construction Chart, U.S. Pat. No. 6,389,340, ‘Vehicle Data Recorder’ for Case No. 3:11-CV-00997-H-RBB, Document 43-1, filed Dec. 1, 2011, pp. 1-33. |
Joint Claim Construction Chart in DriveCam, Inc. v. SmartDrive Systems, Inc.,Case No. 11-CV-0997-H (RBB), for the Southern District of California, Document 43, filed Dec. 1, 2011, pp. 1-2. |
Joint Claim Construction Worksheet, U.S. Pat. No. 6,389,340, ‘Vehicle Data Reporter’ for Case No. 3:11-CV-00997-H-RBB, Document 44-1, filed Dec. 1, 2011, pp. 1-10. |
Joint Claim Construction Worksheet, U.S. Pat. No. 6,389,340, “Vehicle Data Reporter” for Case No. 3:11-CV-00997-H-RBB, Document 44-1, filed Dec. 1, 2011, pp. 1-10. |
Joint Claim Construction Worksheet in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 44, filed Dec. 1, 2011, pp. 1-2. |
Joint Motion for Leave to Supplement Disclosure of Asserted Claims and Preliminary Infringement Contentions in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-cv-00997-H-RBB, Document 29, filed Oct. 12, 2011, pp. 1-7. |
Julie Stevens, ‘DriveCam Services’, Nov. 15, 2004. |
Julie Stevens, ‘Program Support Roll-Out & Monitoring’, Jul. 13, 2004. |
Jung, Sang-Hack, et al., Egomotion Estimation in Monocular Infra-red Image Sequence for Night Vision Applications, IEEE Workshop on Applications of Computer Vision (WACV '07), Feb. 2007, pp. 8-8; Digital Object Identifier 10.1109/WACV.2007.20. |
JVC Company of America, JVC Video Cassette Recorder HR-IP820U Instructions (1996). |
Kamijo, S., et al., A Real-Time Traffic Monitoring System by Stochastic Model Combination, IEEE International Conference on Systems, Man and Cybernetics, 4:3275-3281 (2003). |
Kamijo, S., et al., An Incident Detection System Based on Semantic Hierarchy, Proceedings of the 7th International IEEE Intelligent Transportation Systems Conference, 2004, Oct. 3-6, pp. 853-858; Digital Object Identifier 10.1109/ITSC.2004.1399015. |
Karen, ‘Downloading Options to HindSight 20120’, Aug. 6, 2002. |
Karen, ‘Managers Guide to the DriveCam Driving Feedback System’, Jul. 30, 2002. |
Kathy Latus (Latus Design), ‘Case Study—Cloud 9 Shuttle’, Sep. 23, 2005. |
Kathy Latus (Latus Design), ‘Case Study—Lloyd Pest Control’, Jul. 19, 2005. |
Kathy Latus (Latus Design), ‘Case Study—Time Warner Cable’, Sep. 23, 2005. |
Ki, Yong-Kul, et al., A Traffic Accident Detection Model using Metadata Registry, Proceedings of the Fourth International Conference on Software Engineering Research, Management and Applications; Aug. 9-11, 2006 pp. 255-259 Digital Object Identifier 10.1109/SERA.2006.8. |
Kitchin, Charles. “Understanding accelerometer scale factor and offset adjustments.” Analog Devices (1995). |
Lin, Chin-Teng et al., EEG-based drowsiness estimation for safety driving using independent component analysis; IEEE Transactions on Circuits and Systems-I: Regular Papers, 52(12):2726-2738 (2005); Digital Object Identifier 10.1109/TCSI.2005.857555. |
Lisa McKenna, ‘A Fly on the Windshield?’, Pest Control Technology Magazine, Apr. 2003. |
Miller, D.P., Evaluation of Vision Systems for Teleoperated Land Vehicles. Control Systems Magazine, IEEE, 8(3):37-41 (1988); Digital Identifier 10.1109/37.475. |
Munder, S., et al., Pedestrian Detection and Tracking Using a Mixture of View-Based Shape-Texture Models, IEEE Transactions on Intelligent Transportation Systems, 9(2):333-343 (2008); Digital Identifier 10.1109/TITS.2008.922943. |
Panasonic Corporation, Video Cassette Recorder (VCR) Operating Instructions for Models No. PV-V4020/PV-V4520. |
Passenger Transportation Mode Brochure, May 2, 2005. |
Patent Abstracts of Japan vol. 007, No. 180 (P-215), Aug. 9, 1983 & amp. JP 58 085110 A (Mitsuhisa Ichikawa), May 21, 1983. |
Patent Abstracts of Japan vol. 011, No. 292 (E-543), Sep. 19, 1987 & JP 62 091092 A (Ok Eng:KK), Apr. 25, 1987. |
Patent Abstracts of Japan vol. 012, No. 001 (M-656), Jan. 6, 1988 & JP 62 166135 A (Fuji Electric Co Ltd), Jul. 22, 1987. |
Patent Abstracts of Japan vol. 014, No. 222 (E-0926), May 10, 1990 & JP 02 056197 A (Sanyo Electric Co Ltd), Feb. 26, 1990. |
Patent Abstracts of Japan vol. 017, No. 039 (E-1311), Jan. 25, 1993 & JP 04 257189 A (Sony Corp), Sep. 11, 1992. |
Patent Abstracts of Japan vol. 017, No. 521 (E-1435), Sep. 20, 1993 & JP 05 137144 A (Kyocera Corp), Jun. 1, 1993. |
Patent Abstracts of Japan vol. 1996, No. 09, Sep. 30, 1996 & JP 08 124069 A (Toyota Motor Corp), May 17, 1996. |
Patent Abstracts of Japan vol. 1997, No. 10, Oct. 31, 1997 & JP 09 163357 A (Nippon Soken Inc), Jun. 20, 1997. |
Patent Abstracts of Japan vol. 1998, No. 02, Jan. 30, 1998 & JP 09 272399 A (Nippon Soken Inc), Oct. 21, 1997. |
Patent Abstracts of Japan vol. 1998, No. 8, Jun. 30, 1998 & JP 10 076880 A (Muakami Corp), Mar. 24, 1998. |
PCT/US2010/022012, Invitation to Pay Additional Fees with Communication of Partial International Search, Jul. 21, 2010. |
Peter G. Thurlow, Letter (including exhibits) Regarding Patent Owner's Response to Initial Office Action in Ex Parte Reexamination, Mar. 27, 2012. |
Preliminary Claim Construction and Identification of Extrinsic Evidence of Defendant/Counterclaimant SmartDriveSystems, Inc.' in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H (RBB), for the Southern District of California. Nov. 8, 2011. |
Quinn Maughan, ‘DriveCam Enterprise Services’, Jan. 5, 2006. |
Quinn Maughan, ‘DriveCam Managed Services’, Jan. 5, 2006. |
Quinn Maughan, ‘DriveCam Standard Edition’, Jan. 5, 2006. |
Quinn Maughan, ‘DriveCam Unit Installation’, Jul. 21, 2005. |
Quinn Maughan, ‘Enterprise Services’, Apr. 17, 2006. |
Quinn Maughan, ‘Enterprise Services’, Apr. 7, 2006. |
Quinn Maughan, ‘Hindsight Installation Guide’, Sep. 29, 2005. |
Quinn Maughan, ‘Hindsight Users Guide’, Jun. 7, 2005. |
Ronnie Rittenberry, ‘Eyes on the Road’, Jul. 2004. |
SmartDrives Systems, Inc's Production, SO14246-SO14255, Nov. 16, 2011. |
Supplement to DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions' in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Oct. 14, 2011. |
The DriveCam, Nov. 6, 2002. |
The DriveCam, Nov. 8, 2002. |
Traqmate GPS Data Acquisition's Traqmate Data Acquisition with Video Overlay system was used to create a video of a driving event on Oct. 2, 2005 (available at http://www.trackvision.net/phpBB2/viewtopic.php?t=51&sid=1184fbbcbe3be5c87ffa0f2ee6e2da76), printed from site on Jan. 11, 2012. |
Trivinci Systems, LLC, Race-Keeper Systems User Guide, Jan. 2011, v1, 1.02, pp. 34 and 39. |
U.S. Appl. No. 12/691,639, entitled ‘Driver Risk Assessment System and Method Employing Selectively Automatic Event Scoring’, filed Jan. 21, 2010. |
U.S. Appl. No. 11/377,167, Final Office Action dated Nov. 8, 2013. |
U.S. Appl. No. 11/377,157, filed Mar. 16, 2006 entitled, “Vehicle Event Recorder Systems and Networks Having Parallel Communications Links”. |
U.S. Appl. No. 11/377,167, filed Mar. 16, 2006 entitled, “Vehicle Event Recorder Systems and Networks Having Integrated Cellular Wireless Communications Systems”. |
USPTO Final Office Action for U.S. Appl. No. 11/297,669, mailed Nov. 7, 2011, 15 pages. |
USPTO Final Office Action for U.S. Appl. No. 13/957,810, mailed Jun. 27, 2014, 24 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, mailed Apr. 2, 2009, 7 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, mailed Nov. 6, 2009, 9 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/297,669, mailed Apr. 28, 2011, 11 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/299,028, mailed Apr. 24, 2008, 9 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Nov. 19, 2007, 7 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Nov. 25, 2011, 9 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Sep. 11, 2008, 8 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,167, mailed Jun. 5, 2008, 11 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/800,876, mailed Dec. 1, 2010, 12 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/800,876, mailed Dec. 20, 2011, 8 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, mailed May 20, 2014, 19 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 14/036,299, mailed Aug. 12, 2014. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,907, Mailed Mar. 22, 2007 ( 17 pages). |
USPTO Non-final Office Action mailed Aug. 27, 2009 during prosecution of U.S. Appl. No. 11/566,424. |
USPTO Non-Final Office Action mailed Nov. 27, 2013 in U.S. Appl. No. 13/957,810, filed Aug. 2, 2013. |
Veeraraghavan, H., et al., Computer Vision Algorithms for Intersection Monitoring, IEEE Transactions on Intelligent Transportation Systems, 4(2):78-89 (2003); Digital Object Identifier 10.1109/TITS.2003.821212. |
Wijesoma, W.S., et al., Road Curb Tracking in an Urban Environment, Proceedings of the Sixth International Conference of Information Fusion, 1:261-268 (2003). |
World News Tonight, CBC Television New Program discussing teen drivers using the DriveCam Program and DriveCam Technology, Oct. 10, 2005, on PC formatted CD-R, World News Tonight.wmv, 7.02 MB, Created Jan. 12, 2011. |
Written Opinion issued in PCT/US07/68328 on Oct. 15, 2007. |
Written Opinion of the International Searching Authority for PCT/US2006/47042. Mailed Feb. 25, 2008 (5 pages). |
Written Opinion of the International Searching Authority for PCT/US2006/47055, Mailed Mar. 20, 2008 (5 pages). |
DriveCam, Inc.'s Infringement Contentions Exhibit B, U.S. Pat. No. 7,659,827. Aug. 19, 2011. (29 pgs.). |
DriveCam, Inc.'s Infringement Contentions Exhibit C, U.S. Pat. No. 7,804,426. Aug. 19, 2011. (47 pgs.). |
DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Aug. 19, 2011. (6 pgs.). |
Preliminary Claim Construction and Identification of Extrinsic Evidence of Defendant/Counterclaimant SmartDriveSystems, Inc.' in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H (RBB), for the Southern District of California. Nov. 8, 2011. (13 pgs.). |
Supplement to DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions' in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Oct. 14, 2011. (7 pgs.). |
Notice of Allowance for U.S. Appl. No. 13/957,810, mailed Jun. 8, 2015, 10 pages. |
“DriveCam, Inc's Disclosure of Proposed Constructions and Extrinsic Evidence Pursuant to Patent L.R. 4.1.a & 4.1.b” Disclosure and Extrinsic Evidence in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Nov. 8, 2011. |
“DriveCam Driving Feedback System”, DriveCam brochure, Jun. 12, 2001, Document #6600128. |
“DriveCam Driving Feedback System” DriveCam brochure, Mar. 15, 2004. |
“DriveCam Passenger Transportation Module”, DriveCam brochure, Oct. 26, 2001. |
“DriveCam Video Event Data Recorder”, DriveCam brochure, Nov. 6, 2002, Document #6600127. |
“Responsive Claim Construction and Identification of Extrinsic Evidence of Defendani/Counterclaimant SmartDrive Systems, Inc.” Claim Construction and and Extrinsic Evidence in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H (RBB), for the Southern District of California. Nov. 15, 2011. |
“Sonic MyDVD 4.0: Tutorial: Trimming video segments”. Tutorial for software bundled with Adaptec VideoOh! DVD USB 2.0 Edition, 2003. |
“User's Manual for DriveCam Video Systems' HindSight 20/20 Software Version 4.0” DriveCam Manual, San Diego, 2003, Document #6600141-1. |
Canadian Office Action issued in Application No. 2,632,685 dated Jan. 30, 2015; 5 pages. |
Dan Maher, “DriveCam Taking Risk Out of Driving”, DriveCam brochure folder, Jun. 6, 2005. |
Del Lisk, “DriveCam Training Seminar” Handout, 2004. |
European Examination Report issued in EP 07772812.9 on Jan. 22, 2015; 5 pages. |
Jean (DriveCam vendor) “DriveCam Driving Feedback System”, DriveCam brochure, Nov. 6, 2002, Document #6600128-1. |
Notice of Allowance Allowance for U.S. Appl. No. 14/036,299, mailed Mar. 20, 2015, xx pages. |
Notice of Allowance Application for U.S. Appl. No. 11/566,424, mailed Feb. 26, 2010, 6 pages. |
Notice of Allowance for U.S. Appl. No. 11/377,164, mailed Dec. 3, 2014, 5 pages. |
Notice of Allowance for U.S. Appl. No. 11/377,164, mailed Feb. 13, 2015, 2 pages. |
Notice of Allowance for U.S. Appl. No. 11/377,164, mailed Feb. 25, 2014, 2 pages. |
Notice of Allowance for U.S. Appl. No. 11/377,164, mailed Nov. 18, 2013, 7 pages. |
Notice of Allowance for U.S. Appl. No. 11/377,167, mailed Apr. 1, 2015, 7 pages. |
Notice of Allowance for U.S. Appl. No. 11/800,876, mailed Apr. 19, 2012, 8 pages. |
USPTO Final Office Action for U.S. Appl. No. 11/296,906, mailed Aug. 8, 2012, 15 pages. |
USPTO Final Office Action for U.S. Appl. No. 12/096,591, mailed Dec. 5, 2014, 23 pages. |
USPTO Final Office Action for U.S. Appl. No. 12/096,591, mailed Jul. 18, 2012, 15 pages. |
USPTO Final Office Action for U.S. Appl. No. 12/096,591, mailed Nov. 7, 2013, 14 pages. |
USPTO Final Office Action for U.S. Appl. No. 13/957,810, mailed Jun. 27, 2014, 22 pages. |
USPTO Final Office Action for U.S. Appl. No. 14/036,299, mailed Feb. 24, 2015, 9 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, mailed Apr. 8, 2014, 19 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, mailed Jun. 12, 2012, 13 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Apr. 7, 2014, 7 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Aug. 18, 2014, 5 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Sep. 10, 2012, 10 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,167, mailed Jun. 27, 2013, 11 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, mailed Jun. 14, 2011, 8 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, mailed Mar. 27, 2013, 16 pages. |
USPTO Non-Final Office Action for U.S. Appl. No. 13/957,810, mailed Apr. 17, 2015, 6 pages. |
USPTO Non-final Office Action for U.S. Appl. No. 13/957,810, mailed Nov. 27, 2013, 18 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 13734800 | Jan 2013 | US |
Child | 14531854 | US | |
Parent | 12096592 | US | |
Child | 13734800 | US | |
Parent | 11296907 | Dec 2005 | US |
Child | 12096592 | US |