This subject matter is generally related to managing solid state memory systems.
Managed memory solutions use industry-standard interfaces to provide seamless integration with host processors and eliminate the need for host systems to manage the complexity and deficiency of built-in memory devices. A typical managed memory solution integrates memory and an embedded controller. The embedded controller can emulate a block device interface, thus replacing emulation that is commonly performed by the host system.
In some managed memory solutions, an embedded controller in the memory subsystem uses volatile memory to store information related to the current state of the memory subsystem. A copy of this state information is also stored in non-volatile memory of the memory subsystem to preserve the information in case of power loss.
When the memory subsystem is powered up from a powered down or power loss state, the embedded controller reads the state information from non-volatile memory and stores the information in volatile memory for easy access. The process of reading state information from non-volatile memory and storing the state information in volatile memory in the memory subsystem takes time due to overhead and some processing of the state information. This delay, however, is often of no concern when this power down/power up cycle is infrequent (e.g., during initial power up).
To save power, it can be desirable to shut down power to a memory subsystem frequently. Every time the memory subsystem is powered up from a shutdown state, the memory subsystem reads state information from non-volatile memory as previously described. If this shutdown/power up cycle occurs on a regular basis, the additional reads to non-volatile memory and subsequent data processing can cause delay and loss of power which can negate any benefit obtained by frequently shutting down power to the memory subsystem.
In a managed memory subsystem, information associated with the memory subsystem is copied from volatile memory in the memory subsystem to host system memory. The copying can be over a standard interface. Responsive to memory subsystem power up from a powered down state or power loss, the information is copied from the host system memory back to the volatile memory in the memory subsystem, where the information can be used by the memory subsystem to perform memory operations. Transferring information from host system memory to volatile memory in a memory subsystem is faster and more power efficient than transferring the same information from non-volatile memory to volatile memory in the memory subsystem.
Memory subsystem 104 can include controller 106 coupled to non-volatile memory 120 by interface 112. Controller 106 can be an embedded controller. Interface 112 can be a NAND interface, for example. Block device emulator 122 can be a software layer which translates logical sector requests from host system 102 to physical reads/writes to non-volatile memory 120. Driver 118 in controller 106 can be a low-level driver that reads from and writes to non-volatile memory 120 (e.g., NAND memory). Volatile memory 116 (e.g., RAM) which can be integrated in, or accessible by, controller 106 can be used to store information relating to a current state of memory subsystem 104. States can include, for example, a mapping of logical sectors requested by host system 102 on non-volatile memory 120. More particularly, volatile memory 116 can store tables that translate requests from host system 102 to non-volatile memory 120. This state information is often stored in non-volatile memory 120 as well, so if there is a power shutdown or failure, controller 106 can retrieve the state information from non-volatile memory 120 and store the information in volatile memory 116 for quick access. The dashed lines conceptually illustrate this process. Memory subsystem 104 may include other components which have been omitted from
Host system 102 (e.g., a media player, mobile phone, digital camera) includes host processor 126 and memory 114 (e.g., RAM). Host processor 126 can execute instructions (e.g., firmware) to control communications across interface 110 and to access memory 114. If memory 114 is volatile memory, then memory 114 can be periodically refreshed by host processor 126. Host system 102 may include other components which have been omitted from
Next, a power-related trigger event (e.g., a power up request) is received or detected by the memory subsystem (204). In some implementations, the power-related trigger event can be an intentional power down of the memory subsystem to conserve power. Such an implementation can be useful for battery-operated devices.
Responsive to the power-related trigger event, the information is read from memory in the host system to volatile memory in the memory subsystem (206). Once the information is stored in the volatile memory, the information can be easily accessed by, for example, an embedded controller in the memory subsystem. In some implementations, the volatile memory can be included in the embedded controller. In other implementations, volatile memory can be included in other portions of the memory subsystem or external to the memory subsystem.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. For example, elements of one or more implementations may be combined, deleted, modified, or supplemented to form further implementations. As yet another example, the logic flows depicted in the figures do not require the particular order shown, or sequential order, to achieve desirable results. In addition, other steps may be provided, or steps may be eliminated, from the described flows, and other components may be added to, or removed from, the described systems. Accordingly, other implementations are within the scope of the following claims.
This application claims the benefit of priority from U.S. Provisional Application No. 61/021,560, for “Memory Subsystem Hibernation,” filed Jan. 16, 2008, which provisional application is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4323987 | Holtz et al. | Apr 1982 | A |
5341330 | Wells et al. | Aug 1994 | A |
5689704 | Yoshida et al. | Nov 1997 | A |
5950013 | Yoshimura et al. | Sep 1999 | A |
6188650 | Hamada et al. | Feb 2001 | B1 |
6199076 | Logan et al. | Mar 2001 | B1 |
6263453 | Anderson | Jul 2001 | B1 |
6282624 | Kimura et al. | Aug 2001 | B1 |
6388961 | Ijichi | May 2002 | B1 |
6427186 | Lin et al. | Jul 2002 | B1 |
6832293 | Tagawa et al. | Dec 2004 | B1 |
6876469 | Nakamura | Apr 2005 | B1 |
7099239 | Ogikubo | Aug 2006 | B2 |
7139937 | Kilbourne et al. | Nov 2006 | B1 |
7234024 | Kiselev | Jun 2007 | B1 |
7412558 | Oribe et al. | Aug 2008 | B2 |
7523249 | Estakhri et al. | Apr 2009 | B1 |
20030061189 | Baskins et al. | Mar 2003 | A1 |
20030093610 | Lai et al. | May 2003 | A1 |
20040062119 | Stimak et al. | Apr 2004 | A1 |
20040103238 | Avraham et al. | May 2004 | A1 |
20040186946 | Lee | Sep 2004 | A1 |
20050251617 | Sinclair et al. | Nov 2005 | A1 |
20060008256 | Khedouri et al. | Jan 2006 | A1 |
20070011445 | Waltermann et al. | Jan 2007 | A1 |
20070016721 | Gay | Jan 2007 | A1 |
20070073764 | Oks et al. | Mar 2007 | A1 |
20070124531 | Nishihara | May 2007 | A1 |
20070130441 | Wooten | Jun 2007 | A1 |
20070136523 | Bonella et al. | Jun 2007 | A1 |
20070204128 | Lee et al. | Aug 2007 | A1 |
20070300037 | Rogers et al. | Dec 2007 | A1 |
20080104308 | Mo et al. | May 2008 | A1 |
20080162814 | Kim | Jul 2008 | A1 |
20080177937 | Nishihara et al. | Jul 2008 | A1 |
20080189452 | Merry et al. | Aug 2008 | A1 |
20090083478 | Kunimatsu et al. | Mar 2009 | A1 |
20090089481 | Kapoor et al. | Apr 2009 | A1 |
20090150641 | Flynn et al. | Jun 2009 | A1 |
20090198902 | Khmelnitsky et al. | Aug 2009 | A1 |
20090198947 | Khmelnitsky et al. | Aug 2009 | A1 |
20090198952 | Khmelnitsky et al. | Aug 2009 | A1 |
20090307409 | Rogers et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 9420906 | Sep 1994 | WO |
WO 2009100031 | Aug 2009 | WO |
Entry |
---|
International Search Report and Written Opinion, dated Jul. 9, 2009, issued in International Application No. PCT/US2009/032886, 20 pages. |
Invitation to Pay Additional Fees and Partial International Search Report, dated May 14, 2009, issued in International Application No. PCT/US2009/032886, 10 pages. |
Post et al., “IndelDS Oct. 7, 2009 Cache Tree”, U.S. Appl. No. 12/509,267, filed Jul. 24, 2009. |
Wakrat et al., “Restore IndelDS Oct. 7, 2009 Page”, U.S. Appl. No. 12/509,071, filed Jul. 24, 2009. |
Rogers, et al., “Device Memory Management”, U.S. Appl. No. 12/134,998, filed Jun. 6, 2008. |
International Search Report/Written Opinion in PCT/US2010/42707 mailed Sep. 7, 2010, 8 pages. |
International Search Report/Written Opinion in PCT/US2010/42696 mailed Sep.14, 2010, 8 pages. |
Extended European Search Report in EP 10 17 0700 mailed Nov. 29, 2010, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20090182962 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
61021560 | Jan 2008 | US |