MEMS anchors

Information

  • Patent Grant
  • 9116344
  • Patent Number
    9,116,344
  • Date Filed
    Tuesday, November 26, 2013
    11 years ago
  • Date Issued
    Tuesday, August 25, 2015
    9 years ago
Abstract
The invention relates to an improved apparatus and method for the design and manufacture of MEMS anchoring structures for light modulators in order to address the stresses of beams mounted on them.
Description
FIELD OF THE INVENTION

The present invention generally relates to the field of displays, such as imaging and projection displays. In particular, the invention relates to the design and manufacture of anchor structures for light modulators to address the deflection of beams mounted on them.


BACKGROUND OF THE INVENTION

There is a need in the art for fast, bright, low-powered actuated displays. Displays built from mechanical light modulators are an attractive alternative to displays based on liquid crystal technology. Mechanical light modulators are fast enough to display video content with good viewing angles and with a wide range of color and grey scale. Mechanical light modulators have been successful in projection display applications, and have recently been proposed for direct view applications. Specifically there is a need for mechanically actuated displays that use mechanical light modulators and can be driven at high speeds and at low voltages for improved image quality and reduced power consumption.


A mechanical light modulator comprises a shutter and a plurality of actuators. The actuators are used to move the shutter from one state to another state. Of the two states, one can be a state where light is transmitted and another state where light is blocked. The shutter is suspended above a substrate by a plurality of compliant beams, and the actuators are also formed using compliant beams. A display is formed by fabricating an array of mechanical light modulators on a substrate. The compliant beams are attached to the substrate with anchor structures.


The anchor structures need to be sufficiently stiff to limit undesired deflections of the actuators and of the shutter. An example of an undesired deflection would be a deflection towards or away from the substrate for a shutter that is designed to move parallel to the substrate. Such a deflection can occur due to mechanical shock applied to the shutter or due to attraction between the shutter and the substrate. A deflection can also be caused by stresses in the films that are used to form the shutter, the actuators, and the anchors


A need exists in the art for an anchoring structure for these compliant beams that can be built using MEMS fabrication techniques while at the same time preventing or minimizing any undesired beam or shutter deflection.


SUMMARY OF THE INVENTION

This section is for the purpose of summarizing some aspects of the present invention and to briefly introduce some preferred embodiments. Simplifications or omissions may be made to avoid obscuring the purpose of the section. Such simplifications or omissions are not intended to limit the scope of the present invention.


In one aspect, the present invention relates to a MEMS device comprising a substrate having a primary surface upon which the MEMS device is formed, a beam suspended over the substrate by an anchor having a shell structure, the shell structure comprising: a non-horizontal elevating portion is coupled (or connected) to the primary face of the substrate, a substantially horizontal shelf portion elevated over the substrate by the non-horizontal elevating portion, and a non-horizontal shell stiffening portion, from which the beam extends, extending from the shelf portion.


In some embodiments a shutter being connected to the beams. In one embodiment, this is accomplished by coupling the beam to a plurality of beams, each connected to its own anchor. In another aspect, the invention relates to an anchoring structure where the non-horizontal shell stiffening portion comprises at least two unit normal vectors that are substantially different. In another aspect, the invention relates to an anchoring structure where at least two non-horizontal shell stiffening portions are coupled to each other as well as to the substantially horizontal shelf portion and where the normal vectors of said non-horizontal shell stiffening portions are substantially different. In another aspect, the invention relates to an anchoring structure where one or more substantially horizontal shelf portions are further coupled to one or more non-horizontal shell stiffening portions. In some embodiments, the non-horizontal elevating portions form a closed space or a well. In another aspect, the invention relates to an anchoring structure where the suspended beam has a height that is at least 1.4 times its width. In another aspect, the invention relates to an anchoring structure where the non-horizontal stiffening portion is made from the same material as the horizontal shelf portion. In another aspect, the invention relates to an anchoring structure where the beam is made from a different material than the horizontal shelf portion. In some embodiments, the beam is couple to the horizontal portion. In certain embodiments, two or more beams extend from the anchor structure. In one aspect, the non-horizontal shell stiffening portion extends above the shelf. In another aspect, the non-horizontal shell stiffening portion extends below the shelf. In certain embodiments, the beam is situated on the side of the horizontal shelf opposite to the substrate. In one aspect, the non-horizontal shell stiffening portion is substantially perpendicular to the horizontal shelf portion.


In another aspect, the invention relates to a method for manufacturing a MEMS device using a shell structure made by a sidewall process comprising the steps of forming a mold on a substrate, wherein the mold includes a lower horizontal surface, an upper horizontal surface and a wall, depositing a beam material on the lower horizontal surface and the wall of the mold, removing the beam material deposited on the lower horizontal surface of the mold while leaving the majority of the beam material deposited on the wall of the mold in place to form the compliant beam, forming the shutter coupled to the compliant beam, and removing the mold, thereby releasing the shutter and remaining beam material.


In some embodiments, the non-horizontal elevating portion is manufactured from a first mold material. In some embodiments, the non-horizontal elevating portion is manufactured from a second mold material. In one aspect, the shell structure and the beam are manufactured from at least two different materials. In certain embodiments, the shell structure and the beam are manufactured from a composite material.


Other objects, features and advantages of the present invention will become apparent upon examining the following detailed description of an embodiment thereof, taken in conjunction with the attached drawings. The present invention may be implemented in many forms including a device, method, or part of a device.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing discussion will be understood more readily from the following detailed description of the invention with reference to the following drawings



FIG. 1 is an trimetric view of display apparatus, according to an illustrative embodiment of the invention;



FIG. 2 is a trimetric view of an illustrative shutter-based light modulator suitable for incorporation into the MEMS-based display of FIG. 1, according to an illustrative embodiment of the invention;



FIG. 3 is a perspective view of an array of shutter-based light modulators according to an illustrative embodiment of the invention;



FIGS. 4A-B are plan views of a dual-actuated shutter assembly in the open and closed states respectively, according to an illustrative embodiment of the invention.



FIG. 5 is a plan view of a two-spring shutter assembly according to an illustrative embodiment of the invention.



FIGS. 6A-6E are cross sectional views of stages of construction of a composite shutter assembly similar to that shown in FIG. 2, according to an illustrative embodiment of the invention;



FIGS. 7A-7D are isometric views of stages of construction of an alternate shutter assembly with narrow sidewall beams, according to an illustrative embodiment of the invention;



FIG. 8A-B are a plan view of a shutter assembly which includes dual anchors on the drive beams, and a drive beam formed into a loop which is attached to a single anchor, according to illustrative embodiments of the invention.



FIG. 9 is a plan view of a shutter assembly which includes dual anchors on the drive beams and in which the drive beam is formed into a loop, according to an illustrative embodiment of the invention.



FIG. 10 is a plan view of a four-spring shutter assembly according to an illustrative embodiment of the invention.



FIG. 11 is a trimetric view of an illustrative embodiment of the drive beam anchor and compliant beam anchor structures.



FIGS. 12A-12F represent plan views of illustrative embodiments of the anchor structure elements.



FIGS. 13A-C represent trimetric views of illustrative embodiments of the anchor structure elements.



FIGS. 14A-D represent trimetric views of additional illustrative embodiments of the anchor structure elements.



FIG. 15 is a trimetric view of an illustrative embodiment of a compliant load beam anchor.



FIG. 16 is a trimetric view of an illustrative embodiment of an example two-spring shutter.



FIG. 17 is a trimetric view of an illustrative embodiment of the anchor structure for the drive beam of an example two-spring shutter.



FIGS. 18A-B represent close-up trimetric views of illustrative embodiments of the anchor structure elements.





DESCRIPTION OF CERTAIN ILLUSTRATIVE EMBODIMENTS

To provide an overall understanding of the invention, certain illustrative embodiments will now be described, including apparatus and methods for displaying images. However, it will be understood by one of ordinary skill in the art that the systems and methods described herein may be adapted and modified as is appropriate for the application being addressed and that the systems and methods described herein may be employed in other suitable applications, and that such other additions and modifications will not depart from the scope hereof.



FIG. 1 is a schematic diagram of a direct-view MEMS-based display apparatus 100, according to an illustrative embodiment of the invention. The display apparatus 100 includes a plurality of light modulators 102a-102d (generally “light modulators 102”) arranged in rows and columns. In the display apparatus 100, light modulators 102a and 102d are in the open state, allowing light to pass. Light modulators 102b and 102c are in the closed state, obstructing the passage of light. By selectively setting the states of the light modulators 102a-102d, the display apparatus 100 can be utilized to form an image 104 for a backlit display, if illuminated by a lamp or lamps 105. In another implementation, the apparatus 100 may form an image by reflection of ambient light originating from the front of the apparatus. In another implementation, the apparatus 100 may form an image by reflection of light from a lamp or lamps positioned in the front of the display, i.e. by use of a front light. In one of the closed or open states, the light modulators 102 interfere with light in an optical path by, for example, and without limitation, blocking, reflecting, absorbing, filtering, polarizing, diffracting, or otherwise altering a property or path of the light.


In the display apparatus 100, each light modulator 102 corresponds to a pixel 106 in the image 104. In other implementations, the display apparatus 100 may utilize a plurality of light modulators to form a pixel 106 in the image 104. For example, the display apparatus 100 may include three color-specific light modulators 102. By selectively opening one or more of the color-specific light modulators 102 corresponding to a particular pixel 106, the display apparatus 100 can generate a color pixel 106 in the image 104. In another example, the display apparatus 100 includes two or more light modulators 102 per pixel 106 to provide grayscale in an image 104. With respect to an image, a “pixel” corresponds to the smallest picture element defined by the resolution of the image. With respect to structural components of the display apparatus 100, the term “pixel” refers to the combined mechanical and electrical components utilized to modulate the light that forms a single pixel of the image.


Display apparatus 100 is a direct-view display in that it does not require imaging optics. The user sees an image by looking directly at the display apparatus 100. In alternate embodiments the display apparatus 100 is incorporated into a projection display. In such embodiments, the display forms an image by projecting light onto a screen or onto a wall. In projection applications the display apparatus 100 is substantially smaller than the projected image 104.


Direct-view displays may operate in either a transmissive or reflective mode. In a transmissive display, the light modulators filter or selectively block light which originates from a lamp or lamps positioned behind the display. The light from the lamps is optionally injected into a light guide or “backlight”. Transmissive direct-view display embodiments are often built onto transparent or glass substrates to facilitate a sandwich assembly arrangement where one substrate, containing the light modulators, is positioned directly on top of the backlight. In some transmissive display embodiments, a color specific light modulator is created by associating a color filter material with each modulator 102. In other transmissive display embodiments colors can be generated, as described below, using a field sequential color method by alternating illumination of lamps with different primary colors.


Each light modulator 102 includes a shutter 108 and an aperture 109. To illuminate a pixel 106 in the image 104, the shutter 108 is positioned such that it allows light to pass through the aperture 109 towards a viewer. To keep a pixel 106 unlit, the shutter 108 is positioned such that it obstructs the passage of light through the aperture 109. The aperture 109 is defined by an opening patterned through a reflective or light absorbing material. The display apparatus also includes a control matrix connected to the substrate and to the light modulators for controlling the movement of the shutters. The control matrix includes a series of electrical interconnects (e.g., interconnects 110, 112, and 114), including at least one write-enable interconnect 110 (also referred to as a “scan-line interconnect”) per row of pixels, one data interconnect 112 for each column of pixels, and one common interconnect 114 providing a common voltage to all pixels, or at least to pixels from both multiple columns and multiples rows in the display apparatus 100. In response to the application of an appropriate voltage (the “write-enabling voltage, Vwe”), the write-enable interconnect 110 for a given row of pixels prepares the pixels in the row to accept new shutter movement instructions. The data interconnects 112 communicate the new movement instructions in the form of data voltage pulses. The data voltage pulses applied to the data interconnects 112, in some implementations, directly contribute to an electrostatic movement of the shutters. In other implementations, the data voltage pulses control switches, e.g., transistors or other non-linear circuit elements that control the application of separate actuation voltages, which are typically higher in magnitude than the data voltages, to the light modulators 102. The application of these actuation voltages then results in the electrostatic driven movement of the shutters 108.


MEMS Light Modulators



FIG. 2 is a perspective view of an illustrative shutter-based light modulator 200 suitable for incorporation into the MEMS-based display apparatus 100 of FIG. 1, according to an illustrative embodiment of the invention. The shutter-based light modulator 200 (also referred to as shutter assembly 200) includes a shutter 202 coupled to an actuator 204. The actuator 204 is formed from two separate compliant electrode beam actuators 205 (the “actuators 205”), as described in Hagood et al (U.S. Pat. No. 7,271,945, incorporated herein by reference in its entirety). The shutter 202 couples on one side to the actuators 205. The actuators 205 move the shutter 202 transversely over a surface 203 in a plane of motion which is substantially parallel to the surface 203. The opposite side of the shutter 202 couples to a spring 207 which provides a restoring force opposing the forces exerted by the actuator 204.


Each actuator 205 includes a compliant load beam 206 connecting the shutter 202 to a load anchor 208. The load anchors 208 along with the compliant load beams 206 serve as mechanical supports, keeping the shutter 202 suspended proximate to the surface 203. The load anchors 208 physically connect the compliant load beams 206 and the shutter 202 to the surface 203 and electrically connect the load beams 206 to a bias voltage, in some instances, ground.


Each actuator 205 also includes a compliant drive beam 216 positioned adjacent to each load beam 206. The drive beams 216 couple at one end to a drive beam anchor 218 shared between the drive beams 216. The other end of each drive beam 216 is free to move. Each drive beam 216 is curved such that it is closest to the load beam 206 near the free end of the drive beam 216 and the anchored end of the load beam 206.


The surface 203 includes one or more apertures 211 for admitting the passage of light. If the shutter assembly 200 is formed on an opaque substrate, made for example from silicon, then the surface 203 is a surface of the substrate, and the apertures 211 are formed by etching an array of holes through the substrate. If the shutter assembly 200 is formed on a transparent substrate, made for example of glass or plastic, then the surface 203 is a surface of a light blocking layer deposited on the substrate, and the apertures are formed by etching the surface 203 into an array of holes 211. The apertures 211 can be generally circular, elliptical, polygonal, serpentine, or irregular in shape.


In operation, a display apparatus incorporating the light modulator 200 applies an electric potential to the drive beams 216 via the drive beam anchor 218. A second electric potential may be applied to the load beams 206. The resulting potential difference between the drive beams 216 and the load beams 206 pulls the free ends of the drive beams 216 towards the anchored ends of the load beams 206, and pulls the shutter ends of the load beams 206 toward the anchored ends of the drive beams 216, thereby driving the shutter 202 transversely towards the drive anchor 218. The compliant members 206 act as springs, such that when the voltage across the beams 206 and 216 is removed, the load beams 206 push the shutter 202 back into its initial position, releasing the stress stored in the load beams 206.


The shutter assembly 200, also referred to as an elastic shutter assembly, incorporates a passive restoring force, such as a spring, for returning a shutter to its rest or relaxed position after voltages have been removed. A number of elastic restore mechanisms and various electrostatic couplings can be designed into or in conjunction with electrostatic actuators, the compliant beams illustrated in shutter assembly 200 being just one example. Other examples are described in Hagood et al (U.S. Pat. No. 7,271,945), and U.S. patent application Ser. No. 11/326,696, both incorporated herein by reference in their entirety. For instance, a highly non-linear voltage-displacement response can be provided which favors an abrupt transition between “open” vs. “closed” states of operation, and which, in many cases, provides a bi-stable or hysteretic operating characteristic for the shutter assembly. Other electrostatic actuators can be designed with more incremental voltage-displacement responses and with considerably reduced hysteresis, as may be preferred for analog gray scale operation.


The actuator 205 within the elastic shutter assembly is said to operate between a closed or actuated position and a relaxed position. The designer, however, can choose to place apertures 211 such that shutter assembly 200 is in either the “open” state, i.e. passing light, or in the “closed” state, i.e. blocking light, whenever actuator 205 is in its relaxed position. For illustrative purposes, it is assumed below that elastic shutter assemblies described herein are designed to be open in their relaxed state.


In many cases it is preferable to provide a dual set of “open” and “closed” actuators as part of a shutter assembly so that the control electronics are capable of electrostatically driving the shutters into each of the open and closed states.


It will be understood that other MEMS light modulators can exist and can be usefully incorporated into the invention. Both Hagood et al (U.S. Pat. No. 7,271,945 and U.S. patent application Ser. No. 11/326,696 (both incorporated herein by reference in their entirety) have described a variety of methods by which an array of shutters can be controlled via a control matrix to produce images, in many cases moving images, with appropriate gray scale. In some cases, control is accomplished by means of a passive matrix array of row and column interconnects connected to driver circuits on the periphery of the display. In other cases it is appropriate to include switching and/or data storage elements within each pixel of the array (the so-called active matrix) to improve either the speed, the gray scale and/or the power dissipation performance of the display.


Referring to FIG. 3, control matrix 300 is fabricated as a diffused or thin-film-deposited electrical circuit on the surface of a substrate 304 on which the shutter assemblies 302 are formed. The control matrix 300 includes a scan-line interconnect 306 for each row of pixels 301 in the control matrix 300 and a data-interconnect 308 for each column of pixels 301 in the control matrix 300. Each scan-line interconnect 306 electrically connects a write enabling voltage source 307 to the pixels 301 in a corresponding row of pixels 301. Each data interconnect 308 electrically connects a data voltage source, (“Vd source”) 309 to the pixels 301 in a corresponding column of pixels 301. In control matrix 300, the data voltage Vd provides the majority of the energy necessary for actuation of the shutter assemblies 302. Thus, the data voltage source 309 also serves as an actuation voltage source.


For each pixel 301 or for each shutter assembly 302 in the array of pixels 320, the control matrix 300 includes a transistor 310 and a capacitor 312. The gate of each transistor 310 is electrically connected to the scan-line interconnect 306 of the row in the array 320 in which the pixel 301 is located. The source of each transistor 310 is electrically connected to its corresponding data interconnect 308. The actuators 303 of each shutter assembly 302 include two electrodes. The drain of each transistor 310 is electrically connected in parallel to one electrode of the corresponding capacitor 312 and to one of the electrodes of the corresponding actuator 303. The other electrode of the capacitor 312 and the other electrode of the actuator 303 in shutter assembly 302 are connected to a common or ground potential. In alternate implementations, the transistors 310 can be replaced with semiconductor diodes and or metal-insulator-metal sandwich type switching elements.


In operation, to form an image, the control matrix 300 write-enables each row in the array 320 in a sequence by applying Vwe to each scan-line interconnect 306 in turn. For a write-enabled row, the application of Vwe to the gates of the transistors 310 of the pixels 301 in the row allows the flow of current through the data interconnects 308 through the transistors 310 to apply a potential to the actuator 303 of the shutter assembly 302. While the row is write-enabled, data voltages Vd are selectively applied to the data interconnects 308. In implementations providing analog gray scale, the data voltage applied to each data interconnect 308 is varied in relation to the desired brightness of the pixel 301 located at the intersection of the write-enabled scan-line interconnect 306 and the data interconnect 308. In implementations providing digital control schemes, the data voltage is selected to be either a relatively low magnitude voltage (i.e., a voltage near ground) or to meet or exceed Vat (the actuation threshold voltage). In response to the application of Vat to a data interconnect 308, the actuator 303 in the corresponding shutter assembly 302 actuates, opening the shutter in that shutter assembly 302. The voltage applied to the data interconnect 308 remains stored in the capacitor 312 of the pixel 301 even after the control matrix 300 ceases to apply Vwe to a row. It is not necessary, therefore, to wait and hold the voltage Vwe on a row for times long enough for the shutter assembly 302 to actuate; such actuation can proceed after the write-enabling voltage has been removed from the row. The capacitors 312 also function as memory elements within the array 320, storing actuation instructions for periods as long as is necessary for the illumination of an image frame.


The pixels 301 as well as the control matrix 300 of the array 320 are formed on a substrate 304. The array includes an aperture layer 322, disposed on the substrate 304, which includes a set of apertures 324 for respective pixels 301 in the array 320. The apertures 324 are aligned with the shutter assemblies 302 in each pixel. In one implementation the substrate 304 is made of a transparent material, such as glass or plastic. In another implementation the substrate 304 is made of an opaque material, but in which holes are etched to form the apertures 324.


Components of shutter assemblies 302 are processed either at the same time as the control matrix 300 or in subsequent processing steps on the same substrate. The electrical components in control matrix 300 are fabricated using many thin film techniques in common with the manufacture of thin film transistor arrays for liquid crystal displays. Available techniques are described in Den Boer, Active Matrix Liquid Crystal Displays (Elsevier, Amsterdam, 2005), incorporated herein by reference. The shutter assemblies are fabricated using techniques similar to the art of micromachining or from the manufacture of micromechanical (i.e., MEMS) devices. Many applicable thin film MEMS techniques are described in Rai-Choudhury, ed., Handbook of Microlithography, Micromachining & Microfabrication (SPIE Optical Engineering Press, Bellingham, Wash. 1997), incorporated herein by reference. Fabrication techniques specific to MEMS light modulators formed on glass substrates can be found in Brosnihan (U.S. Pat. No. 7,405,852) and U.S. application Ser. No. 11/731,628, both incorporated herein by reference in their entirety. For instance, as described in those applications, the shutter assembly 302 can be formed from thin films of amorphous silicon, deposited by a chemical vapor deposition process.


The shutter assembly 302 together with the actuator 303 can be made bi-stable. That is, the shutters can exist in at least two equilibrium positions (e.g. open or closed) with little or no power required to hold them in either position. More particularly, the shutter assembly 302 can be mechanically bi-stable. Once the shutter of the shutter assembly 302 is set in position, no electrical energy or holding voltage is required to maintain that position. The mechanical stresses on the physical elements of the shutter assembly 302 can hold the shutter in place.


The shutter assembly 302 together with the actuator 303 can also be made electrically bi-stable. In an electrically bi-stable shutter assembly, there exists a range of voltages below the actuation voltage of the shutter assembly, which if applied to a closed actuator (with the shutter being either open or closed), holds the actuator closed and the shutter in position, even if an opposing force is exerted on the shutter. The opposing force may be exerted by a spring such as spring 207 in shutter-based light modulator 200, or the opposing force may be exerted by an opposing actuator, such as an “open” or “closed” actuator.


The light modulator array 320 is depicted as having a single MEMS light modulator per pixel. Other embodiments are possible in which multiple MEMS light modulators are provided in each pixel, thereby providing the possibility of more than just binary “on” or “off” optical states in each pixel. Certain forms of coded area division gray scale are possible where multiple MEMS light modulators in the pixel are provided, and where apertures 324, which are associated with each of the light modulators, have unequal areas.


In other embodiments the roller-based light modulator 220 and the light tap 250, as well as other MEMS-based light modulators, can be substituted for the shutter assembly 302 within the light modulator array 320.



FIGS. 4A and 4B illustrate an alternative shutter-based light modulator (shutter assembly) 400 suitable for inclusion in various embodiments of the invention. Because four actuators accomplish the task of moving the shutter (two per side, making up actuators 402 and 404), this arrangement is referred to as a four-spring shutter. The light modulator 400 is an example of a dual actuator shutter assembly, and is shown in FIG. 4A in an open state. FIG. 4B is a view of the dual actuator shutter assembly 400 in a closed state. Shutter assembly 400 is described in further detail in Hagood et al (U.S. Pat. No. 7,271,945) incorporated herein by reference in its entirety. In contrast to the shutter assembly 200, shutter assembly 400 includes actuators 402 and 404 on either side of a shutter 406. Each actuator 402 and 404 is independently controlled. A first actuator, a shutter-open actuator 402, serves to open the shutter 406. A second opposing actuator, the shutter close actuator 404, serves to close the shutter 406. Both actuators 402 and 404 are compliant beam electrode actuators. The actuators 402 and 404 open and close the shutter 406 by driving the shutter 406 substantially in a plane parallel to an aperture layer 407 over which the shutter is suspended. The shutter 406 is suspended a short distance over the aperture layer 407 by anchors 408 attached to the actuators 402 and 404. The inclusion of supports attached to both ends of the shutter 406 along its axis of movement reduces out of plane motion of the shutter 406 and confines the motion substantially to a plane parallel to the substrate.


The shutter 406 includes two shutter apertures 412 through which light can pass. The aperture layer 407 includes a set of three apertures 409. In FIG. 4A, the shutter assembly 400 is in the open state and, as such, the shutter-open actuator 402 has been actuated, the shutter-close actuator 404 is in its relaxed position, and the centerlines of apertures 412 and 409 coincide. In FIG. 4B the shutter assembly 400 has been moved to the closed state and, as such, the shutter-open actuator 402 is in its relaxed position, the shutter-close actuator 404 has been actuated, and the light blocking portions of shutter 406 are now in position to block transmission of light through the apertures 409 (shown as dotted lines).


Each aperture has at least one edge around its periphery. For example, the rectangular apertures 409 have four edges. In alternative implementations in which circular, elliptical, oval, or other curved apertures are formed in the aperture layer 407, each aperture may have only a single edge. In other implementations the apertures need not be separated or disjoint in the mathematical sense, but instead can be connected. That is to say, while portions or shaped sections of the aperture may maintain a correspondence to each shutter, several of these sections may be connected such that a single continuous perimeter of the aperture is shared by multiple shutters.


In order to allow light with a variety of exit angles to pass through apertures 412 and 409 in the open state, it is advantageous to provide a width or size for shutter apertures 412 which is larger than a corresponding width or size of apertures 409 in the aperture layer 407. In order to effectively block light from escaping in the closed state, it is preferable that the light blocking portions of the shutter 406 overlap the apertures 409. FIG. 4B shows a predefined overlap 416 between the edge of light blocking portions in the shutter 406 and one edge of the aperture 409 formed in aperture layer 407.


The electrostatic actuators 402 and 404 are designed so that their voltage displacement behavior provides a bi-stable characteristic to the shutter assembly 400. For each of the shutter-open and shutter-close actuators there exists a range of voltages below the actuation voltage, which if applied while that actuator is in the closed state (with the shutter being either open or closed), will hold the actuator closed and the shutter in position, even after an actuation voltage is applied to the opposing actuator. The minimum voltage needed to maintain a shutter's position against such an opposing force is referred to as a maintenance voltage Vm. A number of control matrices which take advantage of the bi-stable operation characteristic are described in U.S. patent application Ser. No. 11/607,715, referenced above.



FIG. 5 is a plan view of an illustrative embodiment of a light modulation assembly. In this embodiment, a two-spring shutter assembly 500 (so called “two-spring” because there is one load beam (502, 503) each attached to a shutter end (where the shutter end represents either the top or the bottom of the shutter), unlike the “four-spring” shutter assembly 400, where there are two load beams per shutter end. In one embodiment, each load beam (502,503) is connected at one end to the shutter 504 and at the other to an anchor structure (508 for beam 502 and 506 for beam 503).


The shelves within the anchor structures create a reference plane above the substrate to which the load beams are attached. This elevation and connection to the shutter through the load beams (502, 503) help to suspend the shutter 504 a specified distance above the surface. Notice that in one embodiment, these attachment points (510, 512) are on opposite sides of the shutter 504. This embodiment has demonstrated advantages in keeping the shutter from rotating around the axis normal to the substrate surface upon actuation. In other embodiments, the load beams are connected to the other corners of the shutter.


The drive beams (526, 528) are similarly suspended above the surface of the substrate by their anchor structures (522, 524). In operation, the shutter moves from one position to another by the electric attraction of its load beams (502, 503) to their respective drive beams (526, 528). To move the shutter 504 towards drive beam 526, we set the potential of drive beam 526 to a different value than the potential of shutter 504, while keeping drive beam 528 the same potential as shutter 504. Conversely, to drive the shutter in the towards drive beam 528, we set the potential of drive beam 528 to a different value than the potential of shutter 504, while keeping drive beam 526 the same potential as shutter 504. These drive beams are cantilevered beams that are each attached to a respective anchor (522, 524). More is discussed about these in FIGS. 8A and 8B.


The shutter 504 is disposed on a transparent substrate preferably made of glass or plastic. A rear-facing reflective layer disposed on the substrate below the shutter defines a plurality of surface apertures located beneath the shutter. The vertical gap that separates the shutter from the underlying substrate is in the range of 0.1 to 10 microns. The magnitude of the vertical gap is preferably less than the lateral overlap between the edge of shutter and the edge of aperture in the closed state, such as the overlap 416 shown in FIG. 4B.


Shutter Manufacturing



FIG. 6A shows cross sectional detail of a composite shutter assembly 600, including shutter 601, a compliant beam 602, and anchor structure 604 built-up on substrate 603 and aperture layer 606 according to one implementation of the MEMS-based shutter display. The elements of the composite shutter assembly include a first mechanical layer 605, a conductor layer 607, a second mechanical layer 609, and an encapsulating dielectric 611. At least one of the mechanical layers 605 or 609 will be deposited to thicknesses in excess of 0.15 microns, as one or both of the mechanical layers will comprise the principle load bearing and mechanical actuation member for the shutter assembly. Candidate materials for the mechanical layers 605 and 609 include, without limitation, metals such as Al, Cu, Ni, Cr, Mo, Ti, Ta, Nb, Nd, or alloys thereof; dielectric materials such as Al2O3, TiO2, Ta2O5, or Si3N4; or semiconducting materials such as diamond-like carbon, Si, Ge, GaAs, CdTe or alloys thereof. At least one of the layers, such as conductor layer 607, should be electrically conducting so as to carry charge on to and off of the actuation elements. Candidate materials include, without limitation, Al, Cu, Ni, Cr, Mo, Ti, Ta, Nb, Nd, or alloys thereof or semiconducting materials such as diamond-like carbon, Si, Ge, GaAs, CdTe or alloys thereof, especially when the semiconductors are doped with impurities such as phosphorus, arsenic, boron, or aluminum. FIG. 6A shows a sandwich configuration for the composite in which the mechanical layers 605 and 609 with similar thicknesses and mechanical properties are deposited on either side of the conductor layer 607. In some embodiments the sandwich structure helps to ensure that stresses remaining after deposition and/or stresses that are imposed by temperature variations will not act cause bending or warping of the shutter assembly 600.


In some implementations the order of the layers in composite shutter assembly 600 can be inverted, such that the outside of the sandwich is comprised of a conducting layer while the inside of the sandwich is comprised of a mechanical layer.


Further description of materials for use in shutter 601, including the incorporation of materials selected for the absorption or reflection of incident light can be found in Brosnihan (U.S. Pat. No. 7,405,852) incorporated herein in its entirety by reference.


Shutter assembly 600 includes an encapsulating dielectric layer 611. Dielectric coatings can be applied in conformal fashion, such that all bottom, tops, and side surfaces of the shutters and beams are uniformly coated. Such thin films can be grown by thermal oxidation and/or by conformal chemical vapor deposition of an insulator such as Al2O3, Cr2O3, TiO2, HfO2, V2O5, Nb2O5, Ta2O5, SiO2, or Si3N4, or by depositing similar materials by means of atomic layer deposition. The dielectric coating layer can be applied with thicknesses in the range of 5 nm to 1 micron. In some cases sputtering and evaporation can be used to deposit the dielectric coating onto sidewalls.



FIGS. 6B-6E show the process for building shutter assembly 600, including shutter 601, a compliant beam 602, and anchor structure 604 on top of a substrate 603 and aperture layer 606. In many implementations, the shutter assembly is built on top of a pre-existing control matrix, for instance an active matrix array of thin film transistors. The processes used for constructing the control matrix on top of or in conjunction with an aperture layer 606 is described in Brosnihan (U.S. Pat. No. 7,405,852) referred to and incorporated above.



FIG. 6B is a cross sectional view of a first step in the process of forming the shutter assembly 600 according to an illustrative embodiment of the invention. As shown in FIG. 6B, a sacrificial layer 613 is deposited and patterned. Polyimide is a preferred sacrificial material. Other candidate sacrificial materials include polymer materials such as polyamide, fluoropolymer, benzocyclobutene, polyphenyl quinoxylene, parylene, or polynorbornene. These materials are chosen for their ability to planarize rough surfaces, maintain mechanical integrity at processing temperatures in excess of 250 C, and their ease of etch and/or thermal decomposition during removal. Alternate sacrificial layers can be found among the photoresists: polyvinyl acetate, polyvinyl ethylene, and phenolic or novolac resins, although their use will typically be limited to temperatures below 350 C. An alternate sacrificial layer is SiO2, which can be removed preferentially as long as other electronic or structural layers are resistant to the hydrofluoric acid solutions used for its removal (Si3N4 is so resistant). Another alternate sacrificial layer is silicon, which can be removed preferentially as long as other electronic and structural layers are resistant to the fluorine plasmas or XeF2 used for its removal (most metals and/or Si3N4 are so resistant). Yet another alternate sacrificial layer is aluminum, which can be removed preferentially as long as other electronic or structural layers are resistant to strong base (concentrated NaOH) solutions (Cr, Ni, Mo, Ta, and Si are so resistant). Still another alternate sacrificial layer is copper, which can be removed preferentially as long as other electronic or structural layers are resistant to nitric or sulfuric acid solutions (Cr, Ni, and Si are so resistant).


Next the sacrificial layer 613 is patterned to expose holes or vias at the anchor regions 604. The preferred polyimide material and other polymer resins can be formulated to include photoactive agents—enabling regions exposed through a UV photomask to be preferentially removed in a developer solution. Other sacrificial layers 613 can be patterned by coating the sacrificial layer in an additional layer of photoresist, photopatterning the photoresist, and finally using the photoresist as an etching mask. Other sacrificial layers can be patterned by coating the sacrificial layer with a hard mask, which can be a thin layer of SiO2 or metal such as chromium. A photopattern is then transferred to the hard mask by means of photoresist and wet chemical etching. The pattern developed in the hard mask can be very resistant to dry chemical, anisotropic, or plasma etching—techniques which can be used to impart very deep and narrow anchor holes into the sacrificial layer.


After the anchor 604 or via regions have been opened in the sacrificial layer, the exposed and underlying conducting surface 614 can be etched, either chemically or via the sputtering effects of a plasma, to remove any surface oxide layers. Such a contact etching step can improve the ohmic contact between the underlying conductor and the shutter material.


After patterning of the sacrificial layer, any photoresist layers or hard masks can be removed through use of either solvent cleans or acid etching.


Next, in the process for building shutter assembly 600, as shown in FIG. 6C, the shutter materials are deposited. The shutter assembly 600 is composed of multiple thin films 605, 607, and 609. In a preferred embodiment the first mechanical layer 605 is an amorphous silicon layer, deposited first, followed by a conductor layer 607 comprised of aluminum, followed by a second layer 609 of amorphous silicon. The deposition temperature used for the shutter materials 605, 607, and 609 is below that at which physical degradation occurs for the sacrificial layer. For instance, polyimide is known to decompose at temperatures above 400 C. The shutter materials 605, 607 and 609 can be deposited at temperatures below 400 C, thus allowing usage of polyimide as a sacrificial material. Hydrogenated amorphous silicon is a useful mechanical material for layers 605 and 609 since it can be grown to thicknesses in the range of 0.1 to 3 microns, in a relatively stress-free state, by means of plasma-assisted chemical vapor deposition (PECVD) from silane gas at temperatures in the range of 250 to 350 C. Phosphene gas (PH3) is used as a dopant so that the amorphous silicon can be grown with resistivities below 1 ohm-cm. In alternate embodiments, a similar PECVD technique can be used for the deposition of Si3N4, silicon-rich Si3N4, or SiO2 materials as the mechanical layer 605 or for the deposition of diamond-like carbon, Ge, SiGe, CdTe, or other semiconducting materials for mechanical layer oxynitride 605. An advantage of the PECVD deposition technique is that the deposition can be quite conformal, that is, it can coat a variety of inclined surfaces or the inside surfaces of narrow via holes. Even if the anchor or via holes which are cut into the sacrificial material present nearly vertical sidewalls, the PECVD technique can provide a continuous coating between the bottom and top horizontal surfaces of the anchor.


In addition to the PECVD technique, alternate techniques available for the growth of shutter layers 605 or 609 include RF or DC sputtering, metal-organic chemical vapor deposition, evaporation, electroplating or electroless plating.


For the conducting layer 607, a metal thin film such as Al is preferred, although alternates such as Cu, Ni, Mo, or Ta can be chosen. The inclusion of such a conducting material serves two purposes. It reduces the overall sheet resistance of the shutter material and it helps to block the passage of visible light through the shutter material. (Amorphous silicon can be doped to be conductive, however, if grown to thicknesses of less than 2 microns can transmit visible light to some degree.) The conducting material can be deposited either by sputtering or, in a more conformal fashion, by chemical vapor deposition techniques, electroplating, or electroless plating.


The process for building the shutter assembly 600 continues in FIG. 6D. The shutter layers 605, 607, and 609 are photomasked and etched while the sacrificial layer 613 is still on the wafer. First a photoresist material is applied, then exposed through a photomask, and then developed to form an etch mask. Amorphous silicon, silicon nitride, and silicon oxide can then be etched in fluorine-based plasma chemistries. SiO2 mechanical layers can be etched using HF wet chemicals; and any metals in the conductor layers can be etched with either wet chemicals or chlorine-based plasma chemistries.


The pattern shapes applied through the photomask at FIG. 6D influence the mechanical properties, such as stiffness, compliance, and the voltage response in the actuators and shutters of the shutter assembly 600. The shutter assembly 600 includes a compliant beam 602, shown in cross section. Compliant beam 602 is shaped such that the width is less than the total height or thickness of the shutter material. It is preferable to maintain a beam dimensional ratio of at least 1.4:1, with the beams 602 being taller or thicker than they are wide.


The process for building the shutter assembly 600 continues as depicted in FIG. 6E. The sacrificial layer 613 is removed, which frees-up all moving parts from the substrate 603, except at the anchor points. Polyimide sacrificial materials are preferably removed in an oxygen plasma. Other polymer materials used for sacrificial layer 613 can also be removed in an oxygen plasma, or in some cases by thermal pyrolysis. Some sacrificial layers 613 (such as SiO2) can be removed by wet chemical etching or by vapor phase etching.


In a final process, not shown in FIG. 6E but shown in FIG. 6A, a dielectric coating 611 is deposited on all exposed surfaces of the shutter. Dielectric coatings 611 can be applied in conformal fashion, such that all bottom, tops, and side surfaces of the shutters 601 and beams 602 are uniformly coated using chemical vapor deposition. Al2O3 is a preferred dielectric coating for layer 611, which is deposited by atomic layer deposition to thicknesses in the range of 10 to 100 nanometers.


Finally, anti-stiction coatings can be applied to the surfaces of all shutters 601 and beams 602. These coatings prevent the unwanted stickiness or adhesion between two independent beams of an actuator. Applicable coatings include carbon films (both graphite and diamond-like) as well as fluoropolymers, and/or low vapor pressure lubricants. These coatings can be applied by either exposure to a molecular vapor or by decomposition of a precursor compounds by means of chemical vapor deposition. Anti-stiction coatings can also be created by the chemical alteration of shutter surfaces, as in the fluoridation, silanization, siloxidation, or hydrogenation of insulating surfaces.


The Sidewall Beams Process


U.S. Pat. No. 7,271,945, incorporated herein by reference in its entirety, describes a number of useful designs for shutter assemblies and actuators. One class of suitable actuators for use in MEMS-based shutter displays include compliant actuator beams for controlling shutter motion that is transverse to or in-the-plane of the display substrate. The voltage necessary for the actuation of such shutter assemblies decreases as the actuator beams become more compliant. The control of actuated motion also improves if the beams are shaped such that in-plane motion is preferred or promoted with respect to out-of-plane motion. In a preferred design the compliant actuator beams have a rectangular cross section, such as beam 602 of FIG. 6A, such that the beams are taller or thicker than they are wide.


The stiffness of a long rectangular beam with respect to bending within a particular plane scales with the thinnest dimension of that beam in that plane to the third power. It is of interest, therefore, to reduce the width of the compliant beams as far as possible to reduce the actuation voltages for in-plane motion. When using conventional photolithography equipment to define and fabricate the shutter and actuator structures, however, the minimum width of the beams is usually limited to the resolution of the exposure optics. And although photolithography equipment has been developed for defining patterns in photoresist with features as narrow as 15 nanometers, such equipment is expensive and the areas over which patterning can be accomplished in a single exposure are limited. For economical photolithography over large panels of glass, the patterning resolution or minimum feature size is typically limited to 1 micron or 2 microns or greater.


U.S. Patent Application Publication No. US 2007/0002156 describes a technique, illustrated in FIGS. 7A through 7D, whereby a shutter assembly 700 with compliant actuator beams 716 can be fabricated at dimensions well below the conventional lithography limits on large glass panels. In the process of FIGS. 7A through 7D, the compliant beams of shutter assembly 700 are formed as sidewall features on a mold made from a sacrificial material. The process is referred to as a sidewall beams process.


The process of forming a shutter assembly 700 with sidewall beams begins, as shown in FIG. 7A, with the deposition and patterning of a first sacrificial material 701. The pattern defined in the first sacrificial material creates openings or vias 702 within which anchors for the shutter will eventually be formed. The deposition and patterning of the first sacrificial material 701 is similar in concept, and uses similar materials, as those described for the deposition and patterning described in relation to FIGS. 6A-6E.


The process of forming sidewall beams continues with the deposition and patterning of a second sacrificial material 705. FIG. 7B shows the shape of a mold 703 that is created after patterning of the second sacrificial material 705. The mold 703 also includes the first sacrificial material 701 with its previously defined vias 702. The mold 703 in FIG. 7B includes two distinct horizontal levels: The bottom horizontal level 708 of mold 703 is established by the top surface of the first sacrificial layer 701 and is accessible in those areas where the second sacrificial layer 705 has been etched away. The top horizontal level 710 of the mold 703 is established by the top surface of the second sacrificial layer 705. The mold 703 illustrated in FIG. 7B also includes substantially vertical sidewalls 709.


Materials for use as sacrificial materials 701 and 705 are described above with respect to sacrificial material 613.


The process of forming sidewall beams continues with the deposition and patterning of the shutter material onto all of the exposed surfaces of the sacrificial mold 703, as depicted in FIG. 7C. The preferred materials for use in shutter 712 are described above with respect to the shutter materials 605, 607, and 609. Alternate shutter materials and/or shutter coatings are described in Brosnihan (U.S. Pat. No. 7,405,852). The shutter material is deposited to a thickness of less than about 2 microns. In some implementations, the shutter material is deposited to have a thickness of less than about 1.5 microns. In other implementations, the shutter mater is deposited to have a thickness of less than about 1.0 microns, and as thin as about 0.10 microns. After deposition, the shutter material (which may be a composite shutter as described above) is patterned, as shown in FIG. 7C. The pattern developed into the photoresist is designed such that shutter material remains in the region of shutter 712 as well as at the anchors 714.


Particular equipment and chemistries are also chosen for the etching process used at the step shown in FIG. 7C, known in the art as an anisotropic etch. The anisotropic etch of the shutter material is carried out in a plasma atmosphere with a voltage bias applied to the substrate, or to an electrode in proximity to the substrate. The biased substrate (with electric field perpendicular to the surface of the substrate) leads to acceleration of ions toward the substrate at an angle nearly perpendicular to the substrate. Such accelerated ions, coupled with the etching chemicals, lead to etch rates that are much faster in a direction that is normal to the plane of the substrate as compared to directions parallel to the substrate. Undercut-etching of shutter material in the regions protected by photoresist is thereby substantially eliminated. Along sidewall surfaces 709 of mold 703, which are substantially parallel to the track of the accelerated ions, the shutter material is also substantially protected from the anisotropic etch. Such protected sidewall shutter material will later form compliant beams 716 for supporting the shutter 712. Along other (non-photoresist-protected) horizontal surfaces of the mold, such as top horizontal surface 710 or bottom horizontal surface 708, the shutter material has been completely removed by the etch.


The anisotropic etch used to form sidewall beams 716 can be achieved in either an RF or DC plasma etching device as long as provision for electrical bias of the substrate, or of an electrode in close proximity of the substrate, is supplied. For the case of RF plasma etching, an equivalent self-bias can be obtained by disconnecting the substrate holder from the grounding plates of the excitation circuit, thereby allowing the substrate potential to float in the plasma. In one implementation it is possible to provide an etching gas such as CHF3, C4F8, or CHCl3 in which both carbon and hydrogen and/or carbon and fluorine are constituents in the etch gas. When coupled with a directional plasma, achieved again through voltage biasing of the substrate, the liberated C, H, and/or F atoms can migrate to the sidewalls 709 where they build up a passive or protective quasipolymer coating. This quasi-polymer coating further protects the sidewall beams 716 from etching or chemical attack.


The process of forming sidewall beams is completed with the removal of the remainder of the second sacrificial layer 705 and the first sacrificial layer 701, the result being shown in FIG. 7D. The process of removing sacrificial material is similar to that described with respect to FIG. 6E. The material deposited on the sidewalls 709 of the mold 703 remain as the compliant beams 716. The compliant beams 716 mechanically connect the anchors 714 to the shutter 712. The anchors connect to an aperture layer 725. The compliant beams 716 are tall and narrow. The width of the sidewall beams 716, as formed from the surface of the mold 703, is similar to the thickness of the shutter material as deposited. In some cases the beam width at 716 will be the same as the thickness of the horizontal shutter material at 712, in other cases the beam width will be only about ½ the thickness of the shutter material. The height of the sidewall beams 716 is determined by the thickness of the second sacrificial material 705, or in other words, by the depth of the mold 703 as created during the patterning step described in relation to FIG. 7B. As long as the thickness of the deposited shutter material is chosen to be less than 2 microns (for many applications the thickness range of 0.1 to 2.0 micron is suitable), the method illustrated in FIGS. 7A-7D is well suited for the production of very narrow beams. Conventional photolithography would limit the patterned features shown in FIGS. 7A, 7B, and 7C to much larger dimensions, for instance allowing minimum resolved features no smaller than 2 microns or 5 microns.



FIG. 7D depicts an isometric view of a shutter assembly 700, formed after the release step in the above-described process, yielding compliant beams with cross sections of high aspect ratio. As long as the thickness of the second sacrificial layer is, for example, greater than 4 times larger than the thickness of the shutter material, the resulting ratio of beam height to beam width will be produced to a similar ratio, i.e. greater than 4.


An optional step, not illustrated above but included as part of the process leading to FIG. 7C, involves isotropic etching of sidewall beams 716 to separate or decouple beams formed along the sidewalls of mold 703. For instance, the shutter material at point 724 has been removed from the sidewall through use of an in isotropic etch. An isotropic etch is one whose etch rate is the same in all directions, so that sidewall material in regions such as point 724 is no longer protected. The isotropic etch can be accomplished in the typical plasma etch equipment as long as a bias voltage is not applied to the substrate. Isotropic etch can also be achieved using wet chemical or vapor phase etching techniques. The separation of beams at point 724 is achieved through a distinct sequence of photoresist dispense, patterning, and etch. The photoresist pattern in this case is designed to protect the sidewall beams 716 from the isotropic etch chemistry but expose the sidewall beams at point 724.


As a final step in the sidewall process, an encapsulating dielectric, such as dielectric 611 is deposited around the outside surfaces of the sidewall beams.


In order to protect the shutter material deposited on sidewalls 709 of the mold 703 and to produce sidewall beams 716 of substantially uniform cross section, some particular process guidelines can be followed. For instance, in FIG. 7B, the sidewalls 709 can be made as vertical as possible. Slopes at the sidewalls 709 and/or exposed surfaces become susceptible to the anisotropic etch. Vertical sidewalls 709 can be produced if the patterning step at FIG. 7B, the patterning of the second sacrificial material 705, is also carried out in anisotropic fashion. The use of an additional photoresist coating or a hard mask in conjunction with patterning of the second sacrificial layer 705 makes it possible to employ aggressive plasmas and/or high substrate bias in the anisotropic etch of the second sacrificial material 705 without fear of excessive wear of the photoresist. Vertical sidewalls 709 can also be produced in photoimageable sacrificial materials as long as care is taken to control the depth of focus during the UV exposure and excessive shrinkage is avoided during final cure of the resist.


Another process specification that helps during sidewall beam processing regards the conformality of the shutter material deposition. The surfaces of the mold 703 are preferably covered with similar thicknesses of shutter material, regardless or the orientation of those surfaces, either vertical or horizontal. Such conformality can be achieved when depositing with a chemical vapor deposition technique (CVD). In particular, the following conformal techniques can be employed: plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), and atomic or self-limited layer deposition (ALD). In the above CVD techniques the growth rate of the thin film can be limited by reaction rates on a surface as opposed to exposing the surface to a directional flux of source atoms. In such conformal deposition techniques, the thickness of material grown on vertical surfaces is preferably at least 50% of the thickness of material grown on horizontal surfaces. Alternatively, shutter materials can be conformally deposited from solution by electroless plating or electroplated, as long as a metal seed layer is provided that uniformly coats all surfaces before plating.


Anchor Structure


Given the limitations of the MEMS sidewall beams process described above, many of the structures available in larger mechanical structures (e.g. dowels, pins, hinges, trusses, etc.) are either impossible or impractical. Instead, concepts more closely related to cardboard corrugation are needed, specifically, the creation of complex, shell structures. Shells are well defined in the two references, Theory of Plates and Shells by Stephen P. Timoshenko and S. Woinowsky-Kreiger (1964), and Thin Elastic Shells by Harry Kraus (1967).


The shutter assembly, beams, and anchor structures are shell structures formed using the MEMS sidewall beams process described above. The load-bearing anchoring structure is constructed using two basic elements, a sidewall and a shelf. Both of these surfaces may be totally or partially flat, curved, angled, or multi-faceted, with the distinction that a sidewall is a primarily non-horizontal surface with respect to the plane of the substrate, and a shelf is a surface primarily parallel to the plane of the substrate. The sidewall and shelf surfaces are substantially orthogonal to each other, where the angle between such substantially orthogonal surfaces shall not be less than 20 degrees or greater than 160 degrees.


The anchor structure is formed using a combination of the above-described sidewalls and shelves in order to enhance the second moment of inertia about one or more axes. Also known as the second moment of area, the second moment of inertia of a structure predicts its resistance to bending and is dependent on the geometry of the cross-section of the structure. For example, 1-beams have a higher second moment of inertia than other beams of the same cross-sectional area and are the preferred building material because of their resistance to bending. Constructing anchor structures from coupled or interconnected sidewalls and shelves creates structures with a higher second moment of inertia that resists the deflection of beams attached to them. The above effect is better understood when we look at the simplest structural element using this principle.


The use of a combination of sidewalls and shelves to create a corrugated anchor structure not only increases the second moment of inertia about one or more axes but also increases the polar moment of inertia about one or more axes and therefore increases the torsional stiffness of the anchor structure. Any increase in the second moment of inertia by changing the anchor structure will also generally result in an increase of the polar moment of inertia of that same anchor structure. In any subsequent references to the enhancement of the second moment of inertia, an enhancement of the polar moment of inertia is also implied, and vice versa.



FIG. 13A illustrates a simple anchor structure, constructed from the combination of the sidewalls and shelves described above. These elements can be combined in various embodiments to construct a stiffer anchor structure. One of the critical functions of the anchor structure is to secure the shutter assembly to the underlying substrate. The substrate surface onto which the anchor is attached is also referred to as a primary or horizontal surface. The part of the anchor structure attached or coupled to the substrate surface and is comprised of one or more sidewalls is the non-horizontal elevating portion (NHEP) 1504. In one embodiment, this NHEP is formed by at least one sidewall. Other embodiments may be formed by the combination of two or more vertically-coupled NHEPs that form a vertical corner rising from the substrate. Yet other embodiments may be formed out of two or more vertically unconnected (or partially-coupled) NHEPs. These non-horizontal elevating portions also provide the critical vertical separation of the beams and shutter body from the substrate.


Coupled to the NHEP is the substantially horizontal shelf, 1506. In one embodiment the substantially-horizontal shelf portions are all coupled, generating a surface with increased torsional stiffness in all axes. In alternate embodiments, the shelf portions may be partially coupled or connected. The shelf represents a substantially-horizontal surface on which to create a non-horizontal, shell-stiffening portion (NHSSP) 1510 to which the beam 1502 is coupled or connected. The beam 1502 can be connected to NHSSP 1510 at any location other than that connected to the shelf 1506. FIG. 14 depicts some of these possible configurations. Although in the embodiment illustrated in FIG. 13A the NHSSP is placed on top of the shelf, alternate embodiments where the NHSSP “hangs” from the shelf are also possible, as depicted in FIG. 14B. FIGS. 14C-D depict embodiments where beam 1502 is a horizontal beam, and it attaches to the upper portion of the NHSSP from the substantially horizontal shelf 1506. FIG. 14D shows a similar embodiment to FIG. 14C where beam 1502 is also horizontal but in this case the beam attaches to the lower portion of the NHSSP. Because the above structures are created using a MEMS sidewall process, they are essentially portions of a single shell.


The structure shown in FIG. 13A has significant advantages in stiffness and support of any beams coupled to it, especially over the simple coupling of beams to the non-horizontal elevating portions (NHEP). To see why. We see in FIG. 13A that the non-horizontal shell stiffening portion 1510 is provided with a much larger surface of support 1506 than if it were simply connected to the NHEP 1504. This translates into a smaller tendency by the beam 1502 to bend as a result of the shutter movement. Similarly, any rotation along the axis of the beam 1502 is countered by the resistance of the much larger surface of the shelf 1506.


The combination of non-horizontal portions (be they elevating portions, NHEP, or shell stiffening portions, NHSSP) coupled to substantially-horizontal shelf sections has the effect of creating structural folds, similar to corrugated cardboard construction, such as in FIG. 17. These structural folds provide additional stiffness to the anchor and also ensure the required elevation for the beams above the substrate.



FIG. 13B illustrates an example embodiment that further enhances the stiffness of the anchor by adding NHSSP 1512, which couples to NHSSP 1510 and shelf 1506. The resulting anchor structure increases the resistance of the beam 1502 to vertical deflection, and also increases the resistance of the beam 1502 to torsion, or rotation along its length axis. This in turn increases the resistance of such a beam to forces that may deflect the beam and resultantly the shutter attached to the beam up or down. Note that many structures would make this possible, including one where the angle of the NHSSP to the shelf is substantially shallow, as long as the NHSSPs are continuously coupled to each other and the shelf.


Finally, FIG. 13C extends from FIG. 13B by adding NHSSP 1514, which couples to both NHSSP 1512 and shelf 1506, and further stiffens the anchor structure.


While FIGS. 13A-C illustrate the case when the anchor structure is built using near-orthogonal surfaces, it is clear many embodiments are possible utilizing alternate angles. While the most efficient increase in stiffness is generated by maximizing the orthogonality between elements, any continuous change of angle between elements contributes to stiffness. Therefore, though the optimal angle is 90 degrees, the stiffness is affected given any change of angle between NHEP 1512 and NHEP 1510. Thus, we can see in the illustrative embodiments of FIGS. 12D (round bend), 12E (semi-circular loop) and 12F (Triangular bend) that a similar effect to that of FIG. 12A is created.



FIG. 12D illustrates an example embodiment (similar to that of FIG. 12B) where the substantially-orthogonal NHSSPs 1510 and 1512 are implemented as a single, continuous entity. In such an embodiment, two or more unit normal vectors taken from the surface of the non-horizontal shell stiffening portion 1520 are substantially different.


Similarly, in FIG. 12E, the combined NHSSPs 1510, 1512, and 1514 of FIG. 13C are combined into a single, continuous U structure, where again, two or more unit normal vectors taken from the surface of the non-horizontal shell stiffening portion 1522 are substantially different.


Finally, angles other than near-orthogonal ones may be used, as seen in FIG. 12F. NHSSPs coupled to each other at an angle less than 90 degrees and closer to 45 degrees is used to generate an anchor structure that is resistant to deflection and torsion.


As was seen in the standard embodiment illustrated in FIG. 10, the above is the minimum, but significantly enhanced performance may be obtained when more sidewall/shelf combinations are used. Thus, as seen in the various anchor structures in the illustrative examples shown in FIGS. 10, 11, 12, 15, 16, and 17, the above concept may be embodied through various shelf/sidewall pairings.


Dual Anchors



FIG. 8A illustrates a portion of a light modulation assembly 802 including dual compliant actuator assemblies 804 and 805 which are functionally similar to the actuators 402 and 404 designed for the shutter assembly 400 according to an illustrative embodiment of the invention. A design like this is referred to as a four-spring design, for each shutter end has two load beams (808, 809, 820, 822) attached to them. The actuators on one side, e.g. the shutter-open actuators, include drive beams (806, 807) along with compliant load beams (808, 809). The load beams (808, 809) support the shutter 810 at one of its ends, and are attached to respective load beam anchors (812, 813) at the other. Both of the drive beams (806, 807) are attached to a central drive beam anchor 814 at one end of said beam and attached to supplementary drive beam anchors (816, 817) at the other end of the beam. The arrangement is repeated on the other end of the shutter (820, 822). The load beams on the other side of the shutter (820, 822) are associated with the shutter-closed actuator 805.


The supplementary drive beam anchors (816, 817) act to limit the deformation or shape change which might otherwise occur within the drive beams (806, 807). A mechanical beam, such as beam 806, which is fixed, supported, or anchored at two points along its length will more easily retain its shape even under the influence of residual stresses or external loads. Note that the drive beam 806 is still free to move or deform at points in between the anchors 814 and 816 and is therefore partially compliant, so that the actuation voltage of the actuator assembly 804 is still less than would be the case with a completely rigid drive beam.


Looped Beams



FIG. 8B illustrates a portion of a shutter assembly 852 including dual compliant actuator assembly 854, which is functionally similar to the actuator 404 designed for the shutter assembly 400 according to an illustrative embodiment of the invention. The actuator assembly 854 includes compliant drive beams (856, 857) along with compliant load beams (858, 859). The load beams (858, 859) support the shutter 860 on one end and are respectively attached to load beam anchors (862, 863) at the other end. The drive beams (856, 857) are formed into a loop wherein each end of the drive beam is attached to a common anchor 864. Along the loop there is a section of outgoing beam which is substantially parallel to a returning section of the same beam. When formed in a sidewall beam process, the stresses which would tend to deform the outgoing section of the looped drive beam (856, 857) will mirror or oppose the stresses along the returning section of beam. The forces which would otherwise cause the drive beam to bend or move from its designed position are therefore substantially cancelled, and the distal position of the looped drive beams (856, 857) does not move substantially after removal from the mold.


Partial or Asymmetrical Looped Beams



FIG. 9 illustrates a portion of a shutter assembly 902 including dual compliant actuator assembly 904 which is functionally similar to the actuator assembly 404 designed for the shutter assembly 400 according to one illustrative embodiment of the invention. The actuator assembly 904 includes compliant drive beams (906, 907) along with compliant load beams (908, 909). The load beams (908, 909) support the shutter 910 on one end and are attached to respective load beam anchors (912, 913) at the other end. Both of the drive beams (906, 907) are attached to a central drive beam anchor 914 at one end and attached to respective drive beam supplementary anchors (916, 917) at the other end.


The drive beam supplementary anchors (916, 917) are positioned and the drive beams (906, 907) are shaped so as to form a partial loop. Along the loop there is a section of beam which projects out from the central anchor 914 which is substantially parallel to a returning section of the same beams before they are respectively attached to supplementary anchors (916, 917). The lengths of these two straight line sections in the loop are not equal. This asymmetry provides the opportunity to create or allow for an advantageous shape change in the loop after release from the mold. Either because of residual stresses, or because of a length change (shrinkage or expansion) along the drive beams (906, 907), the forces experienced at the distal end of the loop can cause it be move in a direction parallel to the substrate. A small or controlled motion of the distal end of drive beam 906 after release from the mold and in a direction toward the load beams (908, 909) can thereby be promoted. This motion can be accomplished with a minimum risk that the drive beams (906, 907) and the load beams (908, 909) will actually touch before the encapsulating dielectric is applied.



FIG. 10 shows an trimetric projection of light-modulator assembly 1000 including dual-compliant actuators on each end of the shutter 1002, according to an illustrative embodiment of the invention. The actuator assembly includes compliant drive beams (1004, 1006) along with compliant load beams (1008, 1010). The load beams (1008, 1010) support shutter 1002 at one end and are each attached to a load beam anchor (1012, 1014) at the other end. The drive beams (1004, 1006) are formed into a loop wherein each end of the drive beam is attached to common anchor 1016. The drive beams are cantilevered (supported only on one side) to anchor 1016, and loops (1004L, 1006L) are free to move.


As discussed with respect to shutter assembly 852, the inclusion of a looped shape for drive beams 1004L and 1006L helps to minimize any in-plane deflection of the drive beams that might result from stresses in the beams. However, there is still a concern that the drive beams are prone to change their elevation above the substrate as a result of its own stresses.


A change in elevation above the substrate of the shutter load beam (1008, 1010) could subsequently change the elevation of the shutter. The designer prefers to maintain the shutter at a certain fixed elevation above the aperture. If the shutter is too close to the substrate, the result could be the shutter permanently “sticking” to the substrate. Such contact risks the loss of shutter movement, and could result in a potential loss of a pixel in the display. Conversely, if the shutter were elevated above its design elevation, light leakage may increase. This would result in loss of optical contrast at that pixel.


As seen in FIG. 10, the design of anchor 1016 of the drive electrode of the four-spring shutter assembly 1000 has significant stiffening elements. (A closer view of this drive electrode is depicted in FIG. 11.) Its anchor base 1100 is securely attached to the substrate. Coupled to the anchor base, sidewall well 1102 is comprised of several NHEP sidewalls and provides the critical rise in elevation of the beams above the substrate. Shelf 1104 is coupled to the top of the sidewall well 1102. A set of NHSSP sidewalls 1105 couples to shelf 1104 and 1106, which in turn couples to NHSSP 1108 and then to shelf 1110. This corrugated structure formed by the intersections of NHSSP sidewalls and shelves provide improved resistance to deflection and torsion of beam 1004 and 1006, i.e. an enhancement of the second and polar moments of inertia.


In one embodiment, an anchor can be constructed in which the three-sided sidewall 1105 and 1108 and shelf 1106 are not continuous. In other words, there is a break in 1105, 1108, and 1106 along the symmetry axis of the anchor. However, if a structure like this is used, the looped ends of the drive beams (1004, 1006) tend to deflect towards the substrate under certain stresses. The resulting deflection down in elevation at the looped end of the beams has been shown to be as much as 1.5 micrometers. Such a downward deflection could cause the drive beams to touch the substrate, hindering the movement of the beams. Under different stresses, the drive beams may tend to deflect away from the substrate. Any out-of-plane deflection would misalign the drive beams (1004, 1006) to the shutter load beams (1008, 1010) and would reduce the electrostatic force between them and impair actuation.


The addition of the continuous sidewall and shelf combination (1105, 1106, 1108) creates a stiffer anchor, more resistant to deflection and torsion, as seen in FIG. 18B. In another embodiment, depicted in FIG. 18A, an additional shelf 1110 is formed that couples to sidewall 1108 and to sidewall 1112, which continues and connects to outside loop sidewall 1116 and couples to shelf 1114. Again, the substantially orthogonal sidewall-shelf combinations create a corrugation effect that translates into an enhancement of the second moment of inertia of the anchor of drive beams 1004 and 1006. Using such an embodiment, the drive beams has been shown to deflect out-of-plane by only 0.15 micrometers. The inclusion of anchors with structures implementing two or more perpendicular wall-shelf combinations creates a solid base for the compliant beam that resists flexing and torsion along the beam.


In one embodiment, space is efficiently used by making the width of shelf 1104 (that is, the distance connecting sidewall 1105 to the sidewall well less than 100 times the thickness of the side beam. This results in a small anchor footprint with minimal distance between parallel walls.


A similar structure may be used in the construction of the shutter load beam anchors (1012, 1014). FIG. 15 illustrates an embodiment of shutter anchor 1012, which is the anchor for shutter load beam 1008. This anchor is a mirror of anchor 1014. The anchor base 1200 is attached to the substrate, and the anchor bottom well is formed by the NHEP sidewall 1202, which is coupled to base 1200. Shelf 1204 is coupled to NHEP sidewall well 1202 and serves as the base for the NHSSP sidewall 1206. The compliant shutter load beam 1008 is coupled to NHSSP sidewall 1206. There is also an additional shelf 1208 coupled to NHSSP sidewall 1206 that enhances the anchor stiffness. The coupling of the substantially orthogonal shelf-sidewall combinations serves to stiffen (by increasing its second and polar moments of inertia) the anchoring point for compliant shutter load beam 1008. A stiffer anchor resists torsion and vertical deflection of the compliant shutter load beam 1008 from its own stresses or that of the shutter.



FIG. 16 depicts a trimetric projection of a possible embodiment of the two-spring shutter seen in FIG. 5. As in the four-spring embodiment, a drive beam (526, 528) that is attached to an anchor (522, 524) is designed to electrostatically attract a compliant shutter load beam (502, 503), which is attached to an anchor (508, 506) and shutter 504 at a shutter connection point (510, 512). Unlike the four-spring shutter assembly, the compliant load beam (502, 503) of the two-spring embodiment spans the complete shutter structure 504. While efficient, a longer beam tends to amplify any undesirable behavior due to torsional or deflection effects of drive beams (526, 528), load beams (502, 503), and shutter 504.


The critical area for supporting the load beam 502 occurs at anchor point 508. The anchor is made stiffer by the inclusion of two perpendicular shelf-sidewall combinations in a fashion similar to that described in FIG. 15 above.



FIG. 17 is a close-up of an illustrative embodiment of drive beam anchor 522 from FIG. 16 in a two-spring embodiment. The drive beam anchor is attached to the substrate by two anchor bases (1402, 1404), around which NHEP sidewall wells (1406, 1408) are coupled. Shelves (1410, 1412) are coupled to the NHEP sidewall wells around their periphery. NHSSP sidewall 1414 couples to and connects shelves (1410, 1412) and continues around to form the looped drive beam 526. An additional shelf 1416 is connected on top of NHSSP 1414, which provides additional anchor stiffness. Again, by providing two or more substantially orthogonal sidewall/shelf combinations, a structure is created that is a solid base for the beam, allowing less out-of-plane flexing of the cantilevered beam attached to it.


Constructing substantially orthogonal sidewall and shelf combinations in anchors can similarly be used where the shutter load beam connects to the shutter and in the shutter structure itself. These sidewall and shelf combinations in the shutter structure create stiffening ribs that not only maximize the second moment of inertia with respect to shutter elevation but also minimize shutter deformation and torsion due to inherent and/or applied stresses.


In concluding the detailed description, it should be noted that it would be obvious to those skilled in the art that many variations and modifications can be made to the preferred embodiment without substantially departing from the principles of the present invention. Also, such variations and modifications are intended to be included herein within the scope of the present invention as set forth in the appended claims. Further, in the claims hereafter, the structures, materials, acts and equivalents of all means or step-plus function elements are intended to include any structure, materials or acts for performing their cited functions.


It should be emphasized that the above-described embodiments of the present invention, particularly any preferred embodiments are merely possible examples of the implementations, merely set forth for a clear understanding of the principles of the invention. Any variations and modifications may be made to the above-described embodiments of the invention without departing substantially from the spirit of the principles of the invention. All such modifications and variations are intended to be included herein within the scope of the disclosure and present invention and protected by the following claims.


The present invention has been described in sufficient detail with a certain degree of particularity. The utilities thereof are appreciated by those skilled in the art. The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The forgoing embodiments are therefore to be considered in all respects illustrative, rather than limiting of the invention. It is understood to those skilled in the art that the present disclosure of embodiments has been made by way of examples only and that numerous changes in the arrangement and combination of parts may be resorted without departing from the spirit and scope of the invention as claimed. Accordingly, the scope of the present invention is defined by the appended claims rather than the forgoing description of embodiments.

Claims
  • 1. A MEMS device comprising: a substrate including a surface;a shutter suspended over the surface, the shutter including a first side and second side, the second side being substantially opposite to the first side along an axis of movement of the shutter;a first actuator coupled to the first side of the shutter via a first compliant beam; anda second actuator coupled to the second side of the shutter via a second compliant beam,wherein the first actuator is the only actuator coupled to the first side of the shutter.
  • 2. The MEMS device of claim 1, wherein the first compliant beam includes an attachment point to the shutter that is substantially along the axis of movement of the shutter.
  • 3. The MEMS device of claim 2, wherein the second compliant beam includes an attachment point to the shutter that is substantially along the axis of movement of the shutter.
  • 4. The MEMS device of claim 1, wherein the shutter is in a first position along the axis of movement in response to the first actuator being in a relaxed state and the second actuator being in an actuated state.
  • 5. The MEMS device of claim 1, wherein the shutter is in a second position along the axis of movement in response to the first actuator being in an actuated state and the second actuator being in a relaxed state.
  • 6. The MEMS device of claim 1, wherein the shutter includes one or more shutter apertures.
  • 7. The MEMS device of claim 1, wherein the first compliant beam includes a first electrode.
  • 8. The MEMS device of claim 7, wherein the second compliant beam includes a second electrode.
  • 9. The MEMS device of claim 1, wherein the surface includes an aperture for allowing the passage of light over which the shutter is at least partially suspended.
  • 10. A MEMS device comprising: a substrate including a surface;a shutter suspended over the surface, the shutter including a first side and second side, the second side being substantially opposite to the first side along an axis of movement of the shutter;a first means for moving the shutter coupled to the first side of the shutter via a first compliant beam; anda second means for moving the shutter coupled to the second side of the shutter via a second compliant beam,wherein the first means is the only means coupled to the first side of the shutter.
  • 11. The MEMS device of claim 10, wherein the first compliant beam includes an attachment point to the shutter that is substantially along the axis of movement of the shutter.
  • 12. The MEMS device of claim 11, wherein the second compliant beam includes an attachment point to the shutter that is substantially along the axis of movement of the shutter.
  • 13. The MEMS device of claim 10, wherein the shutter is in a first position along the axis of movement in response to the first means for moving the shutter being in a relaxed state and the second means for moving the shutter being in an actuated state.
  • 14. The MEMS device of claim 10, wherein the shutter is in a second position along the axis of movement in response to the first means for moving the shutter being in an actuated state and the second means for moving the shutter being in a relaxed state.
  • 15. The MEMS device of claim 10, wherein the shutter includes one or more shutter apertures.
  • 16. The MEMS device of claim 10, wherein the first compliant beam includes a first electrode.
  • 17. The MEMS device of claim 16, wherein the second compliant beam includes a second electrode.
  • 18. The MEMS device of claim 10, wherein the surface includes an aperture for allowing the passage of light over which the shutter is at least partially suspended.
  • 19. The MEMS device of claim 1, wherein the second actuator is the only actuator coupled to the second side of the shutter.
  • 20. The MEMS device of claim 10, wherein the second means is the only means coupled to the second side of the shutter.
REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 13/449,906, filed Apr. 18, 2012, which is a continuation of U.S. application Ser. No. 12/606,675, filed Oct. 27, 2009, now U.S. Pat. No. 8,169,679, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/108,783, filed on Oct. 27, 2008, entitled “MEMS Anchors”, all of which are incorporated by reference herein in their entirety.

US Referenced Citations (843)
Number Name Date Kind
3864582 Keeler Feb 1975 A
4067043 Perry Jan 1978 A
4074253 Nadir Feb 1978 A
4421381 Ueda et al. Dec 1983 A
4559535 Watkins et al. Dec 1985 A
4563836 Woodruff et al. Jan 1986 A
4564836 Vuilleumier et al. Jan 1986 A
4582396 Bos et al. Apr 1986 A
4673253 Tanabe et al. Jun 1987 A
4728936 Guscott et al. Mar 1988 A
4744640 Phillips May 1988 A
4889603 DiSanto et al. Dec 1989 A
4958911 Beiswenger et al. Sep 1990 A
4991941 Kalmanash Feb 1991 A
5005108 Pristash et al. Apr 1991 A
5025346 Tang et al. Jun 1991 A
5025356 Gawad Jun 1991 A
5042900 Parker Aug 1991 A
5044734 Sperl et al. Sep 1991 A
5050946 Hathaway et al. Sep 1991 A
5061049 Hornbeck Oct 1991 A
5062689 Koehler Nov 1991 A
5078479 Vuilleumier Jan 1992 A
5093652 Bull et al. Mar 1992 A
5096279 Hornbeck et al. Mar 1992 A
5128787 Blonder Jul 1992 A
5136480 Pristash et al. Aug 1992 A
5136751 Coyne et al. Aug 1992 A
5142405 Hornbeck Aug 1992 A
5184248 De Vaan et al. Feb 1993 A
5184428 Feldt et al. Feb 1993 A
5198730 Vancil Mar 1993 A
5202950 Arego et al. Apr 1993 A
5233385 Sampsell Aug 1993 A
5233459 Bozler et al. Aug 1993 A
5245454 Blonder Sep 1993 A
5266612 Kim et al. Nov 1993 A
5278652 Urbanus et al. Jan 1994 A
5280277 Hornbeck Jan 1994 A
5319061 Ramaswamy Jun 1994 A
5319491 Selbrede Jun 1994 A
5339116 Urbanus et al. Aug 1994 A
5339179 Rudisill et al. Aug 1994 A
5359345 Hunter Oct 1994 A
5379135 Nakagaki et al. Jan 1995 A
5393710 Park et al. Feb 1995 A
5396350 Beeson et al. Mar 1995 A
5405490 Park et al. Apr 1995 A
5416631 Yagi May 1995 A
5440197 Gleckman Aug 1995 A
5452024 Sampsell Sep 1995 A
5461411 Florence et al. Oct 1995 A
5465175 Woodgate et al. Nov 1995 A
5467104 Furness, III et al. Nov 1995 A
5477086 Rostoker et al. Dec 1995 A
5479279 Barbier et al. Dec 1995 A
5491347 Allen et al. Feb 1996 A
5493439 Engle Feb 1996 A
5497172 Doherty et al. Mar 1996 A
5497258 Ju et al. Mar 1996 A
5499127 Tsubota et al. Mar 1996 A
5504389 Dickey Apr 1996 A
5504614 Webb et al. Apr 1996 A
5510824 Nelson Apr 1996 A
5517341 Kim et al. May 1996 A
5517347 Sampsell May 1996 A
5519240 Suzuki May 1996 A
5519565 Kalt et al. May 1996 A
5523803 Urbanus et al. Jun 1996 A
5526051 Gove et al. Jun 1996 A
5528262 McDowall et al. Jun 1996 A
5548301 Kornher et al. Aug 1996 A
5548670 Koike Aug 1996 A
5552925 Worley Sep 1996 A
5559389 Spindt et al. Sep 1996 A
5568964 Parker et al. Oct 1996 A
5578185 Bergeron et al. Nov 1996 A
5579035 Beiswenger Nov 1996 A
5579240 Buus Nov 1996 A
5591049 Dohnishi Jan 1997 A
5596339 Furness, III et al. Jan 1997 A
5596369 Chau Jan 1997 A
5613751 Parker et al. Mar 1997 A
5618096 Parker et al. Apr 1997 A
5619266 Tomita et al. Apr 1997 A
5622612 Mihara et al. Apr 1997 A
5629784 Abileah et al. May 1997 A
5629787 Tsubota et al. May 1997 A
5655832 Pelka et al. Aug 1997 A
5655838 Ridley et al. Aug 1997 A
5659327 Furness, III et al. Aug 1997 A
5663917 Oka et al. Sep 1997 A
5666226 Ezra et al. Sep 1997 A
5677749 Tsubota et al. Oct 1997 A
5684354 Gleckman Nov 1997 A
5687465 Hinata et al. Nov 1997 A
5691695 Lahiff Nov 1997 A
5694227 Starkweather Dec 1997 A
5724062 Hunter Mar 1998 A
5731802 Aras et al. Mar 1998 A
5745193 Urbanus et al. Apr 1998 A
5745203 Valliath et al. Apr 1998 A
5745281 Yi et al. Apr 1998 A
5745284 Goldberg et al. Apr 1998 A
5771321 Stern Jun 1998 A
5781331 Carr et al. Jul 1998 A
5781333 Lanzillotta et al. Jul 1998 A
5784189 Bozler et al. Jul 1998 A
5794761 Renaud et al. Aug 1998 A
5798746 Koyama Aug 1998 A
5801792 Smith et al. Sep 1998 A
5808800 Handschy et al. Sep 1998 A
5810469 Weinreich Sep 1998 A
5815134 Nishi Sep 1998 A
5835255 Miles Nov 1998 A
5835256 Huibers Nov 1998 A
5854872 Tai Dec 1998 A
5867302 Fleming Feb 1999 A
5876107 Parker et al. Mar 1999 A
5884872 Greenhalgh Mar 1999 A
5889625 Chen et al. Mar 1999 A
5894686 Parker et al. Apr 1999 A
5895115 Parker et al. Apr 1999 A
5917692 Schmitz et al. Jun 1999 A
5921652 Parker et al. Jul 1999 A
5923480 Labeye Jul 1999 A
5926591 Labeye et al. Jul 1999 A
5936596 Yoshida et al. Aug 1999 A
5943223 Pond Aug 1999 A
5953469 Zhou Sep 1999 A
5959763 Bozler et al. Sep 1999 A
5963367 Aksyuk et al. Oct 1999 A
5973727 McGrew et al. Oct 1999 A
5975711 Parker et al. Nov 1999 A
5986628 Tuenge et al. Nov 1999 A
5986796 Miles Nov 1999 A
5986828 Wood et al. Nov 1999 A
5990990 Crabtree Nov 1999 A
5994204 Young et al. Nov 1999 A
5995688 Aksyuk et al. Nov 1999 A
6008781 Furness, III et al. Dec 1999 A
6008929 Akimoto et al. Dec 1999 A
6028656 Buhrer et al. Feb 2000 A
6030089 Parker et al. Feb 2000 A
6034807 Little et al. Mar 2000 A
6040796 Matsugatani et al. Mar 2000 A
6040937 Miles Mar 2000 A
6046836 Tuchman Apr 2000 A
6046840 Huibers Apr 2000 A
6049317 Thompson et al. Apr 2000 A
6055090 Miles Apr 2000 A
6069676 Yuyama May 2000 A
6079838 Parker et al. Jun 2000 A
6111560 May Aug 2000 A
6130527 Bontempo et al. Oct 2000 A
6130735 Hatanaka et al. Oct 2000 A
6137313 Wong et al. Oct 2000 A
6154586 MacDonald et al. Nov 2000 A
6158867 Parker et al. Dec 2000 A
6162657 Schiele et al. Dec 2000 A
6168395 Quenzer et al. Jan 2001 B1
6172657 Kamakura et al. Jan 2001 B1
6172797 Huibers Jan 2001 B1
6174064 Kalantar et al. Jan 2001 B1
6195196 Kimura et al. Feb 2001 B1
6201633 Peeters et al. Mar 2001 B1
6201664 Le et al. Mar 2001 B1
6206550 Fukushima et al. Mar 2001 B1
6215536 Ebihara et al. Apr 2001 B1
6219119 Nakai Apr 2001 B1
6225991 McKnight May 2001 B1
6227677 Willis May 2001 B1
6239777 Sugahara et al. May 2001 B1
6249169 Okada Jun 2001 B1
6249269 Blalock et al. Jun 2001 B1
6249370 Takeuchi et al. Jun 2001 B1
6266240 Urban et al. Jul 2001 B1
6275320 Dhuler et al. Aug 2001 B1
6282951 Loga et al. Sep 2001 B1
6285270 Lane et al. Sep 2001 B1
6288824 Kastalsky Sep 2001 B1
6288829 Kimura Sep 2001 B1
6295054 McKnight Sep 2001 B1
6296383 Henningsen Oct 2001 B1
6296838 Bindra et al. Oct 2001 B1
6300154 Clark et al. Oct 2001 B2
6300294 Robbins et al. Oct 2001 B1
6317103 Furness, III et al. Nov 2001 B1
6323834 Colgan et al. Nov 2001 B1
6329967 Little et al. Dec 2001 B1
6329971 McKnight Dec 2001 B2
6329974 Walker et al. Dec 2001 B1
6360033 Lee et al. Mar 2002 B1
6367940 Parker et al. Apr 2002 B1
6388661 Richards May 2002 B1
6392736 Furukawa et al. May 2002 B1
6402335 Kalantar et al. Jun 2002 B1
6402355 Kinouchi Jun 2002 B1
6404942 Edwards et al. Jun 2002 B1
6407851 Islam et al. Jun 2002 B1
6411423 Ham Jun 2002 B2
6424329 Okita Jul 2002 B1
6424388 Colgan et al. Jul 2002 B1
6428173 Dhuler et al. Aug 2002 B1
6429625 LeFevre et al. Aug 2002 B1
6429628 Nakagawa Aug 2002 B2
6459467 Hashimoto et al. Oct 2002 B1
6471879 Hanson et al. Oct 2002 B2
6473220 Clikeman et al. Oct 2002 B1
6476886 Krusius et al. Nov 2002 B2
6483613 Woodgate et al. Nov 2002 B1
6486997 Bruzzone et al. Nov 2002 B1
6498685 Johnson Dec 2002 B1
6504985 Parker et al. Jan 2003 B2
6507138 Rodgers et al. Jan 2003 B1
6508563 Parker et al. Jan 2003 B2
6514111 Ebihara et al. Feb 2003 B2
6523961 Ilkov et al. Feb 2003 B2
6529250 Murakami et al. Mar 2003 B1
6529265 Henningsen Mar 2003 B1
6531329 Asakura et al. Mar 2003 B2
6531947 Weaver et al. Mar 2003 B1
6532044 Conner et al. Mar 2003 B1
6535256 Ishihara et al. Mar 2003 B1
6535311 Lindquist Mar 2003 B1
6556258 Yoshida et al. Apr 2003 B1
6556261 Krusius et al. Apr 2003 B1
RE38108 Chee et al. May 2003 E
6559827 Mangerson May 2003 B1
6567063 Okita May 2003 B1
6567138 Krusius et al. May 2003 B1
6574033 Chui et al. Jun 2003 B1
6576887 Whitney et al. Jun 2003 B2
6582095 Toyoda Jun 2003 B1
6583915 Hong et al. Jun 2003 B1
6589625 Kothari et al. Jul 2003 B1
6591049 Williams et al. Jul 2003 B2
6593677 Behin et al. Jul 2003 B2
6600474 Heines et al. Jul 2003 B1
6621488 Takeuchi et al. Sep 2003 B1
6626540 Ouchi et al. Sep 2003 B2
6633301 Dallas et al. Oct 2003 B1
6639570 Furness, III et al. Oct 2003 B2
6639572 Little et al. Oct 2003 B1
6650455 Miles Nov 2003 B2
6650822 Zhou Nov 2003 B1
6664779 Lopes et al. Dec 2003 B2
6666561 Blakley Dec 2003 B1
6671078 Flanders et al. Dec 2003 B2
6674562 Miles Jan 2004 B1
6677709 Ma et al. Jan 2004 B1
6677936 Jacobsen et al. Jan 2004 B2
6678029 Suzuki Jan 2004 B2
6680792 Miles Jan 2004 B2
6687040 Kimura Feb 2004 B2
6687896 Royce et al. Feb 2004 B1
6690422 Daly et al. Feb 2004 B1
6697035 Sugahara et al. Feb 2004 B2
6698348 Bloss Mar 2004 B1
6698349 Komata Mar 2004 B2
6700554 Ham et al. Mar 2004 B2
6701039 Bourgeois et al. Mar 2004 B2
6707176 Rodgers Mar 2004 B1
6710008 Chang et al. Mar 2004 B2
6710538 Ahn et al. Mar 2004 B1
6710908 Miles et al. Mar 2004 B2
6710920 Mashitani et al. Mar 2004 B1
6712071 Parker Mar 2004 B1
6712481 Parker et al. Mar 2004 B2
6731355 Miyashita May 2004 B2
6731492 Goodwin-Johansson May 2004 B2
6733354 Cathey et al. May 2004 B1
6738177 Gutierrez et al. May 2004 B1
6741377 Miles May 2004 B2
6746886 Duncan et al. Jun 2004 B2
6749312 Parker et al. Jun 2004 B2
6750930 Yoshii et al. Jun 2004 B2
6752505 Parker et al. Jun 2004 B2
6755534 Veligdan et al. Jun 2004 B2
6755547 Parker Jun 2004 B2
6760081 Takagi Jul 2004 B2
6760505 Street et al. Jul 2004 B1
6762743 Yoshihara et al. Jul 2004 B2
6762868 Liu et al. Jul 2004 B2
6764796 Fries Jul 2004 B2
6774964 Funamoto et al. Aug 2004 B2
6775048 Starkweather et al. Aug 2004 B1
6778162 Kimura et al. Aug 2004 B2
6778228 Murakami et al. Aug 2004 B2
6778248 Ootaguro et al. Aug 2004 B1
6785454 Abe Aug 2004 B2
6787969 Grade et al. Sep 2004 B2
6788371 Tanada et al. Sep 2004 B2
6794119 Miles Sep 2004 B2
6795064 Walker et al. Sep 2004 B2
6796668 Parker et al. Sep 2004 B2
6798935 Bourgeois et al. Sep 2004 B2
6800996 Nagai et al. Oct 2004 B2
6809851 Gurcan Oct 2004 B1
6819386 Roosendaal et al. Nov 2004 B2
6819465 Clikeman et al. Nov 2004 B2
6822734 Eidelman et al. Nov 2004 B1
6825470 Bawolek et al. Nov 2004 B1
6825499 Nakajima et al. Nov 2004 B2
6827456 Parker et al. Dec 2004 B2
6831678 Travis Dec 2004 B1
6832511 Samoto et al. Dec 2004 B2
6835111 Ahn et al. Dec 2004 B2
6844959 Huibers et al. Jan 2005 B2
6846082 Glent-Madsen et al. Jan 2005 B2
6846089 Stevenson et al. Jan 2005 B2
6847425 Tanada et al. Jan 2005 B2
6847428 Sekiguchi et al. Jan 2005 B1
6852095 Ray Feb 2005 B1
6857751 Penn et al. Feb 2005 B2
6859625 Sawada Feb 2005 B2
6862072 Liu et al. Mar 2005 B2
6863219 Jacobsen et al. Mar 2005 B1
6864618 Miller et al. Mar 2005 B2
6867192 Armour et al. Mar 2005 B1
6867896 Miles Mar 2005 B2
6873311 Yoshihara et al. Mar 2005 B2
6879307 Stern Apr 2005 B1
6886956 Parker et al. May 2005 B2
6887202 Currie et al. May 2005 B2
6888678 Nishiyama et al. May 2005 B2
6889565 DeConde et al. May 2005 B2
6893677 Yamada et al. May 2005 B2
6897164 Baude et al. May 2005 B2
6897843 Ayres et al. May 2005 B2
6900072 Patel et al. May 2005 B2
6906847 Huibers et al. Jun 2005 B2
6911891 Qiu et al. Jun 2005 B2
6911964 Lee et al. Jun 2005 B2
6912082 Lu et al. Jun 2005 B1
6919981 Clikeman et al. Jul 2005 B2
6934080 Saccomanno et al. Aug 2005 B2
6936013 Pevoto Aug 2005 B2
6936968 Cross et al. Aug 2005 B2
6939013 Asao Sep 2005 B2
6940631 Ishikawa Sep 2005 B2
6943495 Ma et al. Sep 2005 B2
6947107 Yoshii et al. Sep 2005 B2
6947195 Ohtaka et al. Sep 2005 B2
6950240 Matsuo Sep 2005 B2
6952301 Huibers Oct 2005 B2
6953375 Ahn et al. Oct 2005 B2
6961167 Prins et al. Nov 2005 B2
6962418 Utsumi et al. Nov 2005 B2
6962419 Huibers Nov 2005 B2
6963330 Sugahara et al. Nov 2005 B2
6965375 Gettemy et al. Nov 2005 B1
6967698 Tanoue et al. Nov 2005 B2
6967763 Fujii et al. Nov 2005 B2
6969635 Patel et al. Nov 2005 B2
6970227 Kida et al. Nov 2005 B2
6972889 Goodwin-Johansson et al. Dec 2005 B2
6977710 Akiyama et al. Dec 2005 B2
6980349 Huibers et al. Dec 2005 B1
6985205 Chol et al. Jan 2006 B2
6992375 Robbins et al. Jan 2006 B2
6996306 Chen et al. Feb 2006 B2
7004610 Yamashita et al. Feb 2006 B2
7004611 Parker et al. Feb 2006 B2
7012726 Miles Mar 2006 B1
7012732 Miles Mar 2006 B2
7014349 Shinohara et al. Mar 2006 B2
7019809 Sekiguchi Mar 2006 B2
7026821 Martin et al. Apr 2006 B2
7038758 Suzuki May 2006 B2
7042618 Selbrede et al. May 2006 B2
7042643 Miles May 2006 B2
7046221 Malzbender May 2006 B1
7046905 Gardiner et al. May 2006 B1
7048905 Paparatto et al. May 2006 B2
7050035 Iisaka May 2006 B2
7050141 Yokoue May 2006 B2
7050219 Kimura May 2006 B2
7050790 Yamaga May 2006 B2
7057790 Selbrede Jun 2006 B2
7060895 Kothari et al. Jun 2006 B2
7071611 Yonekubo et al. Jul 2006 B2
7072096 Holman et al. Jul 2006 B2
7075702 Huibers et al. Jul 2006 B2
7092142 Selebrede et al. Aug 2006 B2
7110158 Miles Sep 2006 B2
7116464 Osawa Oct 2006 B2
7119944 Patel et al. Oct 2006 B2
7123216 Miles Oct 2006 B1
7123796 Steckl et al. Oct 2006 B2
7126738 Miles Oct 2006 B2
7140751 Lin Nov 2006 B2
7156548 Teng et al. Jan 2007 B2
7161094 Kothari et al. Jan 2007 B2
7164250 Boscolo et al. Jan 2007 B2
7164520 Palmateer et al. Jan 2007 B2
7180677 Fujii et al. Feb 2007 B2
7184202 Miles et al. Feb 2007 B2
7196837 Sampsell et al. Mar 2007 B2
7198982 Patel et al. Apr 2007 B2
7199916 Faase et al. Apr 2007 B2
7215459 Huibers et al. May 2007 B2
7217588 Hartzell et al. May 2007 B2
7218437 Selbrede May 2007 B2
7227677 Ravnkilde et al. Jun 2007 B2
7233304 Aratani et al. Jun 2007 B1
7271945 Hagood et al. Sep 2007 B2
7274416 Feenstra et al. Sep 2007 B2
7291363 Miller Nov 2007 B2
7292235 Nose Nov 2007 B2
7298448 Wu Nov 2007 B2
7304785 Hagood et al. Dec 2007 B2
7304786 Hagood et al. Dec 2007 B2
7315294 Richards Jan 2008 B2
7345805 Chui Mar 2008 B2
7359108 Hayes et al. Apr 2008 B2
7365897 Hagood et al. Apr 2008 B2
7374328 Kuroda et al. May 2008 B2
7391493 Kim Jun 2008 B2
7391552 Barton et al. Jun 2008 B2
7405852 Hagood, IV et al. Jul 2008 B2
7417735 Cummings et al. Aug 2008 B2
7417782 Hagood et al. Aug 2008 B2
7420725 Kothari Sep 2008 B2
7460290 Hagood, IV et al. Dec 2008 B2
7463227 Van Gorkom et al. Dec 2008 B2
7463398 Feenstra et al. Dec 2008 B2
7502159 Hagood et al. Mar 2009 B2
7529012 Hayes et al. May 2009 B2
7551344 Hagood et al. Jun 2009 B2
7573547 Palmateer et al. Aug 2009 B2
7601942 Underwood et al. Oct 2009 B2
7616368 Hagood, IV Nov 2009 B2
7619806 Hagood, IV et al. Nov 2009 B2
7636189 Hagood, IV et al. Dec 2009 B2
7666049 Saito et al. Feb 2010 B2
7675665 Hagood et al. Mar 2010 B2
7715080 Natarajan et al. May 2010 B2
7729037 Hagood et al. Jun 2010 B2
7742016 Hagood et al. Jun 2010 B2
7742215 Hagood, IV Jun 2010 B2
7746529 Hagood et al. Jun 2010 B2
7755582 Hagood et al. Jul 2010 B2
7826127 Khonsari et al. Nov 2010 B2
7839356 Hagood et al. Nov 2010 B2
7852546 Fijol et al. Dec 2010 B2
7876489 Gandhi et al. Jan 2011 B2
7898714 Hagood, IV et al. Mar 2011 B2
7920317 Lee et al. Apr 2011 B2
7927654 Hagood et al. Apr 2011 B2
7975665 Mori Jul 2011 B2
7999994 Hagood, IV et al. Aug 2011 B2
8159428 Hagood et al. Apr 2012 B2
8169679 Wu et al. May 2012 B2
8310442 Hagood et al. Nov 2012 B2
8482496 Lewis Jul 2013 B2
8519923 Hagood et al. Aug 2013 B2
8519945 Hagood et al. Aug 2013 B2
8526096 Steyn et al. Sep 2013 B2
8599463 Wu et al. Dec 2013 B2
8698980 Chao et al. Apr 2014 B2
20010001260 Parker et al. May 2001 A1
20010028422 Tsujimura et al. Oct 2001 A1
20010028993 Sanford Oct 2001 A1
20010030488 Jerman et al. Oct 2001 A1
20010040538 Quanrud Nov 2001 A1
20010043177 Huston et al. Nov 2001 A1
20010043208 Furness et al. Nov 2001 A1
20010048265 Miller et al. Dec 2001 A1
20010048431 Laffargue et al. Dec 2001 A1
20010050661 Noda et al. Dec 2001 A1
20010053075 Parker et al. Dec 2001 A1
20020000959 Colgan et al. Jan 2002 A1
20020001051 Krusius et al. Jan 2002 A1
20020009275 Williams et al. Jan 2002 A1
20020012159 Tew Jan 2002 A1
20020015215 Miles Feb 2002 A1
20020024641 Ilkov et al. Feb 2002 A1
20020024711 Miles Feb 2002 A1
20020030566 Bozler et al. Mar 2002 A1
20020047172 Reid Apr 2002 A1
20020051096 Yamazaki et al. May 2002 A1
20020054424 Miles May 2002 A1
20020054487 Parker et al. May 2002 A1
20020056900 Liu et al. May 2002 A1
20020063218 Maydanich et al. May 2002 A1
20020063661 Comiskey et al. May 2002 A1
20020070931 Ishikawa Jun 2002 A1
20020075555 Miles Jun 2002 A1
20020080598 Parker et al. Jun 2002 A1
20020093722 Chan et al. Jul 2002 A1
20020109903 Kaeriyama Aug 2002 A1
20020113281 Cunningham et al. Aug 2002 A1
20020126364 Miles Sep 2002 A1
20020126387 Ishikawa et al. Sep 2002 A1
20020132389 Patel et al. Sep 2002 A1
20020135553 Nagai et al. Sep 2002 A1
20020141174 Parker et al. Oct 2002 A1
20020149828 Miles et al. Oct 2002 A1
20020150698 Kawabata Oct 2002 A1
20020163482 Sullivan Nov 2002 A1
20020163484 Furness, III Nov 2002 A1
20020163709 Mirza Nov 2002 A1
20020171327 Miller et al. Nov 2002 A1
20020181597 Okada Dec 2002 A1
20020185699 Reid Dec 2002 A1
20020191267 Flanders et al. Dec 2002 A1
20020195423 Patel et al. Dec 2002 A1
20020196522 Little et al. Dec 2002 A1
20030001815 Cui Jan 2003 A1
20030007344 Parker Jan 2003 A1
20030009898 Slocum et al. Jan 2003 A1
20030023110 Tam et al. Jan 2003 A1
20030029705 Qiu et al. Feb 2003 A1
20030036215 Reid Feb 2003 A1
20030042157 Mays Mar 2003 A1
20030043157 Miles Mar 2003 A1
20030043337 Takabayashi Mar 2003 A1
20030048036 Lemkin Mar 2003 A1
20030048370 Koyama Mar 2003 A1
20030058543 Sheedy et al. Mar 2003 A1
20030063233 Takagi Apr 2003 A1
20030063234 Oda et al. Apr 2003 A1
20030067565 Yamamura Apr 2003 A1
20030068118 Bourgeois et al. Apr 2003 A1
20030071686 Lemkin Apr 2003 A1
20030072070 Miles Apr 2003 A1
20030076649 Speakman Apr 2003 A1
20030081315 Kobayashi May 2003 A1
20030081402 Jeon et al. May 2003 A1
20030085650 Cathey et al. May 2003 A1
20030085867 Grabert May 2003 A1
20030095081 Furness, III May 2003 A1
20030095398 Parker et al. May 2003 A1
20030102810 Cross et al. Jun 2003 A1
20030123245 Parker et al. Jul 2003 A1
20030123246 Parker Jul 2003 A1
20030123247 Parker et al. Jul 2003 A1
20030128218 Struyk Jul 2003 A1
20030128416 Caracci et al. Jul 2003 A1
20030133284 Chipchase et al. Jul 2003 A1
20030137499 Lisaka Jul 2003 A1
20030152872 Miles Aug 2003 A1
20030156422 Tatewaki et al. Aug 2003 A1
20030164814 Starkweather et al. Sep 2003 A1
20030174422 Miller et al. Sep 2003 A1
20030174931 Rodgers et al. Sep 2003 A1
20030183008 Bang et al. Oct 2003 A1
20030184189 Sinclair Oct 2003 A1
20030190535 Fries Oct 2003 A1
20030190536 Fries Oct 2003 A1
20030196590 Hartzell Oct 2003 A1
20030202338 Parker Oct 2003 A1
20030210811 Dubowsky et al. Nov 2003 A1
20030218793 Soneda et al. Nov 2003 A1
20030231160 Yoshihara et al. Dec 2003 A1
20040001033 Goodwin-Johansson et al. Jan 2004 A1
20040012946 Parker et al. Jan 2004 A1
20040027636 Miles Feb 2004 A1
20040036668 Nakanishi Feb 2004 A1
20040051929 Sampsell et al. Mar 2004 A1
20040058532 Miles et al. Mar 2004 A1
20040076008 Ikeda Apr 2004 A1
20040080240 Miller et al. Apr 2004 A1
20040080484 Heines et al. Apr 2004 A1
20040080927 Parker et al. Apr 2004 A1
20040085608 Theil et al. May 2004 A1
20040085749 Parker et al. May 2004 A1
20040088629 Ott May 2004 A1
20040090144 Miller et al. May 2004 A1
20040090599 Kowarz et al. May 2004 A1
20040095739 Parker et al. May 2004 A1
20040100677 Huibers et al. May 2004 A1
20040113903 Mikami et al. Jun 2004 A1
20040114346 Parker et al. Jun 2004 A1
20040122328 Wang et al. Jun 2004 A1
20040125062 Yamamoto et al. Jul 2004 A1
20040125346 Huibers Jul 2004 A1
20040135273 Parker et al. Jul 2004 A1
20040135951 Stumbo et al. Jul 2004 A1
20040136204 Asao Jul 2004 A1
20040136680 Medina et al. Jul 2004 A1
20040141700 Yang Jul 2004 A1
20040145580 Perlman Jul 2004 A1
20040145793 Barbour et al. Jul 2004 A1
20040145854 Tamura Jul 2004 A1
20040156246 Nakamura Aug 2004 A1
20040157664 Link Aug 2004 A1
20040165372 Parker Aug 2004 A1
20040171206 Rodgers Sep 2004 A1
20040173872 Park et al. Sep 2004 A1
20040179146 Nilsson Sep 2004 A1
20040184710 Kubby et al. Sep 2004 A1
20040196215 Duthaler et al. Oct 2004 A1
20040196525 Fujii et al. Oct 2004 A1
20040207768 Liu Oct 2004 A1
20040207815 Allen et al. Oct 2004 A1
20040212759 Hayashi Oct 2004 A1
20040212907 Mala et al. Oct 2004 A1
20040217919 Piehl et al. Nov 2004 A1
20040218149 Huibers Nov 2004 A1
20040218154 Huibers Nov 2004 A1
20040218292 Huibers Nov 2004 A1
20040218293 Huibers Nov 2004 A1
20040223088 Huibers Nov 2004 A1
20040223240 Huibers Nov 2004 A1
20040227428 Sinclair Nov 2004 A1
20040233354 Uehara et al. Nov 2004 A1
20040233392 Huibers Nov 2004 A1
20040233498 Starkweather et al. Nov 2004 A1
20040233503 Kimura Nov 2004 A1
20040240032 Miles Dec 2004 A1
20040240138 Martin et al. Dec 2004 A1
20040246275 Yoshihara et al. Dec 2004 A1
20040263076 De Zwart et al. Dec 2004 A1
20040263502 Dallas et al. Dec 2004 A1
20040263944 Miles et al. Dec 2004 A1
20050002082 Miles Jan 2005 A1
20050002086 Starkweather et al. Jan 2005 A1
20050007671 Onvlee Jan 2005 A1
20050007759 Parker Jan 2005 A1
20050012197 Smith et al. Jan 2005 A1
20050018322 Ben-Gad et al. Jan 2005 A1
20050024849 Parker et al. Feb 2005 A1
20050052681 Kogi Mar 2005 A1
20050052723 Watanabe et al. Mar 2005 A1
20050059184 Sniegowski et al. Mar 2005 A1
20050062708 Yoshihara et al. Mar 2005 A1
20050063037 Selbrede et al. Mar 2005 A1
20050072032 McCollum et al. Apr 2005 A1
20050073471 Selbrede Apr 2005 A1
20050088404 Heines et al. Apr 2005 A1
20050093465 Yonekubo et al. May 2005 A1
20050094240 Huibers et al. May 2005 A1
20050094418 Parker May 2005 A1
20050104804 Feenstra et al. May 2005 A1
20050111238 Parker May 2005 A1
20050111241 Parker May 2005 A1
20050116798 Bintoro et al. Jun 2005 A1
20050122560 Sampsell et al. Jun 2005 A1
20050122591 Parker et al. Jun 2005 A1
20050123243 Steckl et al. Jun 2005 A1
20050123249 Yun et al. Jun 2005 A1
20050123349 Koch Jun 2005 A1
20050128370 Moon Jun 2005 A1
20050134768 Sugiura et al. Jun 2005 A1
20050134805 Conner et al. Jun 2005 A1
20050139542 Dickensheets et al. Jun 2005 A1
20050140636 Chung et al. Jun 2005 A1
20050141076 Bausenwein et al. Jun 2005 A1
20050151940 Asao Jul 2005 A1
20050157365 Ravnkilde et al. Jul 2005 A1
20050157376 Huibers et al. Jul 2005 A1
20050168431 Chui Aug 2005 A1
20050168789 Glent-Madsen Aug 2005 A1
20050171408 Parker Aug 2005 A1
20050172625 Starkweather et al. Aug 2005 A1
20050179977 Chui et al. Aug 2005 A1
20050195467 Kothari et al. Sep 2005 A1
20050195468 Sampsell Sep 2005 A1
20050206991 Chui et al. Sep 2005 A1
20050207154 Parker Sep 2005 A1
20050207178 Parker Sep 2005 A1
20050212734 Kimura Sep 2005 A1
20050212738 Gally Sep 2005 A1
20050213322 Parker Sep 2005 A1
20050213323 Parker Sep 2005 A1
20050213349 Parker Sep 2005 A1
20050219676 Kimura et al. Oct 2005 A1
20050219679 Ishikawa Oct 2005 A1
20050219680 Ishikawa Oct 2005 A1
20050225501 Srinivasan et al. Oct 2005 A1
20050225519 Naugler, Jr. Oct 2005 A1
20050225732 Conner et al. Oct 2005 A1
20050225827 Kastalsky Oct 2005 A1
20050231790 Miles Oct 2005 A1
20050231791 Sampsell et al. Oct 2005 A1
20050236928 Kurozuka et al. Oct 2005 A1
20050237596 Selbrede Oct 2005 A1
20050242710 Yamazaki et al. Nov 2005 A1
20050243023 Reddy et al. Nov 2005 A1
20050244099 Pasch et al. Nov 2005 A1
20050244949 Miles Nov 2005 A1
20050245313 Yoshino et al. Nov 2005 A1
20050247477 Kothari et al. Nov 2005 A1
20050249966 Tung et al. Nov 2005 A1
20050253779 Feenstra et al. Nov 2005 A1
20050254115 Palmateer et al. Nov 2005 A1
20050258571 Dumond et al. Nov 2005 A1
20050259198 Lubart et al. Nov 2005 A1
20050263866 Wan Dec 2005 A1
20050265029 Epstein et al. Dec 2005 A1
20050275072 Haluzak et al. Dec 2005 A1
20050275930 Patel et al. Dec 2005 A1
20050285816 Glass Dec 2005 A1
20050286113 Miles Dec 2005 A1
20050286114 Miles Dec 2005 A1
20060001942 Chui et al. Jan 2006 A1
20060003676 Bernard et al. Jan 2006 A1
20060004928 Hess et al. Jan 2006 A1
20060007514 Desai Jan 2006 A1
20060007701 Schoellmann et al. Jan 2006 A1
20060012781 Fradkin et al. Jan 2006 A1
20060023287 Przybyla et al. Feb 2006 A1
20060028708 Miles Feb 2006 A1
20060028811 Ross, Jr. et al. Feb 2006 A1
20060028817 Parker Feb 2006 A1
20060028840 Parker Feb 2006 A1
20060028841 Parker Feb 2006 A1
20060028843 Parker Feb 2006 A1
20060028844 Parker Feb 2006 A1
20060033676 Faase et al. Feb 2006 A1
20060033975 Miles Feb 2006 A1
20060038766 Morita Feb 2006 A1
20060038768 Sagawa et al. Feb 2006 A1
20060044246 Mignard Mar 2006 A1
20060044298 Mignard et al. Mar 2006 A1
20060044508 Mochizuki Mar 2006 A1
20060044928 Chui et al. Mar 2006 A1
20060061559 King Mar 2006 A1
20060066504 Sampsell et al. Mar 2006 A1
20060066540 Hewlett et al. Mar 2006 A1
20060066560 Gally et al. Mar 2006 A1
20060066598 Floyd Mar 2006 A1
20060066934 Selbrede Mar 2006 A1
20060066937 Chui Mar 2006 A1
20060077125 Floyd Apr 2006 A1
20060077153 Cummings et al. Apr 2006 A1
20060077533 Miles et al. Apr 2006 A1
20060092490 McCollum et al. May 2006 A1
20060104061 Lerner et al. May 2006 A1
20060132383 Gally et al. Jun 2006 A1
20060132404 Hayes et al. Jun 2006 A1
20060139734 Selbrede et al. Jun 2006 A1
20060146389 Selbrede Jul 2006 A1
20060152476 Van Gorkom et al. Jul 2006 A1
20060154078 Watanabe et al. Jul 2006 A1
20060172745 Knowles Aug 2006 A1
20060187190 Hagood et al. Aug 2006 A1
20060187191 Hagood et al. Aug 2006 A1
20060187290 Nakashima Aug 2006 A1
20060187528 Hagood et al. Aug 2006 A1
20060209000 Sumiyoshi et al. Sep 2006 A1
20060209012 Hagood Sep 2006 A1
20060215540 Krishnamoorthi et al. Sep 2006 A1
20060238443 Derichs Oct 2006 A1
20060250325 Hagood et al. Nov 2006 A1
20060250676 Hagood Nov 2006 A1
20060256039 Hagood et al. Nov 2006 A1
20060262060 Amundson Nov 2006 A1
20060262380 Miles Nov 2006 A1
20060268386 Selbrede et al. Nov 2006 A1
20060268568 Oku et al. Nov 2006 A1
20060270179 Yang Nov 2006 A1
20060280319 Wang et al. Dec 2006 A1
20060291034 Patry et al. Dec 2006 A1
20060291771 Braunisch et al. Dec 2006 A1
20060291774 Schoellmann et al. Dec 2006 A1
20070002156 Hagood et al. Jan 2007 A1
20070002413 Psaltis et al. Jan 2007 A1
20070003055 Bark et al. Jan 2007 A1
20070007889 Bongaerts et al. Jan 2007 A1
20070024701 Prechtl et al. Feb 2007 A1
20070030555 Barton et al. Feb 2007 A1
20070031097 Heikenfeld et al. Feb 2007 A1
20070035808 Amundson et al. Feb 2007 A1
20070040982 Nakano et al. Feb 2007 A1
20070047051 Selbrede et al. Mar 2007 A1
20070047887 Selbrede Mar 2007 A1
20070052636 Kalt et al. Mar 2007 A1
20070052660 Montbach et al. Mar 2007 A1
20070053652 Mignard et al. Mar 2007 A1
20070086078 Hagood et al. Apr 2007 A1
20070091011 Selbrede Apr 2007 A1
20070091038 Hagood et al. Apr 2007 A1
20070103209 Lee May 2007 A1
20070132680 Kagawa et al. Jun 2007 A1
20070150813 Selebrede et al. Jun 2007 A1
20070159679 Hagood et al. Jul 2007 A1
20070172171 Van Ostrand et al. Jul 2007 A1
20070190265 Aoki et al. Aug 2007 A1
20070195026 Hagood et al. Aug 2007 A1
20070205969 Hagood, IV et al. Sep 2007 A1
20070216987 Hagood et al. Sep 2007 A1
20070217108 Ozawa et al. Sep 2007 A1
20070223080 Hagood et al. Sep 2007 A1
20070247401 Sasagawa et al. Oct 2007 A1
20070279727 Ghandi et al. Dec 2007 A1
20070297747 Biernath et al. Dec 2007 A1
20080014557 Kuhn et al. Jan 2008 A1
20080026066 Roser Jan 2008 A1
20080030827 Hagood et al. Feb 2008 A1
20080037104 Hagood et al. Feb 2008 A1
20080043726 Herrero-Veron et al. Feb 2008 A1
20080062500 Hagood Mar 2008 A1
20080094853 Kim et al. Apr 2008 A1
20080123175 Hagood et al. May 2008 A1
20080129681 Hagood et al. Jun 2008 A1
20080145527 Hagood et al. Jun 2008 A1
20080158635 Hagood et al. Jul 2008 A1
20080158636 Hagood et al. Jul 2008 A1
20080165122 Duthaler et al. Jul 2008 A1
20080174532 Lewis Jul 2008 A1
20080278798 Hagood et al. Nov 2008 A1
20080279727 Haushalter Nov 2008 A1
20080283175 Hagood et al. Nov 2008 A1
20080297880 Steckl et al. Dec 2008 A1
20090034052 Hagood et al. Feb 2009 A1
20090091561 Koyama Apr 2009 A1
20090103164 Fijol et al. Apr 2009 A1
20090103281 Koh Apr 2009 A1
20090141335 Feenstra et al. Jun 2009 A1
20090195855 Steyn et al. Aug 2009 A1
20090284824 Feenstra et al. Nov 2009 A1
20100110518 Wu et al. May 2010 A1
20100328608 Fujii et al. Dec 2010 A1
20110122474 Payne et al. May 2011 A1
20110148948 Gandhi et al. Jun 2011 A1
20110164067 Lewis et al. Jul 2011 A1
20110205259 Hagood, IV Aug 2011 A1
20110255146 Brosnihan et al. Oct 2011 A1
20110267668 Hagood, IV et al. Nov 2011 A1
20120133006 Hasselbach et al. May 2012 A1
20120169795 Hagood et al. Jul 2012 A1
20120200906 Wu et al. Aug 2012 A1
20120229226 Oja et al. Sep 2012 A1
20120280971 Hagood et al. Nov 2012 A1
20120320111 Hagood, IV et al. Dec 2012 A1
20120320112 Hagood, IV et al. Dec 2012 A1
20120320113 Hagood, IV et al. Dec 2012 A1
20130010341 Hagood et al. Jan 2013 A1
20130010342 Hagood, IV et al. Jan 2013 A1
20130010344 Hagood et al. Jan 2013 A1
20130335806 Steyn et al. Dec 2013 A1
20130342522 Hagood Dec 2013 A1
20140078154 Payne et al. Mar 2014 A1
20140085698 Wu et al. Mar 2014 A1
20140145926 Wu et al. May 2014 A1
20140184573 Nemchuk et al. Jul 2014 A1
20140184621 Brosnihan et al. Jul 2014 A1
20140267196 Villarreal et al. Sep 2014 A1
20140267331 Villarreal et al. Sep 2014 A1
20140268293 Chleirigh et al. Sep 2014 A1
Foreign Referenced Citations (242)
Number Date Country
2241823 Aug 1997 CA
2334403 Dec 1999 CA
1206218 Jan 1999 CN
1309782 Aug 2001 CN
1390045 Jan 2003 CN
1402033 Mar 2003 CN
1476664 Feb 2004 CN
1491030 Apr 2004 CN
1498408 May 2004 CN
1541483 Oct 2004 CN
1542499 Nov 2004 CN
1555472 Dec 2004 CN
1573525 Feb 2005 CN
1584731 Feb 2005 CN
1599522 Mar 2005 CN
1623111 Jun 2005 CN
1898969 Jan 2007 CN
10332647 Feb 2005 DE
0366847 May 1990 EP
0438614 Jul 1991 EP
359450 Nov 1994 EP
0359450 Nov 1994 EP
495273 Sep 1996 EP
0495273 Sep 1996 EP
415625 Jan 1997 EP
0415625 Jan 1997 EP
0757958 Feb 1997 EP
0786679 Jul 1997 EP
0884525 Dec 1998 EP
0889458 Jan 1999 EP
751340 May 2000 EP
0751340 May 2000 EP
1022598 Jul 2000 EP
1091342 Apr 2001 EP
1091343 Apr 2001 EP
1091842 Apr 2001 EP
1093142 Apr 2001 EP
1168051 Jan 2002 EP
1202096 May 2002 EP
1202244 May 2002 EP
1426190 Jun 2004 EP
1429310 Jun 2004 EP
1471495 Oct 2004 EP
1522883 Apr 2005 EP
1533853 May 2005 EP
1551002 Jul 2005 EP
1674893 Jun 2006 EP
1734502 Dec 2006 EP
1757958 Feb 2007 EP
2263968 Dec 2010 EP
1858796 Jan 2011 EP
2287110 Feb 2011 EP
1640770 Apr 2012 EP
2459777 Jun 2012 EP
2726135 Apr 1996 FR
2071896 Sep 1981 GB
2343980 May 2000 GB
556137386 Oct 1981 JP
57062028 Apr 1982 JP
S5774730 May 1982 JP
57127264 Aug 1982 JP
S5933077 Feb 1984 JP
562275230 Nov 1987 JP
3142409 Jun 1991 JP
4249203 Sep 1992 JP
5045648 Feb 1993 JP
H06174929 Jun 1994 JP
6194649 Jul 1994 JP
H06202009 Jul 1994 JP
H06222290 Aug 1994 JP
H06250593 Sep 1994 JP
H0836161 Feb 1996 JP
H0895526 Apr 1996 JP
8234158 Sep 1996 JP
8334752 Dec 1996 JP
9080386 Mar 1997 JP
09189869 Jul 1997 JP
9198906 Jul 1997 JP
H09218360 Aug 1997 JP
H09292576 Nov 1997 JP
H1054916 Feb 1998 JP
H1054947 Feb 1998 JP
10282474 Oct 1998 JP
H10282521 Oct 1998 JP
H10333145 Dec 1998 JP
11015393 Jan 1999 JP
11024038 Jan 1999 JP
H1184419 Mar 1999 JP
H1195693 Apr 1999 JP
H11126118 May 1999 JP
H11202325 Jul 1999 JP
2000028933 Jan 2000 JP
2000028938 Jan 2000 JP
2000057832 Feb 2000 JP
2000105547 Apr 2000 JP
2000111813 Apr 2000 JP
2000121970 Apr 2000 JP
2000131627 May 2000 JP
2000172219 Jun 2000 JP
2000214393 Aug 2000 JP
2000214394 Aug 2000 JP
2000214395 Aug 2000 JP
2000214397 Aug 2000 JP
2000214831 Aug 2000 JP
2000235152 Aug 2000 JP
2000259116 Sep 2000 JP
2000105547 Nov 2000 JP
2000321566 Nov 2000 JP
2001067010 Mar 2001 JP
2001075534 Mar 2001 JP
2001100121 Apr 2001 JP
2001125014 May 2001 JP
2001154642 Jun 2001 JP
2001175216 Jun 2001 JP
2001201698 Jul 2001 JP
2001201767 Jul 2001 JP
2001242826 Sep 2001 JP
2001281563 Oct 2001 JP
2001318377 Nov 2001 JP
2001331142 Nov 2001 JP
2001331144 Nov 2001 JP
2001337649 Dec 2001 JP
2001356281 Dec 2001 JP
2001356327 Dec 2001 JP
2002040336 Feb 2002 JP
2002040337 Feb 2002 JP
2002139683 May 2002 JP
2002140038 May 2002 JP
2002214543 Jul 2002 JP
2002279812 Sep 2002 JP
2002528763 Sep 2002 JP
2002287718 Oct 2002 JP
2002297085 Oct 2002 JP
2002318564 Oct 2002 JP
2002333619 Nov 2002 JP
2002341343 Nov 2002 JP
2002351431 Dec 2002 JP
2002365650 Dec 2002 JP
2003029295 Jan 2003 JP
2003036057 Feb 2003 JP
2003506755 Feb 2003 JP
2003084314 Mar 2003 JP
2003086233 Mar 2003 JP
2003086233 Mar 2003 JP
2003098984 Apr 2003 JP
2003121824 Apr 2003 JP
2003162904 Jun 2003 JP
2003202519 Jul 2003 JP
2003248463 Sep 2003 JP
2003344785 Dec 2003 JP
2004004216 Jan 2004 JP
2004053839 Feb 2004 JP
2004069788 Mar 2004 JP
2004117833 Apr 2004 JP
2004140800 May 2004 JP
2004151722 May 2004 JP
2004163915 Jun 2004 JP
2004191736 Jul 2004 JP
2004205973 Jul 2004 JP
2004212673 Jul 2004 JP
2004221051 Aug 2004 JP
2004287215 Oct 2004 JP
2004287431 Oct 2004 JP
2004302270 Oct 2004 JP
2004317557 Nov 2004 JP
2004317785 Nov 2004 JP
2004325909 Nov 2004 JP
2004327025 Nov 2004 JP
2004534280 Nov 2004 JP
2004347982 Dec 2004 JP
2005010786 Jan 2005 JP
2005043674 Feb 2005 JP
2005043726 Feb 2005 JP
2005504355 Feb 2005 JP
2005512119 Apr 2005 JP
2005134896 May 2005 JP
2005309416 Nov 2005 JP
2006098990 Apr 2006 JP
2006522360 Sep 2006 JP
2007155983 Jun 2007 JP
2007517488 Jun 2007 JP
2008015081 Jan 2008 JP
2008098984 Apr 2008 JP
2008233898 Oct 2008 JP
2009111813 May 2009 JP
2012128451 Jul 2012 JP
2012186782 Sep 2012 JP
2012230079 Nov 2012 JP
2013061658 Apr 2013 JP
WO-9401716 Jan 1994 WO
WO-9528035 Oct 1995 WO
WO-9704436 Feb 1997 WO
WO-9804950 Feb 1998 WO
WO-9819201 May 1998 WO
WO-9901696 Jan 1999 WO
0017695 Mar 2000 WO
WO-0050807 Aug 2000 WO
WO-0052674 Sep 2000 WO
WO-0055916 Sep 2000 WO
WO-0169584 Sep 2001 WO
0189986 Nov 2001 WO
WO-0207482 Jan 2002 WO
WO-03004836 Jan 2003 WO
WO-03007049 Jan 2003 WO
WO-03008860 Jan 2003 WO
WO-03029874 Apr 2003 WO
WO-03040802 May 2003 WO
WO-03048836 Jun 2003 WO
WO-03050448 Jun 2003 WO
03061007 Jul 2003 WO
WO-03061329 Jul 2003 WO
WO-03069593 Aug 2003 WO
WO-03081315 Oct 2003 WO
03105198 Dec 2003 WO
WO-2004008629 Jan 2004 WO
WO-2004019120 Mar 2004 WO
WO-2004034136 Apr 2004 WO
WO-2004038496 May 2004 WO
WO-2004086098 Oct 2004 WO
WO-2004088629 Oct 2004 WO
WO-2004097506 Nov 2004 WO
WO-2005001892 Jan 2005 WO
2005015287 Feb 2005 WO
WO-2005062908 Jul 2005 WO
WO-2005073950 Aug 2005 WO
WO-2005082908 Sep 2005 WO
WO-2006017129 Feb 2006 WO
WO-2006023077 Mar 2006 WO
WO-2006039315 Apr 2006 WO
WO-2006052755 May 2006 WO
WO-2006091738 Aug 2006 WO
WO-2006091791 Aug 2006 WO
WO-2006091860 Aug 2006 WO
WO-2006091904 Aug 2006 WO
WO-2007075832 Jul 2007 WO
WO-2007123173 Nov 2007 WO
WO-2007145973 Dec 2007 WO
WO-2008026066 Mar 2008 WO
WO-2008091339 Jul 2008 WO
WO-2009102471 Aug 2009 WO
WO-2010062647 Jun 2010 WO
WO-2013032865 Mar 2013 WO
Non-Patent Literature Citations (138)
Entry
Boer W.D., “AMLCD Electronics”, Active Matrix Liquid Crystal Displays: Fundamentals and Applications, 2005 pp. 87-111, XP055089329, U.S.A, ISBN: 978-0-75-067813-1.
Boer W.D., “Improvement of Image Quality in AMLCDs”, Active Matrix Liquid Crystal Displays: Fundamentals and Applications, 2005, pp. 139-177, XP055089313, U.S.A, ISBN: 978-0-75-067813-1.
Akimoto O. et al., “15.1: A 0.9-in UXGA/HDTV FLC Microdisplay,” Society for Information Display, 2000, pp. 194-197.
Alt P.M., et al., “A Gray-Scale Addressing Technique for Thin-Film-Transistor/Liquid Crystal Displays,” IBM J. Res. Develop., 36 (1), Jan. 1992, pp. 11-22.
AZ Displays, Inc., “Complete LCD Solutions,” ATM3224C-NC-FTH, pp. 1-15 (Oct. 2, 2003).
Bergquist et al., “Field Sequential Colour Display with Adaptive Gamut”, Society for Information Display, Digest of Technical Papers, 2006, pp. 1594-1597.
Birch et al, “31.1: SXGA Resolution FLC Microdisplays,” SID 02 Digest, 954-957 (2002).
B.J. Feenstra et. al. “A Reflective Display Based on Electrowetting: Principle and Properties”, International Display Research Conference Proceedings 2003, p. 322.
Blackstone, “Making MEMS Reliable,” SPIE's OEMagazine, 32-34 (Sep. 2002).
“BLU,” Heesung Precision Ltd., http://www.hspr.co.kr/eng/product/blu.asp Retrieved on Aug. 3, 2006.
den Boer W.D., “Active Matrix Liquid Crystal Displays”, Elsevier Science & Technology Books, ISBN #0750678135, Aug. 2005, Publisher's annotation in 2 pages.
Boeuf, J.P., “Plasma display panels: physics,recent deveopments and key issues,” J. Phys. D: Appl. Phys. 36 (2003) R53-R79 (received Aug. 29, 2002: published Feb. 26, 2003).
Boucinha M., et al., “Air-gap amorphous silicon thin film transistors”, Applied Physics Letters, AIP, American Institute of Physics, Melville, NY, US, vol. 73, No. 4, Jul. 27, 1998, pp. 502-504, XP012021821, ISSN: 0003-6951, DOI: 10.1063/1.121914.
Bozler et al, “Arrays of gated field-emitter cones having 0.32 mm tip-to-tip spacing,” J. Vec. Sci. Technol. B, 12 (2): 629-632 (Mar./Apr. 1994).
Bryan-Brown, “Ultra Low Power Bistable LCDs,” SID 00, 76-79 (2000).
Chino E. et al., “25.1: Invited Paper: Development of Wide-Color-Gamut Mobile Displays with Four-primary-color LCDs,” Society for Information Display, 37 (2), 2006, pp. 1221-1224.
Clark N. A., et al., “FLC Microdisplays”, Ferroelectrics, 246, 2000, pp. 97-110.
Conde, J.P., et. al., “Amorphous and microcrystalline silicon deposited by hot-wire chemical vapor deposition at low substrate temperatures: application to devices and thin-film microelectromechanical systems,” Thin Solid Films 395: 105-111 (2001).
Conde, J.P., et al., “Low-temperature Thin-film Silicon MEMS”, in Thin Solid Films 427, p. 181 (2003).
Davis, “Light Emitting Diode Source Modeling for Optical Design,” Reflexite Display Optics (Oct. 2004).
Davis, “Microstructured Optics for LED Applications,” Reflexite Display Optics (2002).
Doane, et al, “Display Technologies in Russia, Ukraine, and Belarus,” World Technology Evaluation Center Panel Report (Dec. 1994) http://www.wtec.org/loyola/displays/toc.htm, retrieved on Nov. 22, 2005.
Doherty D. et al., “Pulse Width Modulation Control of DLP Projectors”, TI Technical Journal, Jul.-Sep. 1998, No. 3, pp. 115-121.
“Electronic Display Lighting Tutorials,” 3M Corporation,file//D:/Optical/Vikuiti Tutorial.htm. retrieved on Aug. 10, 2006.
Feenstra J. et al., “Electrowetting Displays”, Liquavista BV, http://www.liquavista.com/documents/electrowetting—displays—whitepaper.pdf, Retrieved on Aug. 17, 2006, pp. 1-16.
Feng, et al, “Novel Integrated Light-Guide Plates for Liquid Crystal Display Backlight,” Journal of optics a Pure and applied optics, 2005, 7, 111-117.
Feng, “High Quality Light Guide Plates that Can Control the Illumination Angle Based on Microprism Structures,” Applied Physics Letters, 85 (24): 6016-6018 (Dec. 2004).
Flat Panel Display (FPD) Manufacturing Equipment that Cuts Production Costs by Half, Shibaura Mechatronics Corporation, product brochure for panel processing.
Foley, “NE04-21: Microstructured Plastic Optics for Display, Lighting, and Telecommunications Applications,” Fresnel Optics (2001).
Funamoto et al, “Diffusive-sheetless Backlight System for Mobile Phone,” IDW/AD, 1277-1280 (2005).
Funamoto et. al. “LED Backlight System with Double-Prism Pattern”, Journal of the Society for Information Display v. 14, pp. 1045-1051 (2006).
Goddhue et al, “Bright-field analysis of field-emission cones using high-resolution tranmission electron microscopy and the effect of structural properties on current stability,” J. Vac. Sci. Technol. B, 12 (2): 693-696 (Mar.Apr. 1994).
Hartman, “4.1: Invited paper: Two-Terminal Devices Technologies for AMLCDs,” SID 95 Digest, 7-10 (1995).
Hewlett et al, “DLP CinemaTM projection: A hybrid frame-rate technique for flicker-free performance,” Journ of the SID 9/3, 221-226 (2001).
Hornbeck J. “Digital Light Processing TM: A New MEMS-Based Display Technology,” Technical Digest of the IEEJ 14th Sensor Symposium, Jun. 4-5, 1996, pp. 297-304.
J. Heikenfeld et. al., “Contrast Enhancement in Black Dielectric Electroluminescent Devices”, IEEE Transactions on Electron Devices, 49: 8, 1348-52 (2002).
Jepsen et al, “4.11: 0.9″ SXGA Liquid Crystal on Silicon Panel with 450 Hz. Field Rate,” SID MicroDisplay Corporation, pp. 106-109 (Sep. 2001).
Joaquirn, M., “Polyphenyl Ether Lubricants” Synthetic Lubricants and High-performance Functional Fluids, R. L. Rudnick and R. L. Shubkin, Eds., p. 239, Marcel Dekker, Inc., NY, 1999.
Johnstone et al, “Theoretical limits on the freestanding length of cantilevers produced by surface micromachining technology,” J. Micromech. Microeng. 12: 855-861 (Published Oct. 3, 2002).
Jones et al, “29-1: Addressing TVmin Ferroelectric Liquid Crystal Displays,” (1998).
Judy, et al, “Self-Adjusting Microstructures(SAMS),” Proceedings of the Workshop on Micro Electro Mechanical Systems, New York, Jan. 30, 1991, vol. Workshop 4, pp. 51-56.
Judy, M. W., “Micromechanisms Using Sidewall Beams,” Dissertation, University of California at Berkeley, 1994.
Kalantar et al, “Optical Micro Deflector Based Functional Light-Guide Plate for Backlight Unit,” SID 00 Digest, 1029-1031 (2000).
Kalantar, K., et al., “Backlight Unit with Double Surface Light Emission Using a Single Micro-structured Light-guide Plate,” p. 1182, Society for Information Display Digest (2004).
Kalantar, “Modulation of viewing angle on an LCD surface through backlight optics,” Journal of the SID, 11 (4): 647-652 (2003).
Kim, C.W., et al., “Manufacturing Technologies for the Next Generation a-Si TFT-LCD,” Proceedings of the Intl. Display Mfg. Cnf. Seoul, Korea (2000).
Koden et al., “Ferroelectric Liquid Crystal Display,” (Sep. 17, 1997).
Kuang et al., “Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method,” Journal of Micromechanics and Microengineering, 14: 647-655, (2004).
Kunzman A. et al., “10.3 White Enhancement for Color Sequential DLP”, Society for Information Display, Digest of Technical Papers, 1998.
Lee, et al., “40.1: Distingusihed Contributed Paper: Integrated Amorphous Silicon Color Sensor on LCD Panel for LED Backlight Feedback Control System”, Society for Information Display, Digest of Technical Papers, 2005, pp. 1376-1379.
Lee et al, “P-25: A LCOS Microdisplay Driver with Frame Buffering Pixels,” SID 02 Digest, 292-295 (2002).
Legtenberg, et al., “Electrostatic Curved Electrode Actuators,” Journal of Microelectromechanical Systems, 6 (3): 257-265 (Sep. 1997).
Li, J., et al., “DRIE-Fabricated Curved-Electrode Zipping Actuators with Low Pull-In Voltage,” 12th International Conference on Solid State Sensors, Actuators and Microsystems, IEE, 480-483 (2003).
Liang et al, “Observation of electric field gradients near field-emission cathode arrays,” Appl Phys. Lett., 66 (9): 1147-1149 (Feb. 27, 1995).
Liu et al, “Scaling Laws of Microactuators and Potential Applications of Electroactive Polymers in MEMS,” SPIE, 3669: 345-354 (Mar. 1999).
“Low Temperature Polysilicon TFT Reflective Color LCD” by Techno World.
Maboudian et al., “Stiction reduction processes for surface micromachines,” Tribology Letters, 3: 215-221 (1997).
Markandey V. et al., “Video Processing for DLP Display Systems,” Texas Instruments Corporation, Mar. 13, 1996, pp. 21-32.
Mastrangelo et al, “Mechanical Stability and Adhesion of Microstructures Under Capillary Forces—Part I: Basic Theory,” Journal of Microelectromechanical Systems, 2 (1): 33-43 (Mar. 1993).
Mastrangelo et al, “Mechanical Stability and Adhesion of Microstructures Under Capillary Forces—Part II: Experiments,” Journal of Microelectromechanical Systems, 2 (1): 44-55 (Mar. 1993).
McLaughlin, “Progress in Projection and Large-Area Displays,” Proceedings of the IEEE, 90 (4): 521-532 (Apr. 2002).
“MicroLensTm—Re-Inventing LCD Backlighting,” Global Lighting Technologies Inc., http://www.glthome.com/tech.htm, 1-2; retrieved on Aug. 3, 2006.
“Microprism Technology for Luminaires,” Reflexite Display Optics, Reflexite Corporation, Technical Publication RLO-181, Rev. 2 (2003).
“Nano TM Su-8 2000 Negative Tone Photoresist Formulations 2002-2025,” Micro Che, Rev. 2/02m.
Okumura et al, “Highly-efficient backlight for liquid crystal display having no optical films,” Applied Physics Letters, 83 (13): 2515-2517 (Sep. 29, 2003).
“Optical Design Tools for Backlight Displays,” Light Tools, Optical Research Associates, 1-8.
Park, Y.I., et al., “Active Matrix OLED Displays Using Simple Poly-Si TFT Process,” Society of Information Display, Digest, pp. 487-489 (2003).
Pasricha S. et al., “Dynamic Backlight Adaptation for Low Power Handheld Devices” IEEE Design and Test v. 21, 2004, pp. 398.
Perregaux, G., et al, “Arrays of Addressable High-Speed Optical Microshutters,” CSEM Swiss Center for Electronics and Microtechnology Inc., Microsystems Division, pp. 232-235 (2001).
“Prism Brightness Enhancement Films,” 3M Corporation, http://products3.3m.com/catalog/us/en001/electronics—mfg/vikuiti/node—V6G78RBQ5Tbe/root—GST1T4S9TCgv/vroot—S6Q2FD9X0Jge/gvel—GD378DOHGJgl/theme—us—vikuiti—3—0/command—AbcPageHandler/ output—html Retrieved on Aug. 3, 2006.
“Prism Sheet,” Mitsubishi Rayon America Inc., http://www.mrany.com/data/HTML/29.htm Retrieved on Aug. 4, 2006.
Qiu et al, “A Curved-Beam Bistable Mechanism,” Journal of Microelectromechanical Systems, 13 (2): 137-145 (Apr. 2004).
Qiu et al, “A High-Current Electrothermal Bistable MEMS Relay,” Micro Electro Mechanical Systems, MEMS-03 Kyoto, pp. 64-67 (Jan. 19-23, 2003).
Ravnkilde J., et al., “Fabrication of Nickel Microshutter Arrays for Spatial Light Modulation”, Mesomechanics, 2002, pp. 161-165. Also on their web site: http://www2.mic.dtu.dk/research/mems/publications/Papers/Dicon—Meso2002.pdf.
Roosendaal et al, “25.2: A Wide Gamut, High Aperture Mobile Spectrum Sequential Liquid Crystal Display,” SID 05 Digest, 1116-1119 (2005).
Saeedi, et. al. “Molten-Alloy Driven Self-Assembly for Nano and Micro Scale System Integration” Fluid Dynamics and Materials Processing, vol. 2, No. 4, pp. 221-245 (2006).
Sato, “Research on Flexible Display Systems,” Broadcast Technology, 21: 10-15 (Winter, 2005).
Sharp Specification No. LCP-03015 for Mobile Liquid Crystal Display Group, Sharp Corporation, Jun. 13, 2003.
Shikida et al, “Fabrication of an S-shaped Microactuator,” Journal of Microelectromechanical Systems, 6 (1): 18-24 (Mar. 1997).
Sony Corporation, “ACX705AKM, 6.92cm Diagonal Reflective Color LCD Module”.
Steyn, Lodewyck, “Electroquasistatic Zipper Actuators: A Technology Review”, Dec. 2004.
Tagaya et al., “Thin Liquid-Crystal Display Backlight System with Highly Scattering Optical Transmission Polymers,” Applied Optics, 40 (34): 6274-6280 (Dec. 2001).
Takatori, et al., “6.3: Field-Sequential Smectic LCD with TFT Pixel Amplifier,” SID 01, 2001, Digest, pp. 48-51.
Tan et al “Soldering Technology for Optoelectronics Packaging”, 1996 Electronic Components and Technology Conference, pp. 26-36 (1996).
Teijido, J.M., “Conception and Design of Illumination Light Pipes,” Thesis No. 1498 for University of Neuchatel, http://www.unige.ch/cyberdocuments/unine/theses2000/TeijidoJM/these—front.htm 1: 1-99 Retrieved on Aug. 3, 2006.
Tien et al, “MEMS Actuators for Silicon Micro-Optical Elements,” Proc. of SPIE, 4178: 256-269, (2000).
“Two Proprietary Technologies Supporting OMRON Backlight,” OMRON Electronics Corporation, OMRON Electronics Components Web, www.omron.co.jp/ecb/products/bklight/english/genri/index.html, retrieved on Aug. 3, 2006.
Underwood, “A review of microdisplay technologies,” SID© EID, (Nov. 21-23, 2000).
Underwood, “LCoS through the looking glass,” SID (2001).
van de Biggelaar, et. al. “Passive and Active Matrix Addressed Polymer Light-emitting Diode Displays”, Proc. SPIE vol. 4295, p. 134 (2001).
Vangbo et al, “A lateral symmetrically bistable buckled beam,” J. Micromech. Microeng., 8: 29-32 (1998).
Wang et al., “A highly efficient system for automatic face region detection in MPEG video.” IEEE Trans. on Circuits and Systems for Video Technology, vol. 7 Issue 4, Aug. 1997, pp. 615-628.
Wang K., et al., “Highly Space-Efficient Electrostatic Zigzag Transmissive Micro-Optic Switches for an Integrated MEMS Optical Display System”, Transducers 03 Conference, Jun. 8-12, 2003, vol. 1, pp. 575-575.
Yamada et al, “52.2: Invited Paper: Color Sequential LCD Based on OCB with an LED Backlight,” SID 00 Digest, 1180-1183 (2000).
Yasumura et al, “Fluid Damping of an Electrostatic Actuator for Optical Switching Applications,” Transducers Research Foundation (2002).
Microchem “Nano SU 8 2000”, product brochure for thick polymer, Rev. Feb. 2002.
“Microprism Technology for Luminaires,” Reflexite Display Optics (2004).
Uchida T. et al., “Encyclopedia of Flat Panel Displays”, Japan, Kogyo Chosakai Publishing Co., Ltd./Yukio Shimura, Dec. 25, 2001, pp. 617 to 619.
Co-pending U.S. Appl. No. 14/508,342, filed on Oct. 7, 2014.
US Office Action dated Mar. 24, 2011 issued in U.S. Appl. No. 12/370,471.
US Office Action dated Dec. 2, 2011 issued in U.S. Appl. No. 12/370,471.
US Office Action dated Sep. 14, 2012 issued in U.S. Appl. No. 12/370,471.
US Notice of Allowance dated Feb. 21, 2013 issued in U.S. Appl. No. 12/370,471.
US Notice of Allowance dated Apr. 30, 2013 issued in U.S. Appl. No. 12/370,471.
US Office Action dated Sep. 11, 2014 issued in U.S. Appl. No. 14/012,505.
US Notice of Allowance dated Feb. 3, 2015 issued in U.S. Appl. No. 14/012,505.
US Notice of Allowance dated Dec. 28, 2011 issued in U.S. Appl. No. 12/606,675.
US Office Action (Ex Parte Quayle Action) dated Jun. 14, 2013 issued in U.S. Appl. No. 13/449,906.
US Notice of Allowance dated Jul. 29, 2013 issued in U.S. Appl. No. 13/449,906.
US Notice of Allowance dated Jan. 31, 2008 issued in U.S. Appl. No. 11/361,785.
US Non Final Office Action dated Nov. 1, 2006, U.S. Appl. No. 11/218,690.
US Final Office Action dated May 18, 2007, U.S. Appl. No. 11/218,690.
US Final Office Action Dated Oct. 3, 2007, U.S. Appl. No. 11/218,690.
US Non Final Office Action Dated Mar. 22, 2007, U.S. Appl. No. 11/546,937.
US Final Office Action dated Sep. 21, 2007, U.S. Appl. No. 11/546,937.
PCT International Search Report and Written Opinion dated Jun. 29, 2009 in International Application No. PCT/US2009/000922.
PCT International Preliminary Report on Patentability dated Aug. 26, 2010, in International Application No. PCT/US2009/000922.
Chinese First Office Action dated Jun. 3, 2014 issued in CN Patent Application No. CN 201310293759.9.
Chinese Second Office Action dated Jan. 20, 2015 issued in CN Patent Application No. CN 201310293759.9.
PCT International Search Report and Written Opinion dated Jul. 21, 2009 in International Application No. PCT/US2009/002288.
PCT International Preliminary Report on Patentability and Written Opinion dated Oct. 28, 2010 in International Application No. PCT/US2009/002288.
PCT International Search Report (Partial) dated May 11, 2011 in International Application No. PCT/US2011/023387.
European Office Action dated Mar. 28, 2012 in European Patent Office Application No. EP 07795777.7.
European Patent Office Examination Report dated Sep. 7, 2009 in European Patent Application No. 06847859.3.
European Search Opinion for EP Patent Application No. EP08005944, European Patent Office, Munich filed on Dec. 4, 2012.
European Search Opinion for EP Patent Application No. EP08005973, European Patent Office, Munich filed on Oct. 4, 2012.
European Search Opinion for EP Patent Application No. EP10175901, European Patent Office, Munich filed on Feb. 5, 2012.
European Search Report—EP10177217—Search Authority—Munich—Mar. 3, 2012.
European Search Report—EP10176478—Search Authority—Munich—May 4, 2012.
European Extended Search Report—EP10177223 dated Mar. 6, 2012.
European Search Opinion for EP Patent Application No. EP10175920, European Patent Office, Munich filed on Sep. 5, 2012.
European Extended Search Report—EP12181160.8 dated Mar. 15, 2013.
Japanese Office Action dated Oct. 12, 2010 in Japanese Patent Application No. 2008-058190.
Japanese Office Action dated Dec. 5, 2011 issued in Japanese Patent Application No. 2008-058190.
Japanese Office Action dated Jul. 15, 2010 issued in Japanese Patent Application No. 2007-556428.
Japanese Office Action dated Sep. 16, 2011 in Japanese Patent Application No. 2007-556428.
Boer W.D., “Active Matrix Liquid Crystal Displays,” Elsevier Science & Technology Books, ISBN #0750678135, Aug. 2005, Publisher's Annotation in 2 pages.
US Notice of Allowance dated May 14, 2015 issued in U.S. Appl. No. 14/012,505.
Related Publications (1)
Number Date Country
20140085698 A1 Mar 2014 US
Provisional Applications (1)
Number Date Country
61108783 Oct 2008 US
Continuations (2)
Number Date Country
Parent 13449906 Apr 2012 US
Child 14090702 US
Parent 12606675 Oct 2009 US
Child 13449906 US