This invention relates to a strain sensor, specifically to a sensor that can measure axial and bending strain.
Variable capacitors play a fundamental role in high-frequency and radio-frequency (RF) circuits. In the last few years, MEMS variable capacitors have drawn considerable interest due to their superior electrical characteristics, size and cost of manufacture.
While variable capacitors using MEMS technology can be readily implemented in standard semiconductor devices for applications in aerospace, consumer electronics and communications systems, researchers have attempted to provide application to medical systems or diagnostics. Modern medical science has emerged with a need to monitor physiological functions (i.e. intravascular pressure, intraocular pressure, etc.). A variety of these monitoring devices require that their tasks be performed wirelessly and implanted for indefinite terms to allow for patient mobility, continuance of daily activities and avoidance of costly surgeries to remove the systems after utilization is complete.
An application of a MEMS bending and axial capacitive sensor is to monitor strain changes of spinal instrumentation implanted during spinal fusion surgical procedures to assist orthopaedic surgeons with evaluation of fusion progression. The current method to assess fusion is the evaluation of radiographic images. However, image obstructions often prevent a clear determination if fusion has occurred. A strain sensor could be incorporated with a battery-less implantable telemetry system and enclosed in a hermetically sealed package. After attachment to the spinal instrumentation, the sensor can vary its capacitance output due to small changes in strain by the instrumentation as fusion occurs, thereby giving objective data to the orthopaedic surgeons of whether fusion is occurring and potentially avoiding costly exploratory surgery.
Existing strain sensors are used to indicate the amount and the type of deformation (i.e. elongation or compression) of materials. These can be used to indicate the state of a material, predict material behavior or gather material properties. These types of sensors can gather information in a variety of manners including changes in resistance and capacitance. However, there has not been a sensor available that can measure bending and axial strain in a capacitive manner.
Inventors have developed sensors in attempts to measure bending strain in a capacitive manner. U.S. Pat. No. 5,827,980 to Doemens (1998) has developed a dual comb structure; however, the orientation of the device is situated at 45 degrees and is not meant to observe bending strain. Additionally by Doemens, U.S. Pat. No. 5,750,904 (1998) the inventor has proposed a dual pair of comb structures that primarily measure axial forces or extension forces. However, bending is not the primary method of actuation which would cause the comb structures to move vertically causing a change in the overlapping surface area.
U.S. Pat. No. 6,606,913 to Gianchandani (2003) has disclosed a complex array of elevated small comb structures or tines with vertical sidewalls. While undergoing axial strain, the tines will change their overlapping surface area, which can be correlated to change in capacitance and strain. However, due to the attachment method of securing both ends of the comb structures to the substrate, the sensor would not be able to actuate while undergoing bending strain. A similar case is made with U.S. Pat. No. 7,035,083 to Lin (2006), where the attachment method of the tines will not allow vertical displacement allowing a change in the overlapping surface area of the tines.
Other U.S. Pat. Nos. 4,188,651 (1980), 4,941,363 (1990), 5,610,528 (1997), 6,266,226 (2001) and 6,532,824 (2003) identify capacitive comb structures comprised on a thin film. However, the lack of vertical dimension or overlapping surface area can not be used to determine the amount of bending strain present in a deformed substrate.
Comb structures are prolific throughout the MEMS environment; however, very few are actuated by attachment via a substrate. Most examples are actuated by the electrostatic means of applying a voltage potential to the independent comb structures as noted by Wu, U.S. Pat. No. 7,085,122 (2006), Lin, U.S. Pat. No. 5,537,083 (1996), Gang, U.S. Pat. No. 5,918,280 (1999), Muenzel, U.S. Pat. No. 5,723,353 (1998) and Nguyen, U.S. Pat. No. 6,236,281 (2001), U.S. Pat. No. 5,955,932 (1999), U.S. Pat. No. 5,839,062 (1998), U.S. Pat. No. 5,491,604 (1996).
A three-dimensional micro-electro-mechanical-systems (MEMS) bending and axial capacitive sensor is described. Two independent comb structures, incorporating suspended crystalline interdigitated fingers, are fabricated simultaneously on a substrate that can displace independently of each other while attached to a substrate undergoing bending or deformation. A change in spacing between the interdigitated fingers outputs a change in capacitance of the sensor and is the primary mode of operation of the device. On the bottom and the end of each comb structure, a glass pad is attached to the comb structure to allow for ample surface area to affix the sensor to the substrate using adhesives. During fabrication, tethers are used to connect each comb structure to maintain equal spacing between the fingers before attachment to the substrate. After attachment, the tethers are broken to allow independent movement of each comb structure.
Advantages of this system allow the sensor to use very low power since the method of actuation is mechanical. This allows the system to be incorporated in implantable and wireless medical device systems that do not require the use of a battery. Fabrication of the device does not require expensive silicon-on-insulator wafers and the sensor can easily be incorporated into current semi-conductor fabrication processes.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
The present invention will now be described more fully with reference to the drawings, in which illustrative embodiments are shown.
where C is generated capacitance in farads (F) and ε0 is the dielectric of free space equal to 8.85×10−14 F/cm. The second dielectric constant, εr, is the relative permittivity for the medium, which is dimensionless, between the two plates and is equal to 1 for air. The overlapping area between the two plates is A and d is the distance between the two plates. From this relationship, increasing or decreasing the overlapping area of the plates will produce a linear difference in capacitance, whereas, adjusting the spacing between the two plates generates an inverse response.
By virtue of the present invention, a MEMS variable capacitor utilizes multi-fingered interdigitated three dimensional comb structures to sense changes in strain or deformation of the attached substrate. The mechanical method of actuation on a bending or axially deforming substrate provides certain advantages. A change in the capacitance output of the device does not require a high voltage input to change the spacing and overlapping area of the interdigitated fingers, which delivers a change in capacitance.
As a result of the mechanical actuation of the device, relatively small power inputs, as compared to the prior art, are required to monitor capacitive changes for an implantable medical device. This situation allows for a system that does not require a battery, which would have to be recharged, monitored for leaks and eventually removed from the body.
A further aspect of the device allows the use of tethers to maintain alignment of the comb structures until application to a substrate. This also allows for ease of shipping of the device to system manufacturers and placement onto a substrate when desired by the manufacturer.
An additional aspect of this device is fabrication of the device in a way which does not require the use of expensive silicon-on-insulator (SOI) wafers to fabricate the comb structures with the inherent interdigitated fingers. The device can be easily incorporated into current semiconductor fabrication processes.
Another advantage of this device is that the number of interdigitated fingers of the comb structures, their dimensions and the spacing between them can be predetermined to define initial capacitance and sensitivity requirements.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art.
This application claims the benefit of provisional patent Appl. No. 60/730,087, of the same title filed 2005 Oct. 26 by the present inventor, the disclosure of which is hereby incorporated by reference in its entirety.
This invention was made with government assistance provided by the National Science Foundation under Contract No. BES-0097521. The government has certain rights to this invention.
Number | Name | Date | Kind |
---|---|---|---|
4188651 | Dornfeld et al. | Feb 1980 | A |
4941363 | Doemens et al. | Jul 1990 | A |
5491604 | Nguyen et al. | Feb 1996 | A |
5537083 | Lin et al. | Jul 1996 | A |
5610528 | Neely et al. | Mar 1997 | A |
5723353 | Muenzel et al. | Mar 1998 | A |
5750904 | Doemens et al. | May 1998 | A |
5827980 | Doemens et al. | Oct 1998 | A |
5839062 | Nguyen et al. | Nov 1998 | A |
5918280 | Gang et al. | Jun 1999 | A |
5955932 | Nguyen et al. | Sep 1999 | A |
6236281 | Nguyen et al. | May 2001 | B1 |
6266226 | Hayashi | Jul 2001 | B1 |
6532824 | Ueno et al. | Mar 2003 | B1 |
6606913 | Gianchandani | Aug 2003 | B1 |
6629461 | Behin et al. | Oct 2003 | B2 |
6914323 | Curtis et al. | Jul 2005 | B2 |
7035083 | Lin et al. | Apr 2006 | B2 |
7085122 | Wu et al. | Aug 2006 | B2 |
20020092340 | Prater et al. | Jul 2002 | A1 |
20040183177 | Curtis et al. | Sep 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070256502 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60730087 | Oct 2005 | US |