MEMS device quadrature shift cancellation

Information

  • Patent Grant
  • 10060757
  • Patent Number
    10,060,757
  • Date Filed
    Friday, April 5, 2013
    11 years ago
  • Date Issued
    Tuesday, August 28, 2018
    6 years ago
  • Inventors
  • Original Assignees
    • Fairchild Semiconductor Corporation (Phoenix, AZ, US)
  • Examiners
    • Quigley; Kyle R
    Agents
    • Brake Hughes Bellermann LLP
Abstract
This document provides apparatus and methods for cancelation of quadrature error from a micro-electromechanical system (MEMS) device, such as a MEMS gyroscope. In certain examples, a quadrature correction apparatus can include a drive charge-to-voltage (C2V) converter configured to provide drive information of a proof mass of a MEMS gyroscope, a sense C2V converter configured to provide sense information of the proof mass, a phase-shift module configured to provide phase shift information of the drive information, a drive demodulator configured to receive the drive information and the phase shift information and to provide demodulated drive information, a sense demodulator configured to receive the sense information and the phase shift information and to provide demodulated sense information, and wherein the quadrature correction apparatus is configured to provide corrected sense information using the demodulated drive information and the demodulated sense information.
Description
OVERVIEW

This document discusses, among other things, apparatus and methods for cancelation of quadrature error from a micro-electromechanical system (MEMS) device, such as a MEMS gyroscope. In certain examples, a quadrature correction apparatus can include a drive charge-to-voltage (C2V) converter configured to provide drive information of a proof mass of a MEMS gyroscope, a sense C2V converter configured to provide sense information of the proof mass, a phase-shift module configured to provide phase shift information of the drive information, a drive demodulator configured to receive the drive information and the phase shift information and to provide demodulated drive information, a sense demodulator configured to receive the sense information and the phase shift information and to provide demodulated sense information, and wherein the quadrature correction apparatus is configured to provide corrected sense information using the demodulated drive information and the demodulated sense information.


This overview is intended to provide a general overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.



FIG. 1 illustrates an existing circuit 100 for canceling quadrature shift of a MEMS device.



FIG. 2 illustrates generally an example sensor circuit for canceling quadrature error appearing on a MEMS gyroscope sensor signal.



FIG. 3 illustrates generally an example quadrature cancellation circuit for a MEMS device.





DETAILED DESCRIPTION

MEMS devices, such as MEMS gyroscopes, can include a suspended proof mass that is excited by a drive to oscillate at a resonant frequency. The oscillating proof mass can include suspended proof mass sections that deflect when subjected to rotational motion. Coriolis effects can be used to explain the deflection of the proof mass sections. Capacitive sensors associated with the suspended proof mass sections can provide sensor signals indicative of the rotational motion and resulting Coriolis forces that can influence the suspended proof mass sections. In certain examples, a proof mass can often be a layer or series of layers of semiconductor material. In some examples, the proof mass can be fabricated using integrated circuit technologies and various mechanical features can be fabricated using various layer creation and etching technologies. In general, the proof mass can include irregularities that, although small, are within the normal variations of the fabrication methods used to fabricate the MEMS device.



FIG. 1 illustrates an existing circuit 100 for canceling quadrature shift, or quadrature error, of a MEMS device. The circuit can include a first input for coupling to drive sense electrodes (gdp, gdn) of a MEMS device such as a MEMS gyroscope 101, a second input for coupling to sensor electrodes (gcxp, gcxn) of the MEMS gyroscope 101, a drive charge-to-voltage (C2V) converter 102, a sense C2V converter 103, an analog correction amplifier 104, a 90 degree phase-shift module 105, a demodulator 106 and an analog-to-digital converter (ADC) 107.


The drive C2V converter 102 can convert charge associated with a capacitive drive electrode or set of capacitive drive electrodes (gdp, gdn) to voltage. In certain examples, a capacitive drive electrode (gdp, gdn) can be used to sense drive information including the oscillatory motion of a proof mass induce by the drive of the MEMS gyroscope 101. In some examples, the drive information received from the capacitive drive electrodes (gdp, gdn) can be used to control the oscillation of the MEMS gyroscope 101 proof mass such the proof mass oscillates at a stable frequency with a stable amplitude.


The sense C2V converter 103 can convert charge associated with capacitive sense electrodes (gcxp, gcxn) of the MEMS gyroscope 101 to voltage to provide sense information associated with the MEMS gyroscope. In certain examples, the sense information can include information associated with Coriolis effect motion of a proof mass of the MEMS gyroscope. In certain examples, a sense electrode (gcxp, gcxn) can provide a charge signal indicative of deflection of a suspended proof mass section. Deflection of a suspended proof mass section can be indicative of motion of the MEMS gyroscope 101 in a particular direction. In certain examples, a MEMS gyroscope 101 can include several sense electrodes or set of sense electrodes (gcxp, gcxn) to sense motion of the gyroscope in one or more directions. Because of irregularities associated with the fabrication of the MEMS gyroscope 101, such as irregularities associated with the proof mass, a proof mass section can deflect in a direction of sensing interest due to the oscillation of the proof mass, thus, the sense signal received from the sense electrodes (gcxp, gcxn) can include proof mass oscillation information as well as information associated with the motion of the MEMS gyroscope 101. The proof mass oscillation information received in the sense signal is what can be called quadrature shift or quadrature error.


The analog correction amplifier 104 can receive the drive sense signal from the drive C2V converter 102 and can sum an amplified version of the drive sense signal to the sense signal to substantially cancel the quadrature error in the sense signal and provide a corrected sense signal or corrected sense information.


The sense C2V converter 103 can receive the capacitive sense signal from the sense electrodes (gcxp, gcxn) having the quadrature error substantially cancelled therefrom and can convert the signal to a voltage indicative of a rate of motion of the MEMS gyroscope 101, such as a rate of rotation of the MEMS gyroscope 101. A phase-shift module 105 can be used with a demodulator 106 to demodulate the voltage signal of the sense C2V converter 103 to provide a rate output signal. In the example circuit, the ADC 107 can convert the rate output signal to a digital representation of the rate output signal for further processing.


The present inventors have recognized that quadrature cancellation circuits such as the circuit shown in FIG. 1 can be effective at reducing the quadrature error in a MEMS gyroscope sense signal, but can also introduce noise and drift in to the sense signal that can deteriorate the accuracy and performance of the motion information available from the MEMS gyroscope 101. For example, the inventors have recognized that a digital sense and quadrature cancellation circuit can reduce noise and phase drift that can be introduce from analog components of a quadrature cancellation circuit, such as noise and drift that can be introduced by the analog correction amplifier 104 of FIG. 1.



FIG. 2 illustrates generally an example quadrature cancellation circuit 200 including a drive sense C2V converter 202, a sense C2V converter 203, a phase-shift module 205, drive and sense demodulators 210, 211, and a correction amplifier 204. The drive sense C2V converter 202 can convert the charge on drive sense electrodes (gdp, gdn) of the proof mass of a MEMS gyroscope 201 to provide a voltage signal indicative of the in-plane oscillation motion of the proof mass. The sense C2V converter 203 can convert the charge on the sense electrodes (gcxp, gcxn) of a suspended proof mass section of the proof mass to a voltage signal indicative of a rate of motion of the MEMS gyroscope 201. The phase-shift module 205 and the drive demodulator 210 can demodulate the drive sense signal and can provide a demodulated signal representative of the proof mass oscillation. The phase-shift module 205 and the sense demodulator 211 can demodulate the sense signal to provide a demodulated sense signal indicative of a rate of motion of the MEMS gyroscope 201. However, the demodulated sense signal can include components associated with the oscillation of the proof mass because irregularities in the fabrication of the MEMS gyroscope 201, such as irregularities in the fabrication of the semiconductor proof mass, can cause out-of-plane oscillation motion (e.g. quadrature error) that can be sensed by the sense electrodes (gcxp, gcxn) of the MEMS gyroscope 201. The correction amplifier 204 can adjust the level of the demodulated drive signal to provide amplified demodulated drive information, or a correction signal, to cancel the quadrature error in the demodulated sense signal. A summing node 212 can combine the correction signal with the demodulated sense signal to cancel the quadrature error of the demodulated sense signal. In certain examples, the demodulated and quadrature error-free sense signal can be converted to a digital representation for further processing using a ADC 207. In certain examples, the quadrature cancellation circuit 200 can reduce the opportunity for drift to be introduced into the circuit by demodulating the drive sense signal and the sense signal using nearly identical components that in certain examples can be fabricated within the same integrated circuit. Consequently, any drift introduced in one circuit path is most likely compensated by drift introduce, by the same mechanism, in the other circuit path.



FIG. 3 illustrates generally an example quadrature cancellation circuit 300 including a drive sense C2V converter 302, a sense C2V converter 303, a phase-shift circuit 305, drive and sense demodulators 310, 311, drive and sense ADCs 320, 321, and a digital correction amplifier 314. The drive sense C2V converter 302 can convert the charge on drive sense electrodes (gdp, gdn) of the proof mass of a MEMS gyroscope 301 to provide a voltage signal indicative of the in-plane oscillation motion of the proof mass. The sense C2V converter 303 can convert the charge on the sense electrodes (gcxp, gcxn) of a suspended proof mass section of the proof mass to a voltage signal indicative of a rate of motion of the MEMS gyroscope 301. The phase-shift circuit 305 and the drive demodulator 310 can demodulate the drive sense signal and can provide a demodulated signal representative of the proof mass oscillation. The phase-shift circuit 305 and the sense demodulator 311 can demodulate the sense signal to provide a demodulated sense signal indicative of a rate of motion of the MEMS gyroscope 301. The demodulated drive sense signal and the demodulated sense signal can be digitized using the drive and sense ADCs 320, 321 respectively. Converting the demodulated signals to digital representation of the demodulated signals can reduce the opportunities for noise to be introduced to the signals, for example, 1/f noise that can be common to analog signal processing components.


The digital representations of the demodulated sense signal can include components associated with the oscillation of the proof mass because irregularities in the fabrication of the MEMS gyroscope 301, such as irregularities in the fabrication of the semiconductor proof mass of the MEMS gyroscope, can cause out-of-plane oscillation motion (e.g. quadrature error) that can be sensed by the sense electrodes (gcxp, gcxn) of the MEMS gyroscope 301. In certain examples, the digital correction amplifier 314 can adjust the level of the digital representations of the demodulated drive signal to provide a digital correction signal to cancel the quadrature error in the digitized, demodulated sense signal. A digital summing node 317 can digitally combine the digital correction signal with the digital representations of the demodulated sense signal to cancel the quadrature error of the digital representations of the demodulated sense signal. In certain examples, the quadrature cancellation circuit 300 can reduce the opportunity for drift to be introduced in to the circuit by demodulating the drive sense signal and the sense signal using nearly identical components that in certain examples can be fabricated within the same integrated circuit. Consequently, any drift introduced in one circuit path is most likely compensated by drift introduced by the same mechanism, for example, in the other circuit path.


Additional Notes

In Example 1, a quadrature correction apparatus can include a drive charge-to-voltage (C2V) converter configured to provide drive information of a proof mass of a MEMS gyroscope, a sense C2V converter configured to provide sense information of the proof mass, a phase-shift module configured to provide phase shift information of the drive information, a drive demodulator configured to receive the drive information and the phase shift information and to provide demodulated drive information, a sense demodulator configured to receive the sense information and the phase shift information and to provide demodulated sense information; and wherein the quadrature correction apparatus is configured to provide corrected sense information using the demodulated drive information and the demodulated sense information.


In Example 2, the apparatus of Example 1 optionally includes a summing node configured to provide the corrected sense information using the demodulated drive information and the demodulated sense information.


In Example 3, the apparatus of any one or more of Examples 1-2 optionally includes a correction amplifier configured to receive the demodulated drive information and to provide amplified demodulated drive information, and wherein the quadrature correction apparatus is configured to provide the corrected sense information using the amplified demodulated drive information and the demodulated sense information.


In Example 4, the apparatus of any one or more of Examples 1-3 optionally includes a summing node configured to provide the corrected sense information using the amplified demodulated drive information and the demodulated sense information.


In Example 5, the apparatus of any one or more of Examples 1-3 optionally includes an analog-to-digital converter configured to receive the corrected sense signal and to provide a digital representation of the corrected sense signal.


In Example 6, the drive demodulator of any one or more of Examples 1-5 optionally includes a first analog-to-digital converter configured to receive the demodulated drive signal and to provide a digital representation of the demodulated drive signal.


In Example 7, the drive demodulator of any one or more of Examples 1-6 optionally includes a correction amplifier configured to adjust a level of the digital representation of the demodulated drive signal to provide a correction signal to cancel the quadrature error of the sensed information.


In Example 8, the sense demodulator of any one or more of Examples 1-7 optionally includes a second analog-to-digital converter configured to receive the demodulated sense signal and to provide a digital representation of the demodulated sense signal.


In example 9, the summing node of any one or more of Examples 1-8 optionally includes a digital summing node configured to combine the digital representation of the demodulated drive signal and the digital representation of the demodulated sense signal to cancel quadrature error of the demodulated sense signal, and to provide a digital, corrected sense signal.


In Example 10, a method can include providing drive information of a proof mass of a MEMS gyroscope using a drive charge-to-voltage (C2V) converter, providing sense information of the proof mass using a sense C2V converter, providing phase shift information of the drive information using the drive information and a phase-shift module, demodulating the drive information using a drive demodulator and the phase shift information to provide demodulated drive information, demodulating the sense information using a sense demodulator and the phase shift information to provide demodulated sense information, and canceling quadrature error of the sense information to provide a corrected sense signal using the demodulated drive information and the demodulated sense information.


In Example 11, the method of any one or more of Examples 1-10 optionally includes adjusting a level of the demodulated drive information using a correction amplifier


In Example 12, the method of any one or more of Examples 1-11 optionally includes converting the corrected sense signal using an analog-to-digital converter to provide a digital representation of the corrected sense signal.


In Example 13, the method of any one or more of Examples 1-12 optionally includes providing a digital representation of the demodulated drive signal using the demodulated drive information and a first analog-to-digital converter.


In Example 14, the method of any one or more of Examples 1-13 optionally includes adjusting a level of the digital representation of the demodulated drive information using a correction amplifier.


In Example 15, the method of any one or more of Examples 1-14 optionally includes providing a digital representation of the demodulated sense signal using the demodulated sense information and a second analog-to-digital converter.


In Example 16, the canceling quadrature error of any one or more of Examples 1-3 optionally includes digitally summing the digital representation of the demodulated drive signal and the digital representation of the demodulated sense signal to provide a digital, corrected sense signal.


In Example 17, a system can include a MEMS device including a proof mass, and a control circuit configured to provide sense information of the proof mass. The control circuit can include a drive charge-to voltage (C2V) converter configured to couple to the proof mass and to provide drive information of the proof mass, a sense C2V converter configured to receive a sense signal from the proof mass and to provide sense information of the proof mass, a phase-shift module configured provide phase shift information using the drive information, a drive demodulator configured to receive phase shift information and an the drive information to provide a demodulated drive signal, a sense demodulator configured to the phase shift information and the sense information to provide a demodulated sense signal, and a summing node configured to cancel quadrature error of the sense information and to provide a corrected sense signal using a sum of the demodulated drive signal and the demodulated sense signal.


In Example 18, the drive demodulator of any one or more of Examples 1-17 optionally includes a correction amplifier configured to adjust a level of the demodulated drive signal to provide a correction signal to cancel the quadrature error of the sense information, and an analog to digital converter configured to receive the corrected sense signal and to provide a digital representation of the corrected sense signal.


In Example 19, the drive demodulator of any one or more of Examples 1-18 optionally includes a first analog-to-digital converter configured to receive the demodulated drive signal and to provide a digital representation of the demodulated drive signal, and wherein the drive demodulator includes a digital correction amplifier configured to adjust a level of the digital representation of the demodulated drive signal to provide a digital correction signal to cancel the quadrature error of the sensed information.


In Example 20, the sense demodulator of any one or more of Examples 1-19 optionally includes a second analog-to-digital converter configured to receive the demodulated sense signal and to provide a digital representation of the demodulated sense signal.


In Example 21, the summing node of any one or more of Examples 1-20 optionally includes a digital summing node configured to combine the digital representation of the demodulated drive signal and the digital representation of the demodulated sense signal to cancel quadrature error of the demodulated sense signal, and to provide a digital, corrected sense signal.


Example 22 can include, or can optionally be combined with any portion or combination of any portions of any one or more of Examples 1 through 21 to include, subject matter that can include means for performing any one or more of the functions of Examples 1 through 21, or a machine-readable medium including instructions that, when performed by a machine, cause the machine to perform any one or more of the functions of Examples 1 through 21.


The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.


All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


Method examples described herein can be machine or computer-implemented at least in part. Some examples can include a computer-readable medium or machine-readable medium encoded with instructions operable to configure an electronic device to perform methods as described in the above examples. An implementation of such methods can include code, such as microcode, assembly language code, a higher-level language code, or the like. Such code can include computer readable instructions for performing various methods. The code may form portions of computer program products. Further, in an example, the code can be tangibly stored on one or more volatile, non-transitory, or non-volatile tangible computer-readable media, such as during execution or at other times. Examples of these tangible computer-readable media can include, but are not limited to, hard disks, removable magnetic disks, removable optical disks (e.g., compact disks and digital video disks), magnetic cassettes, memory cards or sticks, random access memories (RAMs), read only memories (ROMs), and the like.


The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. § 1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. A quadrature correction apparatus comprising: a drive charge-to-voltage (C2V) converter configured to provide drive information of a proof mass of a MEMS gyroscope;a sense C2V converter configured to provide sense information of the proof mass;a phase-shift circuit configured to provide phase shift information of the drive information;a drive demodulator configured to receive the drive information and the phase shift information and to provide demodulated drive information;a sense demodulator configured to receive the sense information and the phase shift information and to provide demodulated sense information;a summing node configured to receive the demodulated sense information from the sense demodulator; anda correction amplifier configured to receive the demodulated drive information from the drive demodulator and provide amplified demodulated drive information to the summing node,wherein the quadrature correction apparatus is configured to provide corrected sense information using the demodulated drive information and the demodulated sense information.
  • 2. The apparatus of claim 1, wherein the summing node is configured to provide the corrected sense information using the demodulated drive information from the sense demodulator and the demodulated sense information from the correction amplifier.
  • 3. The apparatus of claim 1, wherein the quadrature correction apparatus is configured to provide the corrected sense information using the amplified demodulated drive information and the demodulated sense information.
  • 4. The apparatus of claim 1, including an analog-to-digital converter configured to receive the corrected sense information and to provide a digital representation of the corrected sense information.
  • 5. The apparatus of claim 1, wherein the drive demodulator includes a first analog-to-digital converter configured to receive the demodulated drive information and to provide a digital representation of the demodulated drive information.
  • 6. The apparatus of claim 5, wherein the drive demodulator includes a correction amplifier configured to adjust a level of the digital representation of the demodulated drive information to provide a correction signal to cancel the quadrature error of the sensed information.
  • 7. The apparatus of claim 6, wherein the sense demodulator includes a second analog-to-digital converter configured to receive the demodulated sense information and to provide a digital representation of the demodulated sense information.
  • 8. The apparatus of claim 7, wherein the summing node is configured to provide the corrected sense information using the demodulated drive information and the demodulated sense information, the summing node includes a digital summing node configured to combine the digital representation of the demodulated drive information and the digital representation of the demodulated sense information to cancel quadrature error of the demodulated sense information, and to provide a digital, corrected sense information.
  • 9. The apparatus of claim 1, wherein the sense information represents a rate of motion of the MEMS gyroscope.
  • 10. A method comprising: providing drive information of a proof mass of a MEMS gyroscope using a drive charge-to-voltage (C2V) converter;providing sense information of the proof mass using a sense C2V converter;providing phase shift information of the drive information using the drive information and a phase-shift module;demodulating the drive information using a drive demodulator and the phase shift information to provide demodulated drive information;demodulating the sense information using a sense demodulator and the phase shift information to provide demodulated sense information;canceling quadrature error of the sense information to provide a corrected sense signal using the demodulated drive information and the demodulated sense information; andadjusting a level of the demodulated drive information using s correction amplifier.
  • 11. The method of claim 10, including converting the corrected sense signal using an analog-to-digital converter to provide a digital representation of the corrected sense signal.
  • 12. The method of claim 10, including providing a digital representation of the demodulated drive information using the demodulated drive information and a first analog-to-digital converter.
  • 13. The method of claim 12, including adjusting a level of the digital representation of the demodulated drive information using a correction amplifier.
  • 14. The method of claim 13, including providing a digital representation of the demodulated sense information using the demodulated sense information and a second analog-to-digital converter.
  • 15. The method of claim 14, wherein the canceling quadrature error includes digitally summing the digital representation of the demodulated drive information and the digital representation of the demodulated sense information to provide a digital, corrected sense information.
  • 16. A system comprising: a MEMS device including a proof mass; anda control circuit configured to provide sense information of the proof mass, the control circuit including: a drive charge-to voltage (C2V) converter configured to couple to the proof mass and to provide drive information of the proof mass;a sense C2V converter configured to receive a sense signal from the proof mass and to provide sense information of the proof mass;a phase-shift circuit configured to provide phase shift information using the drive information;a drive demodulator configured to receive phase shift information and the drive information and to provide a demodulated drive signal;a sense demodulator configured to the phase shift information and the sense information to provide a demodulated sense signal;a summing node configured to cancel quadrature error of the sense information and to provide a corrected sense signal using a sum of the demodulated drive signal and the demodulated sense signal; anda correction amplifier configured to adjust a level of the demodulated drive signal to provide a correction signal to cancel quadrature error of the sense information.
  • 17. The system of claim 16, further comprising: an analog-to-digital converter configured to receive the corrected sense signal and to provide a digital representation of the corrected sense signal.
  • 18. The system of claim 16, wherein: the drive demodulator includes a analog-to-digital converter configured to receive the demodulated drive signal and to provide a digital representation of the demodulated drive signal; andthe correction amplifier includes a digital correction amplifier configured to adjust a level of the digital representation of the demodulated drive signal to provide a digital correction signal to cancel the quadrature error of the sensed information.
  • 19. The system of claim 16, wherein the drive demodulator includes a first analog-to-digital converter, the sense demodulator includes a second analog-to-digital converter configured to receive the demodulated sense signal and to provide a digital representation of the demodulated sense signal.
  • 20. The system of claim 19, wherein the summing node includes a digital summing node configured to combine the digital representation of the demodulated drive signal and the digital representation of the demodulated sense signal to cancel quadrature error of the demodulated sense signal, and to provide a digital, corrected sense signal.
CLAIM OF PRIORITY

This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 61/620,653, filed Apr. 5, 2012, hereby incorporated by reference herein in its entirety.

US Referenced Citations (300)
Number Name Date Kind
3231729 Stern Jan 1966 A
4511848 Watson Apr 1985 A
4896156 Garverick Jan 1990 A
5481914 Ward Jan 1996 A
5487305 Ristic et al. Jan 1996 A
5491604 Nguyen et al. Feb 1996 A
5600064 Ward Feb 1997 A
5656778 Roszhart Aug 1997 A
5659195 Kaiser et al. Aug 1997 A
5703292 Ward Dec 1997 A
5723790 Andersson Mar 1998 A
5751154 Tsugai May 1998 A
5760465 Alcoe et al. Jun 1998 A
5765046 Watanabe et al. Jun 1998 A
5894091 Kubota Apr 1999 A
5912499 Diem et al. Jun 1999 A
5992233 Clark Nov 1999 A
6131457 Sato Oct 2000 A
6214644 Glenn Apr 2001 B1
6230566 Lee et al. May 2001 B1
6236096 Chang et al. May 2001 B1
6250157 Touge Jun 2001 B1
6253612 Lemkin et al. Jul 2001 B1
6301965 Chu et al. Oct 2001 B1
6351996 Nasiri et al. Mar 2002 B1
6366468 Pan Apr 2002 B1
6370937 Hsu Apr 2002 B2
6390905 Korovin et al. May 2002 B1
6501282 Dummermuth et al. Dec 2002 B1
6504385 Hartwell Jan 2003 B2
6516651 Geen Feb 2003 B1
6553835 Hobbs et al. Apr 2003 B1
6629448 Cvancara Oct 2003 B1
6654424 Thomae et al. Nov 2003 B1
6664941 Itakura et al. Dec 2003 B2
6722206 Takada Apr 2004 B2
6725719 Cardarelli Apr 2004 B2
6737742 Sweterlitsch May 2004 B2
6781231 Minervini et al. Aug 2004 B2
6848304 Geen Feb 2005 B2
7051590 Lemkin et al. May 2006 B1
7054778 Geiger et al. May 2006 B2
7093487 Mochida Aug 2006 B2
7166910 Minervini et al. Jan 2007 B2
7173402 Chen et al. Feb 2007 B2
7202552 Zhe et al. Apr 2007 B2
7210351 Lo et al. May 2007 B2
7216525 Schroeder May 2007 B2
7221767 Mullenborn et al. May 2007 B2
7240552 Acar et al. Jul 2007 B2
7258011 Nasiri et al. Aug 2007 B2
7258012 Xie et al. Aug 2007 B2
7266349 Kappes Sep 2007 B2
7293460 Zarabadi et al. Nov 2007 B2
7301212 Mian et al. Nov 2007 B1
7305880 Caminada et al. Dec 2007 B2
7339384 Peng et al. Mar 2008 B2
7358151 Araki et al. Apr 2008 B2
7436054 Zhe Oct 2008 B2
7444869 Johnson Nov 2008 B2
7449355 Lutz et al. Nov 2008 B2
7451647 Matsuhisa et al. Nov 2008 B2
7454967 Skurnik Nov 2008 B2
7481110 Handrich et al. Jan 2009 B2
7518493 Bryzek et al. Apr 2009 B2
7539003 Ray May 2009 B2
7544531 Grosjean Jun 2009 B1
7565839 Stewart et al. Jul 2009 B2
7595648 Ungaretti et al. Sep 2009 B2
7600428 Robert et al. Oct 2009 B2
7616078 Prandi et al. Nov 2009 B2
7622782 Chu et al. Nov 2009 B2
7694563 Durante et al. Apr 2010 B2
7706149 Yang et al. Apr 2010 B2
7781249 Laming et al. Aug 2010 B2
7795078 Ramakrishna et al. Sep 2010 B2
7817331 Moidu Oct 2010 B2
7851925 Theuss et al. Dec 2010 B2
7859352 Sutton Dec 2010 B2
7950281 Hammerschmidt May 2011 B2
7965067 Grönthal et al. Jun 2011 B2
8004354 Pu et al. Aug 2011 B1
8006557 Yin et al. Aug 2011 B2
8026771 Kanai et al. Sep 2011 B2
8037755 Nagata et al. Oct 2011 B2
8113050 Acar et al. Feb 2012 B2
8171792 Sameshima May 2012 B2
8201449 Ohuchi et al. Jun 2012 B2
8250921 Nasiri et al. Aug 2012 B2
8256290 Mao Sep 2012 B2
8375789 Prandi et al. Feb 2013 B2
8378756 Huang et al. Feb 2013 B2
8421168 Allen et al. Apr 2013 B2
8476970 Mokhtar et al. Jul 2013 B2
8497746 Visconti et al. Jul 2013 B2
8508290 Elsayed et al. Aug 2013 B2
8643382 Steele et al. Feb 2014 B2
8661898 Watson Mar 2014 B2
8710599 Marx et al. Apr 2014 B2
8739626 Acar Jun 2014 B2
8742964 Kleks et al. Jun 2014 B2
8754694 Opris et al. Jun 2014 B2
8763459 Brand et al. Jul 2014 B2
8813564 Acar Aug 2014 B2
8978475 Acar Mar 2015 B2
9003882 Ayazi et al. Apr 2015 B1
9006846 Bryzek et al. Apr 2015 B2
9052335 Coronato et al. Jun 2015 B2
9062972 Acar et al. Jun 2015 B2
9069006 Opris et al. Jun 2015 B2
9094027 Tao et al. Jul 2015 B2
9095072 Bryzek et al. Jul 2015 B2
9156673 Bryzek et al. Oct 2015 B2
9246018 Acar Jan 2016 B2
9278845 Acar Mar 2016 B2
9278846 Acar Mar 2016 B2
9352961 Acar et al. May 2016 B2
9425328 Marx et al. Aug 2016 B2
9444404 Opris et al. Sep 2016 B2
9455354 Acar Sep 2016 B2
20010022106 Kato et al. Sep 2001 A1
20020021059 Knowles et al. Feb 2002 A1
20020083757 Geen Jul 2002 A1
20020117728 Brosnihhan et al. Aug 2002 A1
20020178831 Takada Dec 2002 A1
20020189352 Reeds, III et al. Dec 2002 A1
20020196445 Mcclary et al. Dec 2002 A1
20030033850 Challoner et al. Feb 2003 A1
20030038415 Anderson et al. Feb 2003 A1
20030061878 Pinson Apr 2003 A1
20030196475 Wyse Oct 2003 A1
20030200807 Hulsing, II Oct 2003 A1
20030222337 Stewart Dec 2003 A1
20040051508 Hamon et al. Mar 2004 A1
20040085096 Ward et al. May 2004 A1
20040085784 Salama et al. May 2004 A1
20040088127 M'Closkey May 2004 A1
20040119137 Leonardi et al. Jun 2004 A1
20040177689 Cho et al. Sep 2004 A1
20040211258 Geen Oct 2004 A1
20040219340 McNeil et al. Nov 2004 A1
20040231420 Xie et al. Nov 2004 A1
20040251793 Matushisa Dec 2004 A1
20050005698 McNeil et al. Jan 2005 A1
20050072239 Longsdorf et al. Apr 2005 A1
20050097957 Mcneil et al. May 2005 A1
20050139005 Geen Jun 2005 A1
20050189635 Humpston et al. Sep 2005 A1
20050274181 Kutsuna et al. Dec 2005 A1
20060032308 Acar et al. Feb 2006 A1
20060034472 Bazarjani et al. Feb 2006 A1
20060043608 Bernier et al. Mar 2006 A1
20060044065 Ishida Mar 2006 A1
20060097331 Hattori May 2006 A1
20060112764 Higuchi Jun 2006 A1
20060137457 Zdeblick Jun 2006 A1
20060141786 Boezen et al. Jun 2006 A1
20060207328 Zarabadi et al. Sep 2006 A1
20060213265 Weber et al. Sep 2006 A1
20060213266 French et al. Sep 2006 A1
20060213268 Asami et al. Sep 2006 A1
20060246631 Lutz et al. Nov 2006 A1
20060283245 Konno et al. Dec 2006 A1
20070013052 Zhe et al. Jan 2007 A1
20070034005 Acar et al. Feb 2007 A1
20070040231 Harney et al. Feb 2007 A1
20070042606 Wang et al. Feb 2007 A1
20070047744 Karney et al. Mar 2007 A1
20070071268 Harney et al. Mar 2007 A1
20070085544 Viswanathan Apr 2007 A1
20070099327 Hartzell et al. May 2007 A1
20070113653 Nasiri et al. May 2007 A1
20070114643 DCamp et al. May 2007 A1
20070165888 Weigold Jul 2007 A1
20070180908 Seeger et al. Aug 2007 A1
20070205492 Wang Sep 2007 A1
20070214883 Durante et al. Sep 2007 A1
20070214891 Robert et al. Sep 2007 A1
20070220973 Acar Sep 2007 A1
20070222021 Yao Sep 2007 A1
20070240486 Moore Oct 2007 A1
20070284682 Laming et al. Dec 2007 A1
20080022762 Skurnik Jan 2008 A1
20080049230 Chin et al. Feb 2008 A1
20080079120 Foster et al. Apr 2008 A1
20080079444 Denison Apr 2008 A1
20080081398 Lee et al. Apr 2008 A1
20080083958 Wei et al. Apr 2008 A1
20080083960 Chen et al. Apr 2008 A1
20080092652 Acar Apr 2008 A1
20080122439 Burdick et al. May 2008 A1
20080157238 Hsiao Jul 2008 A1
20080157301 Ramakrishna et al. Jul 2008 A1
20080169811 Viswanathan Jul 2008 A1
20080202237 Hammerschmidt Aug 2008 A1
20080245148 Fukumoto Oct 2008 A1
20080247585 Leidl et al. Oct 2008 A1
20080251866 Belt et al. Oct 2008 A1
20080253057 Rijks et al. Oct 2008 A1
20080284365 Sri-Jayantha Nov 2008 A1
20080290756 Huang Nov 2008 A1
20080302559 Leedy Dec 2008 A1
20080314147 Nasiri Dec 2008 A1
20090007661 Nasiri et al. Jan 2009 A1
20090056443 Netzer Mar 2009 A1
20090064780 Coronato et al. Mar 2009 A1
20090064781 Ayazi et al. Mar 2009 A1
20090072663 Ayazi et al. Mar 2009 A1
20090085191 Najafi et al. Apr 2009 A1
20090114016 Nasiri et al. May 2009 A1
20090140606 Huang Jun 2009 A1
20090166827 Foster et al. Jul 2009 A1
20090175477 Suzuki et al. Jul 2009 A1
20090183570 Acar et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090217757 Nozawa Sep 2009 A1
20090263937 Ramakrishna et al. Oct 2009 A1
20090266163 Ohuchi et al. Oct 2009 A1
20090272189 Acar et al. Nov 2009 A1
20100019393 Hsieh et al. Jan 2010 A1
20100024548 Cardarelli Feb 2010 A1
20100038733 Minervini Feb 2010 A1
20100044853 Dekker et al. Feb 2010 A1
20100052082 Lee Mar 2010 A1
20100058864 Hsu et al. Mar 2010 A1
20100072626 Theuss et al. Mar 2010 A1
20100077858 Kawakubo et al. Apr 2010 A1
20100089154 Ballas et al. Apr 2010 A1
20100122579 Hsu et al. May 2010 A1
20100126269 Coronato et al. May 2010 A1
20100132461 Hauer et al. Jun 2010 A1
20100155863 Weekamp Jun 2010 A1
20100194615 Lu Aug 2010 A1
20100206074 Yoshida et al. Aug 2010 A1
20100212425 Hsu et al. Aug 2010 A1
20100224004 Suminto et al. Sep 2010 A1
20100231452 Babakhani et al. Sep 2010 A1
20100236327 Mao et al. Sep 2010 A1
20100263445 Hayner et al. Oct 2010 A1
20100294039 Geen Nov 2010 A1
20110023605 Tripoli et al. Feb 2011 A1
20110030473 Acar Feb 2011 A1
20110030474 Kuang et al. Feb 2011 A1
20110031565 Marx et al. Feb 2011 A1
20110074389 Knierim et al. Mar 2011 A1
20110094302 Schofield et al. Apr 2011 A1
20110120221 Yoda May 2011 A1
20110121413 Allen et al. May 2011 A1
20110146403 Rizzo Piazza Roncoroni et al. Jun 2011 A1
20110147859 Tanaka et al. Jun 2011 A1
20110179868 Kaino et al. Jul 2011 A1
20110192226 Hayner Aug 2011 A1
20110201197 Nilsson et al. Aug 2011 A1
20110234312 Lachhwani et al. Sep 2011 A1
20110265564 Acar et al. Nov 2011 A1
20110285445 Huang et al. Nov 2011 A1
20110316048 Ikeda et al. Dec 2011 A1
20120126349 Horning et al. May 2012 A1
20120162947 O'donnell et al. Jun 2012 A1
20120191398 Murakami et al. Jul 2012 A1
20120326248 Daneman et al. Dec 2012 A1
20130051586 Stephanou et al. Feb 2013 A1
20130098153 Trusov et al. Apr 2013 A1
20130099836 Shaeffer Apr 2013 A1
20130139591 Acar Jun 2013 A1
20130139592 Acar Jun 2013 A1
20130192364 Acar Aug 2013 A1
20130192369 Acar et al. Aug 2013 A1
20130199263 Egretzberger et al. Aug 2013 A1
20130199294 Townsend et al. Aug 2013 A1
20130221457 Conti et al. Aug 2013 A1
20130247666 Acar Sep 2013 A1
20130247668 Bryzek Sep 2013 A1
20130250532 Bryzek et al. Sep 2013 A1
20130257487 Opris et al. Oct 2013 A1
20130263641 Opris et al. Oct 2013 A1
20130263665 Opris et al. Oct 2013 A1
20130265070 Kleks et al. Oct 2013 A1
20130265183 Kleks et al. Oct 2013 A1
20130268227 Opris et al. Oct 2013 A1
20130269413 Tao et al. Oct 2013 A1
20130270657 Acar et al. Oct 2013 A1
20130270660 Bryzek et al. Oct 2013 A1
20130271228 Tao et al. Oct 2013 A1
20130277772 Bryzek et al. Oct 2013 A1
20130277773 Bryzek et al. Oct 2013 A1
20130283911 Ayazi et al. Oct 2013 A1
20130298671 Acar et al. Nov 2013 A1
20130328139 Acar Dec 2013 A1
20130341737 Bryzek et al. Dec 2013 A1
20140070339 Marx Mar 2014 A1
20140190258 Donadel et al. Jul 2014 A1
20140275857 Toth et al. Sep 2014 A1
20140306773 Kim Oct 2014 A1
20150059473 Jia Mar 2015 A1
20150114112 Valzasina et al. Apr 2015 A1
20150185012 Acar Jul 2015 A1
20160003618 Boser et al. Jan 2016 A1
20160161256 Lee et al. Jun 2016 A1
20160264404 Acar Sep 2016 A1
Foreign Referenced Citations (184)
Number Date Country
1068444 Jan 1993 CN
1198587 Nov 1998 CN
1206110 Jan 1999 CN
1221210 Jun 1999 CN
1272622 Nov 2000 CN
102156201 Aug 2001 CN
1389704 Jan 2003 CN
1532524 Sep 2004 CN
1595062 Mar 2005 CN
1595063 Mar 2005 CN
1603842 Apr 2005 CN
1617334 May 2005 CN
1659810 Aug 2005 CN
1693181 Nov 2005 CN
1780732 May 2006 CN
1813192 Aug 2006 CN
1816747 Aug 2006 CN
1818552 Aug 2006 CN
1886669 Dec 2006 CN
1905167 Jan 2007 CN
1948906 Apr 2007 CN
101038299 Sep 2007 CN
101044684 Sep 2007 CN
101059530 Oct 2007 CN
101067555 Nov 2007 CN
101069099 Nov 2007 CN
101078736 Nov 2007 CN
101171665 Apr 2008 CN
101180516 May 2008 CN
101198874 Jun 2008 CN
101213461 Jul 2008 CN
101217263 Jul 2008 CN
101239697 Aug 2008 CN
101257000 Sep 2008 CN
101270988 Sep 2008 CN
101316462 Dec 2008 CN
101329446 Dec 2008 CN
101426718 May 2009 CN
101459866 Jun 2009 CN
101519183 Sep 2009 CN
101520327 Sep 2009 CN
101561275 Oct 2009 CN
101634662 Jan 2010 CN
101638211 Feb 2010 CN
101639487 Feb 2010 CN
101666813 Mar 2010 CN
101738496 Jun 2010 CN
101813480 Aug 2010 CN
101839718 Sep 2010 CN
101055180 Oct 2010 CN
101855516 Oct 2010 CN
101858928 Oct 2010 CN
101916754 Dec 2010 CN
101922934 Dec 2010 CN
201688848 Dec 2010 CN
102109345 Jun 2011 CN
102332894 Jan 2012 CN
102337541 Feb 2012 CN
102364671 Feb 2012 CN
102597699 Jul 2012 CN
103209922 Jul 2013 CN
103210278 Jul 2013 CN
103221331 Jul 2013 CN
103221332 Jul 2013 CN
103221333 Jul 2013 CN
103221778 Jul 2013 CN
103221779 Jul 2013 CN
103221795 Jul 2013 CN
103238075 Aug 2013 CN
103363969 Oct 2013 CN
103363983 Oct 2013 CN
103364590 Oct 2013 CN
103364593 Oct 2013 CN
103368503 Oct 2013 CN
103368562 Oct 2013 CN
103368577 Oct 2013 CN
103376099 Oct 2013 CN
103376102 Oct 2013 CN
203261317 Oct 2013 CN
103403495 Nov 2013 CN
203275441 Nov 2013 CN
203275442 Nov 2013 CN
203301454 Nov 2013 CN
203349832 Dec 2013 CN
203349834 Dec 2013 CN
103663344 Mar 2014 CN
203683082 Jul 2014 CN
203719664 Jul 2014 CN
104094084 Oct 2014 CN
104105945 Oct 2014 CN
104220840 Dec 2014 CN
104272062 Jan 2015 CN
103221778 Mar 2016 CN
104272062 May 2016 CN
112011103124 Dec 2013 DE
102013014881 Mar 2014 DE
0638782 Feb 1995 EP
1055910 Nov 2000 EP
1335185 Aug 2003 EP
1460380 Sep 2004 EP
1521086 Apr 2005 EP
1688705 Aug 2006 EP
1832841 Sep 2007 EP
1860402 Nov 2007 EP
2053413 Apr 2009 EP
2096759 Sep 2009 EP
2259019 Dec 2010 EP
2466257 Jun 2012 EP
2616772 Jun 2016 EP
2647593 Aug 2016 EP
0989927 Apr 1997 JP
09089927 Apr 1997 JP
10239347 Sep 1998 JP
1164002 Mar 1999 JP
2000046560 Feb 2000 JP
2005024310 Jan 2005 JP
2005114394 Apr 2005 JP
2005294462 Oct 2005 JP
3882972 Feb 2007 JP
2007024864 Feb 2007 JP
2008294455 Dec 2008 JP
2009075097 Apr 2009 JP
2009186213 Aug 2009 JP
2009192458 Aug 2009 JP
2009260348 Nov 2009 JP
2010025898 Feb 2010 JP
2010506182 Feb 2010 JP
1020110055449 May 2011 KR
1020130052652 May 2013 KR
1020130052653 May 2013 KR
1020130054441 May 2013 KR
1020130055693 May 2013 KR
1020130057485 May 2013 KR
1020130060338 Jun 2013 KR
1020130061181 Jun 2013 KR
101311966 Sep 2013 KR
1020130097209 Sep 2013 KR
101318810 Oct 2013 KR
1020130037462 Oct 2013 KR
1020130112789 Oct 2013 KR
1020130112792 Oct 2013 KR
1020130112804 Oct 2013 KR
1020130113385 Oct 2013 KR
1020130113386 Oct 2013 KR
1020130113391 Oct 2013 KR
1020130116189 Oct 2013 KR
1020130116212 Oct 2013 KR
101332701 Nov 2013 KR
1020130139914 Dec 2013 KR
1020130142116 Dec 2013 KR
101352827 Jan 2014 KR
1020140034713 Mar 2014 KR
I255341 May 2006 TW
WO-9311415 Jun 1993 WO
WO-9503534 Feb 1995 WO
WO-0107875 Feb 2001 WO
WO-0175455 Oct 2001 WO
WO-2008014246 Jan 2008 WO
WO-2008059757 May 2008 WO
WO-2008087578 Jul 2008 WO
WO-2009038924 Mar 2009 WO
WO-2009050578 Apr 2009 WO
WO-2009156485 Dec 2009 WO
WO-2011016859 Feb 2011 WO
WO-2011016859 Feb 2011 WO
WO-2011107542 Sep 2011 WO
WO-2012037492 Mar 2012 WO
WO-2012037492 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037536 Mar 2012 WO
WO-2012037537 Mar 2012 WO
WO-2012037538 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037540 Mar 2012 WO
WO-2012040194 Mar 2012 WO
WO-2012040211 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2013115967 Aug 2013 WO
WO-2013116356 Aug 2013 WO
WO-2013116514 Aug 2013 WO
WO-2013116522 Aug 2013 WO
Non-Patent Literature Citations (423)
Entry
“U.S. Appl. No. 12/849,742, Notice of Allowance dated Nov. 29, 2013”, 7 pgs.
“U.S. Appl. No. 12/849,787, Notice of Allowance dated Dec. 11, 2013”, 9 pgs.
“U.S. Appl. No. 13/362,955, Response filed Feb. 17, 2014 to Restriction Requirement dated Dec. 17, 2013”, 9 pgs.
“U.S. Appl. No. 13/362,955, Restriction Requirement dated Dec. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/363,537, Non Final Office Action dated Feb. 6, 2014”, 10 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance dated Jan. 28, 2014”, 9 pgs.
“U.S. Appl. No. 13/746,016, Notice of Allowance dated Jan. 17, 2014”, 10 pgs.
“U.S. Appl. No. 13/755,841, Restriction Requirement dated Feb. 21, 2014”, 6 pgs.
“Chinese Application Serial No. 201180053926.1, Office Action dated Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action dated Jan. 16, 2014”, 8 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action dated Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action dated Jan. 30, 2014”, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action dated Oct. 25, 2013”, 8 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Dec. 24, 2013 to Office Action dated Oct. 25, 2013”, 11 pgs.
“Chinese Application Serial No. 201320565239.4, Office Action dated Jan. 16, 2014”, w/English Translation, 3 pgs.
“European Application Serial No. 10806751.3, Extended European Search Report dated Jan. 7, 2014”, 7 pgs.
“Korean Application Serial No. 10-2013-0109990, Amendment filed Dec. 10, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action dated Dec. 27, 2013”, 8 pgs.
“Korean Application Serial No. 10-2013-7009775, Response filed Oct. 29, 2013 to Office Action dated Sep. 17, 2013”, w/English Claims, 23 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action dated Jan. 27, 2014”, 5 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Nov. 5, 2013 to Office Action dated Sep. 17, 2013”, 11 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action dated Dec. 27, 2013”, w/English Translation, 10 pgs.
“Korean Application Serial No. 10-2013-7009788, Response filed Oct. 29, 2013 to Office Action dated Aug. 29, 2013”, w/English Claims, 22 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action dated Mar. 28, 2013”, 9 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action dated Aug. 23, 2012”, 9 pgs.
“U.S. Appl. No. 12/849,787, Response filed Feb. 4, 2013 to Restriction Requirement dated Oct. 4, 2012”, 7 pgs.
“U.S. Appl. No. 12/849,787, Restriction Requirement dated Oct. 4, 2012”, 5 pgs.
“Application Serial No. PCT/US2011/052006, International Republished Application dated Jun. 7, 2012”, 1 pg.
“Application Serial No. PCT/US2011/052417, International Republished Application dated Jun. 7, 2012”, 1 pg.
“International Application Serial No. PCT/US2010/002166, International Preliminary Report on Patentability dated Feb. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2010/002166, International Search Report dated Feb. 28, 2011”, 3 pgs.
“International Application Serial No. PCT/US2010/002166, Written Opinion dated Feb. 28, 2011”,4 pgs.
“International Application Serial No. PCT/US2011/051994, International Search Report dated Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/051994, Written Opinion dated Apr. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052006, International Preliminary Report on Patentability dated Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052006, Search Report dated Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052006, Written Opinion dated Apr. 16, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052059, International Preliminary Report on Patentability dated Jan. 22, 2013”, 14 pgs.
“International Application Serial No. PCT/US2011/052059, Search Report dated Apr. 20, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052059, Written Opinion dated Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052060, International Preliminary Report on Patentability dated Jan. 22, 2013”, 12 pgs.
“International Application Serial No. PCT/US2011/052060, International Search Report dated Apr. 20, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052060, Written Opinion dated Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052061, International Preliminary Report on Patentability dated Mar. 28, 2013”, 6 pgs.
“International Application Serial No. PCT/US2011/052061, International Search Report dated Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052061, Written Opinion dated Apr. 10, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052064, International Preliminary Report on Patentability dated Mar. 28, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052064, Search Report dated Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052064, Written Opinion dated Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, International Preliminary Report on Patentability dated Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052065, International Search Report dated Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, Written Opinion dated Apr. 10, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052369, International Search Report dated Apr. 24, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052369, Written Opinion dated Apr. 24, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052417, International Preliminary Report on Patentability dated Apr. 4, 2013”, 6 pgs.
“International Application Serial No. PCT/US2011/052417, International Search Report dated Apr. 23, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052417, Written Opinion dated Apr. 23, 2012”, 4 pgs.
Beyne, E, et al., “Through-silicon via and die stacking technologies for microsystems-integration”, IEEE International Electron Devices Meeting, 2008. IEDM 2008., (Dec. 2008), 1-4.
Cabruja, Enric, et al., “Piezoresistive Accelerometers for MCM-Package-Part II”, The Packaging Journal of Microelectromechanical Systems. vol. 14, No. 4, (Aug. 2005), 806-811.
Ezekwe, Chinwuba David, “Readout Techniques for High-Q Micromachined Vibratory Rate Gyroscopes”, Electrical Engineering and Computer Sciences University of California at Berkeley, Technical Report No. UCB/EECS-2007-176, http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-176.html, (Dec. 21, 2007), 94 pgs.
Rimskog, Magnus, “Through Wafer Via Technology for MEMS and 3D Integration”, 32nd IEEE/CPMT International Electronic Manufacturing Technology Symposium, 2007. IEMT '07., (2007), 286-289.
U.S. Appl. No. 14/217,842, filed Mar. 18, 2014, Apparatus and Methods for PLL-Based Gyroscope Gain Control, Quadrature Cancellation and Demodulation.
“U.S. Appl. No. 13/362,955, Notice of Allowance dated Feb. 25, 2015”, 8 pgs.
“U.S. Appl. No. 13/362,955, Response filed Jan. 16, 2015 to Final Office Action dated Nov. 19, 2014”, 9 pgs.
“U.S. Appl. No. 13/363,537, Corrected Notice of Allowance dated Jan. 28, 2015”, 2 pgs.
“U.S. Appl. No. 13/742,994, Non Final Office Action dated May 1, 2015”, 20 pgs.
“U.S. Appl. No. 13/755,953, Non Final Office Action dated May 14, 2015”, 11 pgs.
“U.S. Appl. No. 13/755,953, Response filed May 4, 2015 to Restrictiion Requirement dated Mar. 3, 2015”, 7 pgs.
“U.S. Appl. No. 13/755,953, Restriction Requirement dated Mar. 3, 2015”, 6 pgs.
“U.S. Appl. No. 13/765,068, Notice of Allowance dated May 7, 2015”, 12 pgs.
“U.S. Appl. No. 13/813,443, Restriction Requirement dated Apr. 29, 2015”, 6 pgs.
“U.S. Appl. No. 13/821,586, Non Final Office Action dated Jan. 15, 2015”, 8 pgs.
“U.S. Appl. No. 13/821,586, Response filed May 15, 2015 to Non Final Office Action dated Jan. 15, 2015”, 12 pgs.
“U.S. Appl. No. 13/821,589, Final Office Action dated Mar. 12, 2015”, 13 pgs.
“U.S. Appl. No. 13/821,589, response filed May 12, 2015 to final office action dated Mar. 12, 2015”, 12 pgs.
“U.S. Appl. No. 13/821,598, Response filed Feb. 20, 2015 to Non Final Office Action dated Nov. 20, 2014”, 12 pgs.
“U.S. Appl. No. 13/821,609, Notice of Allowance dated Mar. 23, 2015”, 11 pgs.
“U.S. Appl. No. 13/821,609, Response filed Feb. 13, 2015 to Restriction Requirement dated Dec. 15, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,609, Restriction Requirement dated Dec. 15, 2014”, 7 pgs.
“U.S. Appl. No. 13/821,612, Notice of Allowance dated Dec. 10, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,842, Non Final Office Action dated Mar. 18, 2015”, 20 pgs.
“U.S. Appl. No. 13/821,853, Non Final Office Action dated Feb. 18, 2015”, 15 pgs.
“U.S. Appl. No. 13/821,853, Response filed Dec. 1, 2014 to Non Final Office Action dated Jul. 30, 2014”, 10 pgs.
“U.S. Appl. No. 13/860,761, Advisory Action dated Mar. 25, 2015”, 3 pgs.
“U.S. Appl. No. 13/860,761, Final Office Action dated Jan. 15, 2015”, 14 pgs.
“U.S. Appl. No. 13/860,761, Notice of Allowance dated Apr. 28, 2015”, 8 pgs.
“U.S. Appl. No. 13/860,761, Response filed Mar. 16, 2015 to Final Office Action dated Jan. 16, 2015”, 12 pgs.
“U.S. Appl. No. 13/860,761, Response filed Apr. 16, 2015 to Advisory Action dated Mar. 25, 2015”, 11 pgs.
“U.S. Appl. No. 13/860,761, Response filed Dec. 19, 2014 to Non Final Office Action dated Aug. 19, 2014”, 12 pgs.
“U.S. Appl. No. 14/658,579, Prliminary Amendment filed Mar. 18, 2015”, 8 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action dated Jan. 30, 2015”, with English translation of claims, 5 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Nov. 19, 2014 to Office Action dated Sep. 4, 2014”, with English translation of claims, 7 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Apr. 14, 2015 to Office Action dated Jan. 30, 2015”, w/ English Claims, 30 pgs.
“Chinese Application Serial No. 201180055309.5, Office Action dated Jan. 8, 2015”, with English translation of claims, 5 pgs.
“Chinese Application Serial No. 201180055630.3, Office Action dated Dec. 22, 2014”, with English translation of claims, 10 pgs.
“Chinese Application Serial No. 201180055630.3, Response filed Apr. 20, 2015 to Office Action dated Dec. 22, 2014”, w/ English Claims, 10 pgs.
“Chinese Application Serial No. 201180055792.7, Office Action dated Dec. 22, 2014”, with English translation of claims, 10 pgs.
“Chinese Application Serial No. 201180055792.7, Response filed May 5, 2015 to Office Action dated Dec. 22, 2014”, w/ English Claims, 15 pgs.
“Chinese Application Serial No. 201180055794.6, Office Action dated Dec. 17, 2014”, with English translation of claims, 9 pgs.
“Chinese Application Serial No. 201180055794.6, Response filed May 4, 2015 to Office Action dated Dec. 17, 2014”, w/ English Claims, 15 pgs.
“Chinese Application Serial No. 201180055823.9, Office Action dated Mar. 19, 2015”, w/ English Claims, 8 pgs.
“Chinese Application Serial No. 201180055845.5, Office Action dated Mar. 4, 2015”, w/ English Claims, 8 pgs.
“Chinese Application Serial No. 2013101188456, Response filed Jan. 21, 2015”, with English translation of claims, 16 pgs.
“Chinese Application Serial No. 201310119472.4, Response filed Jan. 21, 2015”, with English translation of claims, 16 pgs.
“Chinese Application Serial No. 201310119730.9, Office Action dated May 4, 2015”, w/ English Claims, 8 pgs.
“Chinese Application Serial No. 201310127961.4, Office Action dated May 6, 2015”, w/ English Claims, 7 pgs.
“Chinese Application Serial No. 201380007588.7, Response filed Oct. 24, 2014”, with English translation, 3 pgs.
“Chinese Application Serial No. 201380007615.0, Response filed Oct. 24, 2014”, with English translation, 3 pgs.
“European Application Serial No. 11826067.8, Response filed Apr. 27, 2015 to Extended European Search Report dated Oct. 6, 2014”, 32 pgs.
“European Application Serial No. 11826068.6, Response filed Feb. 9, 2015”, 30 pgs.
“European Application Serial No. 11826071.0, Examination Notification Art. 94(3) dated Dec. 11, 2014”, 4 pgs.
“European Application Serial No. 11826071.0, Response filed Apr. 13, 2015 to Examination Notification Art. 94(3) dated Dec. 11, 2014”, 5 pgs.
“European Application Serial No. 13001695.9, Extended European Search Report dated Jan. 22, 2015”, 8 pgs.
“European Application Serial No. 13001719.7, Response filed Jan. 21, 2015”, 29 pgs.
“U.S. Appl. No. 12/849,742, Response filed Jan. 23, 2012 to Non Final Office Action dated Aug. 23, 2012”, 10 pgs.
“U.S. Appl. No. 12/849,787, Non Final Office Action dated May 28, 2013”, 18 pgs.
“U.S. Appl. No. 12/947,543, Notice of Allowance dated Dec. 17, 2012”, 11 pgs.
“U.S. Appl. No. 13/813,443, Preliminary Amendment dated Jan. 31, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,586, Preliminary Amendment dated Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,589, Preliminary Amendment dated Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,598, Preliminary Amendment dated Mar. 8, 2013”, 7 pgs.
“U.S. Appl. No. 13/821,609, Preliminary Amendment dated Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,612, Preliminary Amendment dated Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,619, Preliminary Amendment dated Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,793, Preliminary Amendment dated Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,842, Preliminary Amendment dated Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,853, Preliminary Amendment dated Mar. 8, 2013”, 3 pgs.
“Application Serial No. PCT/US2011/051994, International Republished Application dated Jun. 7, 2012”, 1 pg.
“DigiSiMic™ Digital Silicon Microphone Pulse Part Number: TC100E”, TC100E Datasheet version 4.2 DigiSiMic™ Digital Silicon Microphone. (Jan. 2009), 6 pgs.
“EPCOS MEMS Microphone With TSV”, 1 pg.
“International Application Serial No. PCT/US2011/051994, International Preliminary Report on Patentability dated Mar. 28, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/052340, International Preliminary Report on Patentability dated Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052340, Search Report dated Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052340, Written Opinion dated Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052369, International Preliminary Report on Patentability dated Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, International Search Report dated Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, Written Opinion dated Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/023877, International Search Report dated May 14, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/023877, Written Opinion dated May 14, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/024149, Written Opinion mailed”, 4 pages.
“International Application Serial No. PCT/US2013/024149, International Search Report mailed”, 7 pages.
“T4020 & T4030 MEMS Microphones for Consumer Electronics”, Product Brief 2010, Edition Feb. 2010, (2010), 2 pgs.
Acar, Cenk, et al., “Chapter 4: Mechanical Design of MEMS Gyroscopes”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 73-110.
Acar, Cenk, et al., “Chapter 6: Linear Multi DOF Architecture—Sections 6.4 and 6.5”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 158-178.
Acar, Cenk, et al., “Chapter 7: Torsional Multi-DOF Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (209), 187-206.
Acar, Cenk, et al., “Chapter 8: Distributed-Mass Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 207-224.
Acar, Cenk, et al., “Chapter 9: Conclusions and Future Trends”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 225-245.
Krishnamurthy, Rajesh, et al., “Drilling and Filling, but not in your Dentist's Chair a look at some recent history of multi-chip and through silicon via (TSV) technology”, Chip Design Magazine, (Oct./Nov. 2008), 7 pgs.
U.S. Appl. No. 12/947,543, U.S. Pat. No. 8,421,168, filed Nov. 16, 2010, Microelectromechanical Systems Microphone Packaging Systems.
U.S. Appl. No. 12/849,742, filed Aug. 3, 2010, Micromachined Inertial Sensor Devices.
U.S. Appl. No. 12/849,787, filed Aug. 3, 2010, Micromachined Devices and Fabricating the Same.
U.S. Appl. No. 13/821,793, filed Mar. 8, 2013, Micromachined Monolithic 6-Axis Inertial Sensor.
U.S. Appl. No. 13/821,609, filed Mar. 8, 2013, Multi-Die MEMS Package.
U.S. Appl. No. 13/821,586, filed Mar. 8, 2013, Packaging to Reduce Stress on Microelectromechanical Systems.
U.S. Appl. No. 13/821,842, filed Mar. 8, 2013, Micromachined Monolithic 3-Axis Gyroscope with Single Drive.
U.S. Appl. No. 13/821,853, filed Mar. 8, 2013, Micromachined 3-Axis Accelerometer With a Single Proof-Mass.
U.S. Appl. No. 13/821,589, filed Mar. 8, 2013, Sealed Packaging for Microelectromechanical Systems.
U.S. Appl. No. 13/813,443, filed Jan. 31, 2013, Flexure Bearing to Reduce Quadrature for Resonating Micromachined Devices.
U.S. Appl. No. 13/821,612, filed Mar. 8, 2013, Through Silcon Via With Reduced Shunt Capacitance.
U.S. Appl. No. 13/821,598, filed Mar. 8, 2013, Microelectromechanical Pressure Sensor Including Reference Capacitor.
U.S. Appl. No. 13/821,619, filed Mar. 8, 2013, Inertial Sensor Mode Tuning Circuit.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability dated Mar. 17, 2014”, 3 pgs.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability dated May 5, 2014”, 2 pgs.
“U.S. Appl. No. 12/849,787, Supplemental Notice of Allowability dated Mar. 21, 2014”, 3 pgs.
“U.S. Appl. No. 13/362,955, Non Final Office Action dated Apr. 15, 2014”, 9 pgs.
“U.S. Appl. No. 13/363,537, Response filed Jun. 6, 2014 to Non Final Office Action dated Feb. 6, 2014”, 11 pgs.
“U.S. Appl. No. 13/742,942, Supplemental Notice of Allowability dated Apr. 10, 2014”, 2 pgs.
“U.S. Appl. No. 13/755,841, Notice of Allowance dated May 7, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Preliminary Amendment filed Oct. 10, 2013”, 10 pgs.
“U.S. Appl. No. 13/755,841, Response filed Apr. 21, 2014 to Restriction Requirement dated Feb. 21, 2014”, 7 pgs.
“U.S. Appl. No. 13/821,589, Restriction Requirement dated Apr. 11, 2014”, 10 pgs.
“Chinese Application Serial No. 2010800423190, Office Action dated Mar. 26, 2014”, 10 pgs.
“Chinese Application Serial No. 201180053926.1, Response filed Apr. 29, 2014 to Office Action dated Jan. 13, 2014”, w/English Claims, 10 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed May 27, 2014 to Office Action dated Jan. 13, 2014”, w/English Claims, 29 pgs.
“Chinese Application Serial No. 201180055309.5, Office Action dated Mar. 31, 2014”, w/English Claims, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Mar. 18, 2014 to Office Action dated Jan. 30, 2014”, w/English Claims, 20 pgs.
“Chinese Application Serial No. 201320565239.4, Response filed Mar. 31, 2014 to Office Action dated Jan. 16, 2014”, w/English Claims, 38 pgs.
“European Application Serial No. 118260070.2, Office Action dated Mar. 12, 2014”, 1 pg.
“European Application Serial No. 11826070.2, Extended European Search Report dated Feb. 12, 2014”, 5 pgs.
“European Application Serial No. 11826071.0, Extended European Search Report dated Feb. 20, 2014”, 6 pgs.
“European Application Serial No. 11826071.0, Office Action dated Mar. 12, 2014”, 1 pg.
“European Application Serial No. 13001692.6, Response filed Apr. 1, 2014 to Extended European Search Report dated Jul. 24, 2013”, 19 pgs.
“European Application Serial No. 13001721.3, Response filed Apr. 7, 2014 to Extended European Search Report dated Jul. 18, 2013”, 25 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Apr. 28, 2014”, w/English Claims, 19 pgs.
“U.S. Appl. No. 13/363,537, Final Office Action dated Jun. 27, 2014”, 8 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance dated Jan. 28, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Supplemental Notice of Allowability dated Jun. 27, 2014”, 2 pgs.
“U.S. Appl. No. 13/821,589, Non Final Office Action dated Jul. 9, 2014”, 10 pgs.
“U.S. Appl. No. 13/821,589, Response to Restriction Requirement dated Apr. 11, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,598, Restriction Requirement dated Aug. 15, 2014”, 11 pgs.
“U.S. Appl. No. 13/821,612, Non Final Office Action dated Jul. 23, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,853, Non Final Office Action dated Jul. 30, 2014”, 10 pgs.
“U.S. Appl. No. 13/860,761, Non Final Office Action dated Aug. 19, 2014”, 13 pgs.
“Chinese Application Serial No. 2010800423190, Response filed Aug. 11, 2014 to Office Action dated Mar. 26, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Jun. 30, 2014 to Office Action dated Jan. 16, 2014”, w/English Claims, 3 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action dated Jul. 2, 2014”, w/English Translation, 5 pgs.
“Chinese Application Serial No. 201180055309.5, Response filed Aug. 13, 2014 to Office Action dated Mar. 31, 2014”, w/English Claims, 27 pgs.
“Chinese Application Serial No. 201380007588.7, Notification to Make Rectification dated Aug. 18, 2014”, 2 pgs.
“Chinese Application Serial No. 201380007615.0, Notification to Make Rectification dated Aug. 18, 2014”, 2 pgs.
“European Application Serial No. 10806751.3, Response filed Jul. 24, 2014 to Office Action dated Jan. 24, 2014”, 26 pgs.
“European Application Serial No. 11826068.6, Extended European Search Report dated Jul. 16, 2014”, 10 pgs.
“European Application Serial No. 13001719.7, Extended European Search Report dated Jun. 24, 2014”, 10 pgs.
“International Application Serial No. PCT/US2013/021411, International Preliminary Report on Patentability dated Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/023877, International Preliminary Report on Patentability dated Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/024138, International Preliminary Report on Patentability dated Aug. 14, 2014”, 6 pgs.
“International Application U.S. Appl. No. PCT/US2013/024149, International Preliminary Report on Patentability dated Aug. 14, 2014”, 6 pgs.
Sebastiano, Fabio, et al., “A 1.2-V 10-μW NPN-Based Temperature Sensor in 65-nm CMOS With an Inaccuracy of 0.2 C (3) From -70 C to 125 C”, IEEE Journal of Solid-State Circuits, vol. 45, No. 12, Dec. 2010, (Dec. 1, 2010), 2591-2601.
Xia, Guo-Ming, et al., “Phase correction in digital self-oscillation drive circuit for improve silicon MEMS gyroscope bias stability”, Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, IEEE, (Nov. 1, 2010), 1416-1418.
“U.S. Appl. No. 12/849,742, Response filed Sep. 30, 2013 to Non-Final Office Action dated Mar. 28, 2013”, 12 pgs.
“U.S. Appl. No. 12/849,787, Response filed Oct. 28, 2013 to Non Final Office Action dated May 28, 2013”, 12 pgs.
“Chinese Application Serial No. 201180053926.1, Amendment filed Aug. 21, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201180055309.5, Voluntary Amendment filed Aug. 23, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201320165465.3, Office Action dated Jul. 22, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320165465.3, Response filed Aug. 7, 2013 to Office Action dated Jul. 22, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial No. 201320171504.0, Office Action dated Jul. 22, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320171504.0, Response filed Jul. 25, 2013 to Office Action dated Jul. 22, 2013”, w/English Translation, 33 pgs.
“Chinese Application Serial No. 201320171616.6, Office Action dated Jul. 10, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Office Action dated Jul. 11, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 25, 2013 to Office Action dated Jul. 11, 2013”, w/English Translation, 21 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 26, 2013 to Office Action dated Jul. 10, 2013”, w/English Translation, 40 pgs.
“Chinese Application Serial No. 201320172128.7, Office Action dated Jul. 12, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172128.7, Response filed Aug. 7, 2013 to Office Action dated Jul. 12, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action dated Jul. 9, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Sep. 16, 2013 to Office Action dated Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320172367.2, Office Action dated Jul. 9, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320172367.2, Response filed Sep. 16, 2013 to Office Action dated Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320185461.1, Office Action dated Jul. 23, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320185461.1, Response filed Sep. 10, 2013 to Office Action dated Jul. 23, 2013”, w/English Translation, 25 pgs.
“Chinese Application Serial No. 201320186292.3, Office Action dated Jul. 19, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320186292.3, Response filed Sep. 10, 2013 to Office Action dated Jul. 19, 2013”, w/English Translation, 23 pgs.
“European Application Serial No. 13001692.6, European Search Report dated Jul. 24, 2013”, 5 pgs.
“European Application Serial No. 13001696.7, Extended European Search Report dated Aug. 6, 2013”, 4 pgs.
“European Application Serial No. 13001721.3, European Search Report dated Jul. 18, 2013”, 9 pgs.
“International Application Serial No. PCT/US2013/024138, International Search Report dated May 24, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/024138, Written Opinion dated May 24, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action dated Sep. 17, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action dated Sep. 17, 2013”, w/English Translation, 8 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action dated Aug. 29, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009790, Office Action dated Jun. 26, 2013”, W/English Translation, 7 pgs.
“Korean Application Serial No. 10-2013-7009790, Response filed Aug. 26, 2013 to Office Action dated Jun. 26, 2013”, w/English Claims, 11 pgs.
“Korean Application Serial No. 10-2013-7010143, Office Action dated May 28, 2013”, w/English Translation, 5 pgs.
“Korean Application Serial No. 10-2013-7010143, Response filed Jul. 24, 2013 to Office Action dated May 28, 2013”, w/English Claims, 14 pgs.
Ferreira, Antoine, et al., “A Survey of Modeling and Control Techniques for Micro- and Nanoelectromechanical Systems”, IEEE Transactions on Systems, Man and Cybernetics—Part C: Applications and Reviews vol. 41, No. 3., (May 2011), 350-364.
Fleischer, Paul E, “Sensitivity Minimization in a Single Amplifier Biquad Circuit”, IEEE Transactions on Circuits and Systems. vol. Cas-23, No. 1, (1976), 45-55.
Reljin, Branimir D, “Properties of SAB filters with the two-pole single-zero compensated operational amplifier”, Circuit Theory and Applications: Letters to the Editor. vol. 10, (1982), 277-297.
Sedra, Adel, et al., “Chapter 8.9: Effect of Feedback on the Amplifier Poles”, Microelectronic Circuits, 5th edition, (2004), 836-864.
Song-Hee, Cindy Paik, “A MEMS-Based Precision Operational Amplifier”, Submitted to the Department of Electrical Engineering and Computer Sciences MIT, [Online]. Retrieved from the Internet: <URL: http://dspace.mit.edu/bitstream/handle/1721.1/16682/57138272.pdf? . . .>, (Jan. 1, 2004), 123 pgs.
U.S. Appl. No. 14/023,869, filed Sep. 11, 2013, Through Silicon Via Including Multi-Material Fill.
“U.S. Appl. No. 13/362,955, Final Office Action dated Nov. 19, 2014”, 5 pgs.
“U.S. Appl. No. 13/362,955, Response filed Aug. 15, 2014 to Non Final Office Action dated May 15, 2014”, 13 pgs.
“U.S. Appl. No. 13/363,537, Examiner Interview Summary dated Sep. 29, 2014”, 3 pgs.
“U.S. Appl. No. 13/363,537, Notice of Allowance dated Nov. 7, 2014”, 5 pgs.
“U.S. Appl. No. 13/363,537, Response filed Sep. 29, 2014 to Final Office Action dated Jun. 27, 2014”, 9 pgs.
“U.S. Appl. No. 13/821,586, Response filed Nov. 24, 2014 to Restriction Requirement dated Sep. 22, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,586, Restriction Requirement dated Sep. 22, 2014”, 4 pgs.
“U.S. Appl. No. 13/821,589, Response filed Nov. 10, 2014 to Non Final Office Action dated Jul. 9, 2014”, 15 pgs.
“U.S. Appl. No. 13/821,598, Non Final Office Action dated Nov. 20, 2014”, 9 pgs.
“U.S. Appl. No. 13/821,598, Response filed Oct. 15, 2014 to Restriction Requirement dated Aug. 15, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,612, Response filed Oct. 23, 2014 to Non Final Office Action dated Jul. 23, 2014”, 6 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action dated Sep. 4, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed Nov. 14, 2014 to Office Action dated Jul. 2, 2014”, w/English Claims, 23 pgs.
“Chinese Application Serial No. 201310118845.6, Office Action dated Sep. 9, 2014”, 8 pgs.
“Chinese Application Serial No. 201310119472.4, Office Action dated Sep. 9, 2014”, w/English Translation, 11 pgs.
“European Application Serial No. 11826043.9, Office Action dated May 6, 2013”, 2 pgs.
“European Application Serial No. 11826043.9, Response filed Nov. 4, 2013 to Office Action dated May 6, 2013”, 6 pgs.
“European Application Serial No. 11826067.8, Extended European Search Report dated Oct. 6, 2014”, 10 pgs.
“European Application Serial No. 11826070.2, Response filed Sep. 9, 2014 to Office Action dated Mar. 12, 2014”, 11 pgs.
“European Application Serial No. 11826071.0, Response filed Sep. 19, 2014 to Office Action dated Mar. 12, 2014”, 20 pgs.
“European Application Serial No. 11827347.3, Office Action dated May 2, 2013”, 6 pgs.
“European Application Serial No. 11827347.3, Response filed Oct. 30, 2013 to Office Action dated May 2, 2013”, 9 pgs.
“European Application Serial No. 11827384.6, Extended European Search Report dated Nov. 12, 2014”, 6 pgs.
“European Application Serial No. 13001695.9, European Search Report dated Oct. 5, 2014”, 6 pgs.
Dunn, C, et al., “Efficient linearisation of sigma-delta modulators using single-bit dither”, Electronics Letters 31(12), (Jun. 1995), 941-942.
Kulah, Haluk, et al., “Noise Analysis and Characterization of a Sigma-Delta Capacitive Silicon Microaccelerometer”, 12th International Conference on Solid State Sensors, Actuators and Microsystems, (2003), 95-98.
Sherry, Adrian, et al., “AN-609 Application Note: Chopping on Sigma-Delta ADCs”, Analog Devices, [Online]. Retrieved from the Internet: <URL: http://www.analog.com/static/imported-files/application_notes/AN-609.pdf>, (2003), 4 pgs.
U.S. Appl. No. 13/362,955, filed Jan. 31, 2012, MEMS Multi-Axis Accelerometer Electrode Structure.
U.S. Appl. No. 13/363,537, filed Feb. 1, 2012, MEMS Proof Mass With Split Z-Axis Portions.
U.S. Appl. No. 13/755,841, filed Jan. 31, 2013, MEMS Multi-Axis Gyroscope With Central Suspension and Gimbal Structure.
U.S. Appl. No. 13/755,953, filed Jan. 31, 2013, MEMS Multi-Axis Gyroscope Z-Axis Electrode Structure.
U.S. Appl. No. 13/742,942, filed Jan. 16, 2013, Noise Reduction Method With Chopping for a Merged MEMS Accelerometer Sensor.
U.S. Appl. No. 13/742,994, filed Jan. 16, 2013, Self Test of MEMS Accelerometer With Asics Integrated Capacitors.
U.S. Appl. No. 13/857,349, filed Apr. 5, 2013, MEMS Device Front-End Charge Amplifier.
U.S. Appl. No. 13/746,016, filed Jan. 21, 2013, Accurate Ninety-Degree Phase Shifter.
U.S. Appl. No. 13/857,363, filed Apr. 5, 2013, MEMS Device Automatic-Gain Control Loop for Mechanical Amplitude Drive.
U.S. Appl. No. 13/765,068, filed Feb. 12, 2013, Self Test of MEMS Gyroscope With Asics Integrated Capacitors.
U.S. Appl. No. 13/860,761, filed Apr. 11, 2013, Micro-Electro-Mechanical-System (MEMS) Driver.
U.S. Appl. No. 13/860,780, filed Apr. 11, 2013, MEMS Quadrature Cancellation and Signal Demodulation.
U.S. Appl. No. 15/005,783, filed Jan. 25, 2016, Micromachined Monolithic 3-Axis Gyroscope With Single Drive.
U.S. Appl. No. 15/218,852, filed Jul. 25, 2016, Through Silicon Via Including Multi-Material Fill.
“U.S. Appl. No. 13/813,443, Non Final Office Action dated Jun. 10, 2015”, 10 pgs.
“U.S. Appl. No. 13/813,443, Response filed May 22, 2015 to Restriction Requirement dated Apr. 29, 2015”, 7 pgs.
“U.S. Appl. No. 13/821,586, Notice of Allowance dated Jun. 5, 2015”, 6 pgs.
“U.S. Appl. No. 13/821,589, Final Office Action dated Jul. 17, 2015”, 14 pgs.
“U.S. Appl. No. 13/821,598, Non Final Office Action dated Jul. 7, 2015”, 9 pgs.
“U.S. Appl. No. 13/821,619, Ex Parte Quayle Action mailed Jul. 16, 2015”, 8 pgs.
“U.S. Appl. No. 13/821,793, Non Final Office Action dated Jul. 27, 2015”, 14 pgs.
“U.S. Appl. No. 13/821,842, Response filed Jun. 18, 2015 Non Final Office Action dated Mar. 18, 2015”, 11 pgs.
“U.S. Appl. No. 13/821,853, Final Office Action dated Jun. 18, 2015”, 7 pgs.
“U.S. Appl. No. 14/023,869, Non Final Office Action dated Jun. 15, 2015”, 15 pgs.
“U.S. Appl. No. 14/658,579, Non Final Office Action dated Jul. 1, 2015”, 9 pgs.
“Chinese Application Serial No. 201180044919.5, Office Action dated Jun. 25, 2015”, w/ English Translation, 8 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action dated Jun. 4, 2015”, w/ English Translation, 7 pgs.
“Chinese Application Serial No. 201310115550.3, Office Action dated May 22, 2015”, w/ English Claims, 8 pgs.
“Chinese Application Serial No. 201310119986.X, Office Action dated May 12, 2015”, w/ English Claims, 14 pgs.
“Chinese Application Serial No. 201380007588.7, Office Action dated Jun. 10, 2015”, w/ English Claims, 7 pgs.
“Chinese Application Serial No. 201380007615.0, Office Action dated May 6, 2015”, w/ English Claims, 7 pgs.
U.S. Appl. No. 14/804,691, filed Jul. 21, 2015, Multi-Die MEMS Package.
“U.S. Appl. No. 13/742,994, Final Office Action dated Nov. 24, 2015”, 11 pgs.
“U.S. Appl. No. 13/742,994, Notice of Allowance dated Jun. 21, 2016”, 8 pgs.
“U.S. Appl. No. 13/742,994, Response filed Jan. 8, 2016 to Final Office Action dated Nov. 24, 2015”, 8 pgs.
“U.S. Appl. No. 13/755,953, Notice of Allowance dated Oct. 28, 2015”, 5 pgs.
“U.S. Appl. No. 13/755,953, Response filed Sep. 15, 2015 to Non Final Office Action dated May 14, 2015”, 10 pgs.
“U.S. Appl. No. 13/813,443, Notice of Allowance dated Feb. 4, 2016”, 7 pgs.
“U.S. Appl. No. 13/813,443, Response filed Oct. 13, 2015 to Non Final Office Action dated Jun. 10, 2015”, 7 pgs.
“U.S. Appl. No. 13/821,589, Non Final Office Action dated Feb. 8, 2016”, 9 pgs.
“U.S. Appl. No. 13/821,589, Response filed May 9, 2016 to Non Final Office Action dated Feb. 8, 2016”, 7 pgs.
“U.S. Appl. No. 13/821,589, Response filed Oct. 19, 2015 to Final Office Action dated Jul. 17, 2015”, 10 pgs.
“U.S. Appl. No. 13/821,598, Examiner Interview Summary dated Jul. 21, 2016”, 2 pgs.
“U.S. Appl. No. 13/821,598, Examiner Interview Summary dated Jul. 28, 2016”, 2 pgs.
“U.S. Appl. No. 13/821,598, Final Office Action dated Jan. 21, 2016”, 9 pgs.
“U.S. Appl. No. 13/821,598, Response filed Oct. 7, 2015 to Non Final Office Action dated Jul. 7, 2015”, 10 pgs.
“U.S. Appl. No. 13/821,619, Non Final Office Action dated Oct. 13, 2015”, 11 pgs.
“U.S. Appl. No. 13/821,619, Response filed Sep. 16, 2015 to Ex Parte Quayle Action mailed Jul. 16, 2015”, 11 pgs.
“U.S. Appl. No. 13/821,793, Notice of Allowance dated Nov. 24, 2015”, 5 pgs.
“U.S. Appl. No. 13/821,793, Response filed Oct. 27, 2015 to Non Final Office Action dated Jul. 27, 2015”, 12 pgs.
“U.S. Appl. No. 13/821,842, Corrected Notice of Allowance dated Oct. 19, 2015”, 2 pgs.
“U.S. Appl. No. 13/821,842, Examiner Interview Summary dated Sep. 15, 2015”, 3 pgs.
“U.S. Appl. No. 13/821,842, Notice of Allowance Received dated Sep. 15, 2015”, 13 pgs.
“U.S. Appl. No. 13/821,842, Supplemental Notice of Allowability dated Sep. 28, 2015”, 2 pgs.
“U.S. Appl. No. 13/821,853, Final Office Action dated Jan. 25, 2016”, 6 pgs.
“U.S. Appl. No. 13/821,853, Notice of Allowance dated May 20, 2016”, 8 pgs.
“U.S. Appl. No. 13/821,853, Response filed Apr. 25, 2016 to Final Office Action dated Jan. 25, 2016”, 7 pgs.
“U.S. Appl. No. 13/821,853, Response filed Oct. 19, 2015 to Final Office Action dated Jun. 18, 2015”, 8 pgs.
“U.S. Appl. No. 13/857,349, Non Final Office Action dated Oct. 8, 2015”, 10 pgs.
“U.S. Appl. No. 13/857,349, Notice of Allowance dated May 6, 2016”, 9 pgs.
“U.S. Appl. No. 13/857,349, Response filed Jan. 8, 2016 to Non Final Office Action dated Oct. 8, 2015”, 10 pgs.
“U.S. Appl. No. 13/860,780, Non Final Office Action dated Apr. 14, 2016”, 25 pgs.
“U.S. Appl. No. 13/860,780, Response filed Jul. 14, 2016 to Non Final Office Action dated Apr. 14, 2016”, 12 pgs.
“U.S. Appl. No. 14/023,869 Response Filed Apr. 15, 2016 to Final Office Action dated Dec. 15, 2015”, 12 pgs.
“U.S. Appl. No. 14/023,869, Examiner Interview Summary dated Apr. 19, 2016”, 3 pgs.
“U.S. Appl. No. 14/023,869, Final Office Action dated Dec. 15, 2015”, 14 pgs.
“U.S. Appl. No. 14/023,869, Notice of Allowance dated May 4, 2016”, 8 pgs.
“U.S. Appl. No. 14/023,869, Preliminary Amendment filed Dec. 4, 2013”, 3 pgs.
“U.S. Appl. No. 14/023,869, Response filed Nov. 16, 2015 to Non Final Office Action dated Jun. 15, 2015”, 12 pgs.
“U.S. Appl. No. 14/658,579, Final Office Action dated Jul. 14, 2016”, 6 pgs.
“U.S. Appl. No. 14/658,579, Final Office Action dated Oct. 21, 2015”, 10 pgs.
“U.S. Appl. No. 14/658,579, Non Final Office Action dated Mar. 16, 2016”, 5 pgs.
“U.S. Appl. No. 14/658,579, Response filed Feb. 22, 2016 to Final Office Action dated Oct. 21, 2015”, 11 pgs.
“U.S. Appl. No. 14/658,579, Response Filed Jun. 16, 2016 to Non-Final Office Action dated Mar. 16, 2016”, 9 pgs.
“U.S. Appl. No. 14/658,579, Response filed Oct. 1, 2015 to Non Final Office Action dated Jul. 1, 2015”, 11 pgs.
“U.S. Appl. No. 15/005,783 Preliminary Amendment Filed May 26, 2016”, 9 pgs.
“U.S. Appl. No. 15/218,852, Preliminary Amendment Filed Jul. 27, 2016”, 7 pgs.
“U.S. Appl. No. 13/742,994, Response filed Jul. 31, 2015 to Non Final Office Action dated May 1, 2015”, 12 pgs.
“Chinese Application Serial No. 201180044919.5, Office Action dated Apr. 25, 2016”, w/ English Translation, 7 pgs.
“Chinese Application Serial No. 201180044919.5, Response filed May 12, 2016 to Office Action dated Apr. 25, 2016”, w/ English Translation, 13 pgs.
“Chinese Application Serial No. 201180055630.3, Office Action dated May 16, 2016”, (English Translation), 9 pgs.
“Chinese Application Serial No. 201180055630.3, Office Action dated Jul. 10, 2015”, w/ English Translation, 8 pgs.
“Chinese Application Serial No. 201180055630.3, Office Action dated Dec. 7, 2015”, W/ English Translation, 5 pgs.
“Chinese Application Serial No. 201180055630.3, Response filed Feb. 19, 2016 to Office Action dated Dec. 7, 2015”, W/ English Translation of Claim, 10 pgs.
“Chinese Application Serial No. 201180055630.3, Response filed Sep. 25, 2015 to Office Action dated Jul. 10, 2015”, w/ English Claims, 14 pgs.
“Chinese Application Serial No. 201180055792.7, Office Action dated Jul. 21, 2015”, w/ English Translation, 5 pgs.
“Chinese Application Serial No. 201180055823.9, Office Action dated Nov. 17, 2015”, w/ English Translation, 8 pgs.
“Chinese Application Serial No. 201180055823.9, Response filed Feb. 2, 2016 to Office Action dated Nov. 17, 2015”, (English Translation of Claims), 15 pgs.
“Chinese Application Serial No. 201180055823.9, Response filed Jul. 25, 2016 to Office Action dated May 10, 2016”, 17 pgs.
“Chinese Application Serial No. 201180055823.9,Response filed Aug. 3, 2015 to Office Action dated Mar. 19, 2015”, w/ English Translation, 14 pgs.
“Chinese Application Serial No. 201180055845.5, Office Action dated Aug. 5, 2015”, w/ English Translation, 5 pgs.
“Chinese Application Serial No. 201180055845.5, Response filed Nov. 20, 2015 to Office Action dated Aug. 5, 2015”, With English Claims, 9 pgs.
“Chinese Application Serial No. 201180055845.5,Response filed Jul. 13, 2015 to Office Action dated Mar. 4, 2015”, w/ English Translation, 17 pgs.
“Chinese Application Serial No. 201310115550.3, Response filed Sep. 30, 2015 to Office Action dated May 22, 2015”, w/ English Claims, 15 pgs.
“Chinese Application Serial No. 201310119730.9, Office Action dated Jan. 29, 2016”, w/ English Translation, 7 pgs.
“Chinese Application Serial No. 201310119730.9, Response filed Jun. 13, 2016 to Office Action dated Jan. 29, 2016”, 19 pgs.
“Chinese Application Serial No. 201310119806.8, Office Action dated May 13, 2016”, w/ English Translation, 8 pgs.
“Chinese Application Serial No. 201310119806.8, Office Action dated Jul. 3, 2015”, w/ English Claims, 12 pgs.
“Chinese Application Serial No. 201310119806.8, Response filed Jan. 18, 2016 to Office Action dated Jul. 3, 2015”, (English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201310119986.X, Office Action dated Dec. 18, 2015”, w/ English Translation, 6 pgs.
“Chinese Application Serial No. 201310119986.X, Response filed Apr. 29, 2016 to Office Action dated Dec. 18, 2015”, (English Translation of Claims), 14 pgs.
“Chinese Application Serial No. 201310119986.X, Response filed Sep. 25, 2015 to Office Action dated May 12, 2015”, w/ English Claims, 7 pgs.
“Chinese Application Serial No. 201310120172.8, Office Action dated Nov. 3, 2015”, w/ English Translation, 11 pgs.
“Chinese Application Serial No. 201310120172.8, Response filed May 18, 2016 to Office Action dated Nov. 3, 2015”, with English translation of claims, 21 pgs.
“Chinese Application Serial No. 201310127961.4, Response filed Sep. 2, 2015 to Office Action dated May 6, 2015”, w/ English Claims, 19 pgs.
“Chinese Application Serial No. 201310128046.7, Office Action dated Jul. 23, 2015”, w/ English Translation, 7 pgs.
“Chinese Application Serial No. 201310128046.7, Response filed Oct. 14, 2015 to Office Action dated Jul. 23, 2015”, w/ English Claims, 23 pgs.
“Chinese Application Serial No. 201310415336.X, Office Action dated Apr. 26, 2016”, w/ English Translation, 11 pgs.
“Chinese Application Serial No. 201310415336.X, Office Action dated Jul. 3, 2015”, w/ English Claims, 9 pgs.
“Chinese Application Serial No. 201310415336.X, Response filed Jan. 18, 2016 to Office Action dated Jul. 3, 2015”, (English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201380007523.2, Office Action dated Dec. 31, 2015”, w/ English Translation, 12 pgs.
“Chinese Application Serial No. 201380007523.2, Response filed May 31, 2016 to Office Action dated Dec. 31, 2015”, with English translation of claims, 16 pgs.
“Chinese Application Serial No. 201380007577.9, Office Action dated Dec. 21, 2015”, w/ English Translation, 9 pgs.
“Chinese Application Serial No. 201380007577.9, Response filed May 5, 2016 to Office Action dated Dec. 21, 2015”, w/ English Claims, 17 pgs.
“Chinese Application Serial No. 201380007588.7, Response filed Oct. 26, 2015 to Office Action dated Jun. 10, 2015”, w/ English Claims, 9 pgs.
“Chinese Application Serial No. 201380007615.0, Response filed Jan. 5, 2016 to Office Action dated May 6, 2015”, w/ English Claims, 13 pgs.
“Chinese Application Serial No. 201380007615.0, Response filed Nov. 23, 2015 to Office Action dated May 6, 2015”, With English Claims, 15 pgs.
“European Application Serial No. 11826043.9, Extended European Search Report dated Feb. 23, 2016”, 6 pgs.
“European Application Serial No. 11826069.4, Extended European Search Report dated Jul. 23, 2015”, 8 pgs.
“European Application Serial No. 11826069.4, Response filed Feb. 22, 2016 to Extended European Search Report dated Jul. 23, 2015”, W/ English Translation, 26 pgs.
“European Application Serial No. 11827347.3, Extended European Search Report dated Jul. 31, 2015”, 6 pgs.
“European Application Serial No. 11827357.2, Extended European Search Report dated Aug. 26, 2015”, 4 pgs.
“European Application Serial No. 13001694.2, Extended European Search Report dated Oct. 2, 2015”, 8 pgs.
“European Application Serial No. 13001695.9, Response filed Aug. 24, 2015 to Extended European Search Report dated Jan. 22, 2015”, 9 pgs.
“European Application Serial No. 13001719.7, Communication Pursuant to Article 94(3) EPC dated Jul. 4, 2016”, 4 pgs.
“European Application Serial No. 13001720.5, Extended European Search Report dated Aug. 20, 2015”, 7 pgs.
“European Application Serial No. 13001917.7, Extended European Search Report dated Apr. 11, 2016”, 5 pgs.
“European Application Serial No. 13001918.5, Extended European Search Report dated Dec. 3, 2015”, 8 pgs.
“Korean Application Serial No. 2012-7005729, Office Action dated May 3, 2016”, w/ English Claims, 11 pgs.
“Korean Application Serial No. 2012-7005729, Response filed Jun. 29, 2016 to Office Action dated May 3, 2016”, (English Translation of Claims), 29 pgs.
“Chinese Application Serial No. 201310119730.9, Office Action dated Oct. 10, 2016”, W/ English Translation, 8 pgs.
“European Application Serial No. 13001719.7, Response filed Nov. 9, 2016 to Communication Pursuant to Article 94(3) EPC dated Jul. 4, 2016”, 14 pgs.
“U.S. Appl. No. 13/742,994, Notice of Allowability dated Sep. 1, 2016”, 7 pgs.
“U.S. Appl. No. 13/821,589, Non Final Office Action dated Sep. 9, 2016”, 7 pgs.
“U.S. Appl. No. 13/857,363, Non Final Office Action dated Aug. 5, 2016”, 8 pgs.
“U.S. Appl. No. 13/860,780, Final Office Action dated Aug. 18, 2016”, 25 pgs.
“U.S. Appl. No. 14/217,842, Non Final Office Action dated Sep. 9, 2016”, 10 pgs.
“Chinese Application Serial No. 201180055630.3, Response filed Sep. 26, 2016 to Office Action dated May 16, 2016”, (With English Translation), 15 pgs.
“Chinese Application Serial No. 201180055794.6, Voluntary Amendment filed Jul. 7, 2015”, with English translation of claims, 9 pgs.
“Chinese Application Serial No. 201180055823.9, Office Action dated May 10, 2016”, w/ English Translation, 8 pgs.
“Chinese Application Serial No. 201310119806.8, Response filed Sep. 28, 2016 to Office Action dated May 13, 2016”, with English translation of claims, 13 pgs.
“Chinese Application Serial No. 201310120172.8, Office Action dated Aug. 1, 2016”, with English translation of claims, 19 pgs.
“Chinese Application Serial No. 201310415336.X, Response filed Sep. 12, 2016 to Office Action dated Apr. 26, 2016”, W/ English Translation of Claims, 13 pgs.
“Definition of baseband signal downloaded from “Tech Terms””, (Jul. 15, 2016), 1 pg.
“European Application Serial No. 11827357.2, Communication under Rule 71(3) dated Apr. 25, 2016”, 36 pgs.
“European Application Serial No. 13001694.2, Response filed Apr. 26, 2016 to Office Action dated Oct. 2, 2015”, 18 pgs.
“European Application Serial No. 13001918.5, Response filed Jul. 8, 2016 tp Office Action dated Dec. 3, 2015”, 36 pgs.
“Explanation of phase shifters from “Microwaves 101””, (Aug. 4, 2016), 5 pgs.
Related Publications (1)
Number Date Country
20130268228 A1 Oct 2013 US
Provisional Applications (1)
Number Date Country
61620653 Apr 2012 US