The present invention relates generally to MEMS devices, and more particularly to MEMS devices and methods of fabrication thereof.
Micro electro mechanical system (MEMS) devices are a recent development in the field of integrated circuit technology and include devices fabricated using semiconductor technology to form mechanical and electrical features. Examples of MEMS devices include gears, levers, valves, and hinges. Common applications of MEMS devices include accelerometers, pressure sensors, actuators, mirrors, heaters, and printer nozzles.
MEMS devices are exposed to harsh environments during their operational lifetime. Depending on the device type, MEMS devices may be subjected to corrosive environments, cyclic mechanical stress at high frequencies, high temperatures, etc. Hence, the lifetime of a typical MEMS device is constrained by the reliability of the electro-mechanical feature. One of the challenges in forming MEMS devices requires forming devices with high reliability at low costs.
Hence, what is needed are designs and methods of forming MEMS devices that enhance product reliability and lifetime without increasing production costs.
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by preferred embodiments of the present invention.
Embodiments of the invention include MEMS devices and methods of fabrication thereof. In accordance with an embodiment of the present invention, a MEMS device comprises a bottom alloy layer disposed over a substrate. An inner material layer is disposed on the bottom alloy layer, and a top alloy layer is disposed on the inner material layer, the top and bottom alloy layers comprising an alloy of at least two metals, wherein the inner material layer comprise the alloy and nitrogen. The top alloy layer, the inner material layer, and the bottom alloy layer form a MEMS feature.
The foregoing has outlined rather broadly the features of an embodiment of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of embodiments of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The present invention will be described with respect to preferred embodiments in a specific context, namely MEMS devices used for print heads and/or micro mirrors. The invention may also be applied, however, to other electrical or mechanical devices.
The use of MEMS devices in extreme operating conditions requires improvements in reliability of critical features such as moving parts exposed to repeated or high stress levels, features or surfaces exposed to various chemicals, and/or high electric fields. Most of these effects are non-linear in nature and result in rapid failure. For example, under corrosive environments, the stress to failure or the time to failure under low stress levels decreases precipitously. In various embodiments, the invention overcomes the limitations of the prior art by forming MEMS device features using a combination of materials that result in improved electrical, mechanical, and chemical properties.
Embodiments of the invention will be described for use as a hinge for a moving part using
A micro-mirror device comprises an array of hundreds or thousands of tiny tilting mirrors. Light incident on the micro-mirror is selectively reflected or not reflected from each mirror to form images on an image plane. The mirrors are spaced by means of air gaps over underlying control circuitry. The control circuitry provides electrostatic forces, which cause each mirror to selectively tilt. The mirrors are typically supported by hinges that enable the free tilting motion.
Due to repeated cycling of the mirrors during a product's operation, the hinge is subject to mechanical stress cycling and may eventually fail. For example, MEMS devices exposed to repeated stress levels even below the yield strength or maximum tensile strength fail due to creep. Prolonged use of the product, which typically heats up the devices further increases creep as well as corrosion which results in a lowering of the product's lifetime. Further, any micro-cracks developed either during fabrication or later may propagate through the hinge resulting in failure of the micro mirror device. In various embodiments, the invention avoids or extends the lifetime of the micro mirror hinge by using a film comprising a combination of materials that mitigate creep and/or corrosion while maximizing toughness.
In various embodiments, the first material 6 comprises a material with higher toughness than the second material 7, and the second material 7 comprises a material with high resistance to corrosion. The combination of the first material 6 with the second material 7 results in a film with high toughness and resistance to corrosion.
In another embodiment, the multi-layer film stack 10 comprises a first material layer 11, a second material layer 12, and a third material layer 13. In one embodiment the first material layer 11 and the third material layer 13 comprise the same material and form the portion of the multi-layer film stack 10 exposed to the environment. The multi-layer film stack 10 is further described using
Referring to
A nozzle 121 is disposed over the workpiece 125. The nozzle 121 comprises a top opening 131 surrounded by opening sidewalls 123. The nozzle 121 comprises an insulating material and, in one embodiment, comprises silicon nitride.
The print head 100 comprises a top ink chamber 132 formed by the sidewalls of the nozzle 121, and a bottom ink chamber 133 disposed within the workpiece 125. The bottom ink chamber 133 is fluidly coupled to an ink tank (not shown) through the bottom opening 130.
A heater 120 is suspended between the top ink chamber 132 and the bottom ink chamber 133. In various embodiments, the heater 120 comprises a multi-layer film stack 10 (for example, as further described in
In various embodiments, the heater 120 comprises the multi-layer film stack 10 or a nanostructure 20. The multi-layer film stack 10 comprises a structure as described below using
TiAl comprises a resistance that is lower than TiAlN. Further, TiAl forms a film with better uniformity in resistivity than TiAlN. However, TiAl has poor resistance to corrosion and easily corrodes when used as a heating element. This results in a reduced lifetime if only TiAl is used. In contrast, TiAlN has better corrosion resistance than TiAl. But, TiAlN is brittle and has lower strength than TiAl. TiAlN also exhibits poor uniformity in resistance and hence, is prone to hot spots. Hot spots on the electrode can result in discrepancies in droplet shape and, in extreme cases, failure of the heater itself. In various embodiments, the heater element comprises a multi-layer film stack 10 or a nanostructure comprising TiAl and TiAlN. The combination of the two materials results in improved mechanical, chemical, and electrical properties.
In various embodiments, the heater 120 may comprise any suitable shape to facilitate its use as a heater 120 for the print head 100. Similarly, the print head 100 may comprise additional elements and/or a different configuration.
Referring to
However, it is necessary to synchronize the time to form the bubbles using all the heating levels. Changing the surface area of the droplet also changes the total heat generated from the heater 120 and hence the time to form a bubble. Hence, multiple heater levels with different surface areas may be out of sync. To overcome this and synchronize the heater levels, each of the heater levels is typically coupled to a different active circuitry. For example, a lower level with a larger surface area may be connected to a first transistor circuitry driving a larger current than a different level with a smaller surface area which may be connected to a second transistor circuitry driving a smaller current (or larger current as necessary).
In various embodiments, the current embodiment avoids these problems as the resistivity of the heater levels is changed during the fabrication process. All the heating elements are coupled to the same active circuitry. However, each of the heater levels comprises a different resistivity. The difference in resistivity of the heater levels offsets the difference in heat generated due to the difference in the surface area.
In various embodiments, each heater level of the heater 120 comprises a multi-layer film stack 10. The multi-layer film stack 10 comprises layers of a first material 6 and a second material 7. The first material 6 comprises a lower resistivity than the second material 7. Each of the heater levels uses a different arrangement and/or thickness of the first material 6 and the second material 7 in the multi-layer film stack 10, thus forming films of different resistivity. As the difference in heating current can be pre-calculated, the thickness of each of the individual layers can be established correctly during development of the heater 120. Hence, in various embodiments, the invention avoids duplicity in active circuitry.
In one embodiment, the first material 6 comprises a material with higher toughness than the second material 7 whereas the second material 7 comprises better resistance to corrosion than the first material 6. The combination of the first material 6 with the second material 7 results in a film with high toughness and high corrosion resistance.
In another embodiment, the second material 7 comprises a material with higher hardness than the first material 6. The first material 6 comprises a material with higher ductility than the second material 7. The combination of the first material 6 with the second material 7 results in a film with high ductility and high impunity to large stresses resulting in a high toughness. In another embodiment, the combination of the first material 6 with the second material 7 improves the creep resistance of the film without significantly degrading the toughness of the film.
In another embodiment, the first material 6 comprises a material with lower resistance and better uniformity in resistivity than the second material 7. Hence, addition of the first material 6 to the second material 7 lowers the resistance and maintains uniformity in resistivity along the film.
In one embodiment, the first material 6 comprises an alloy comprising titanium, and the second material 7 comprises nitrogen, carbon, and/or oxygen in addition to the first material. Ti alloys exhibit good mechanical properties including toughness but poor resistance to corrosion due to the formation of a porous titanium oxide. In contrast, TiAlN or TiCrN films exhibit high resistance to corrosion due to the formation of passive aluminum oxide or chromium oxide. Further, Al and Cr form discontinuities in the columnar grain structure resulting in a decrease in grain boundary diffusivity of corrosive atoms (e.g., oxygen), thus improving resistance to corrosion. However, TiAlN or TiCrN films exhibit poor mechanical properties. Combining the first material 6 with the second material 7 results in films with improved corrosion resistance and toughness.
In various embodiments, the first material 6 comprises TiAl, TiCr, TiCrAl, TiZr, ZrCr, or TaAl and the second material 7 comprises TiAlN, TiCrN, AlCrN, TiAlCrN, TiZrN, ZrCrN, or TaAlN. In one embodiment, the first material 6 comprises about 30% to about 70% Ti and about 30% to about 70% Al, and the second material 7 comprises about 20% to about 50% Ti, about 20% to about 50% Al, and about 20% to about 40% N. In another embodiment, the first material 6 comprises about 30% to about 70% Ti and about 30% to about 70% Cr, and the second material 7 comprises about 20% to about 50% Ti, about 20% to about 50% Cr, and about 20% to about 40% N. In another embodiment, the first material 6 comprises TiAlCr and the second material 7 comprises TiAlCrN. In some embodiments, the first material 6 comprises TiAl and the second material comprises AlCrN. In various embodiments, the first material layer 11 and the third material layer 13 comprise a thickness of about 5% to about 500% of the thickness of the second material layer 12.
In one embodiment, the first material 6 comprises a TiAl alloy comprising about equal amounts of Ti and Al, and the second material 7 comprises TiAlN. In one embodiment, a TIxAlxNy alloy is used as the second material 7, wherein the amount of nitrogen is greater than 0.2. TiAl alloy exhibits good toughness but poor corrosion resistance. Addition of nitrogen to TiAl improves the corrosion resistance but reduces the toughness of the film. By forming layers of TiAl/TiAlN, films with good corrosion resistance and toughness are fabricated.
As illustrated in
Referring to
The first material 6 and the second material 7 are selected as described with respect to
Referring to
As illustrated in
As illustrated in
If the nitrogen flow rate is between the first and the second flow rates F1 and F2, a nanostructure 20 comprising the first and the second material 6 and 7 is deposited. The nanostructure 20, as also described with respect to
Alternatively, in various embodiments, first and second partial ratios are used instead of the first and the second flow rates. The first partial ratio is a ratio of the first flow rate F1 of nitrogen to a total flow rate of all gases into the sputter deposition chamber, and the second partial ratio is a ratio of the second flow rate F2 of nitrogen to a total flow rate of all gases into the sputter deposition chamber. In various embodiments, the first partial ratio varies from about 0.01 to about 0.8, and the second partial ratio varies from about 0.05 to about 1.
A workpiece 125 comprising a semiconductor substrate, for example, a wafer is first fabricated using conventional techniques. The workpiece 125 comprises integrated circuitry and circuitry to drive the print head 100 (being formed). Active devices as well as metallization layers are fabricated. A passivation layer 122 is deposited over the workpiece 125 and coupled to a cathode potential node. A sacrificial material 143 is deposited over the passivation layer 122 and patterned.
Referring to
The workpiece 125 is transferred into a deposition chamber 140 and placed upon an anode potential node. In one embodiment, the deposition chamber 140 comprises a chamber used for processes such as a reactive sputter deposition and/or magnetron sputter deposition. A plasma is generated within the deposition chamber 140 that furnishes energy to the nitrogen gas and dissociates it into atomic nitrogen.
The target 144 is sputtered by the ionized argon plasma and deposits atoms of the target 144 over the workpiece 125 (
The multi-layer film stack 10 is patterned to an appropriate shape. For example, heater opening 134 (
The method follows a process similar to the embodiment of
The flow rate F of nitrogen is controlled to be within the first and the second flow rates F1 and F2 as described with respect to
Strong peaks in x-ray diffraction patterns indicate the existence of a crystalline material, whereas a diffuse x-ray diffraction pattern suggests a lack of crystallinity or the presence of amorphous regions. Referring to
In various embodiments, a method of forming a micro electro mechanical system (MEMS) device comprises placing a workpiece to be coated within a sputter deposition chamber, and flowing nitrogen into the sputter deposition chamber at a first partial ratio. The method further comprises forming a first material layer by sputtering a target alloy comprising at least two metals, the first material layer comprising atoms of the target alloy, and changing a partial ratio of nitrogen flowing into the sputter deposition chamber to a second partial ratio, the second partial ratio being higher than the first partial ratio, wherein the partial ratio of nitrogen is a ratio of a flow rate of nitrogen to a total flow rate of all gases. A second material layer is formed on the first material layer, the second material layer comprising target alloy atoms and atomic nitrogen, the first material layer and the second material layer comprising different resistivity materials. In an embodiment, the first partial ratio is a ratio of a first flow rate of nitrogen to a total flow rate of all gases into the sputter deposition chamber, wherein the first flow rate is about 20 sccm to about 300 sccm, and the second flow rate is about 50 sccm to about 350 sccm. In a further embodiment, the second partial ratio is a ratio of a second flow rate of nitrogen to a total flow rate of all gases into the sputter deposition chamber. In various embodiments, the total flow rate of all gases through the chamber is about 80 sccm to about 450 sccm, and a sputtering pressure within the chamber is about 0.5 mTorr to about 15 mTorr. In an embodiment, a resistivity of the second material layer is at least 50% higher than a resistivity of the first material layer. In another embodiment, the target alloy is selected from the group consisting of TiAl, TiCr, TiAlCr, TiZr, ZrCr, and TaAl, and wherein the first material layer comprises less than 10% nitrogen, and wherein the second material layer comprises at least 20% nitrogen. In various embodiments, the method further comprises changing the partial ratio of nitrogen flowing into the sputter deposition chamber to a third partial ratio, the third partial ratio being lower than the second partial ratio, and forming a third material layer on the second material layer, the third material layer comprising the target alloy, the first material layer and the third material layer comprising a same resistivity material. In an embodiment, the first, the second, and the third material layers form a hinge, the hinge supporting a moving element disposed on the first material layer, the moving element comprising a micro mirror. In an embodiment, the first, the second, and the third material layers form a heater suspended in an ink chamber of a print head, the heater configured to heat an ink disposed within the ink chamber. In an embodiment, the method further comprises changing the partial ratio of nitrogen flowing into the sputter deposition chamber to the second partial ratio, and forming a fourth material layer on the third material layer, the fourth material layer comprising the target alloy and nitrogen, the second material layer and the fourth material layer comprising a same resistivity material. The method further comprises changing the partial ratio of nitrogen flowing into the sputter deposition chamber to the first partial ratio, and forming a fifth material layer on the fourth material layer, the fifth material layer comprising the target alloy, the first, the third, and the fifth material layers comprise a same resistivity material.
In an alternative embodiment, a method of forming a micro electro mechanical system (MEMS) device comprises identifying a first partial ratio of nitrogen through a deposition chamber for depositing a first film of a first resistivity, and identifying a second partial ratio of nitrogen through the deposition chamber for depositing a second film of a second resistivity, the second resistivity being higher than the first resistivity. The method further comprises placing a workpiece to be coated within the deposition chamber, and flowing nitrogen into the deposition chamber at a third partial ratio between the first partial ratio and the second partial ratio and forming atomic nitrogen within the deposition chamber. A partial ratio of nitrogen is a ratio of a flow rate of nitrogen to a total flow rate of all gases into the deposition chamber. The method further comprises forming a material layer by sputter deposition of a target alloy comprising at least two metals and the atomic nitrogen. In an embodiment, the material layer comprises a nanostructure, the nanostructure comprising an amorphous region comprising atoms of the target alloy and at least one region comprising columnar grains and comprising atoms of the target alloy and atomic nitrogen. In an embodiment, the material layer comprises more than about 20% nitrogen and less than about 40% nitrogen. In an embodiment, the second resistivity is at least 50% higher than the first resistivity, and wherein the deposition comprises using a reactive sputter deposition process. In an embodiment, the target alloy is selected from the group consisting of TiAl, TiCr, TiAlCr, TiZr, ZrCr, and TaAl. In an embodiment, the material layer forms a hinge, the hinge supporting a micro mirror disposed on the material layer. In an embodiment, the material layer forms a heater suspended in an ink chamber of a print head, the heater configured to heat an ink disposed within the ink chamber.
In one aspect, embodiments disclosed herein provide for a micro electro mechanical system (MEMS) device comprising an ink chamber disposed over a substrate, and a heating element suspended in the ink chamber. The heating element is configured to heat an ink disposed within the ink chamber. The heating element comprises a first region comprising an alloy and a second region comprising the alloy and nitrogen and the alloy comprises at least two metals.
In another aspect, embodiments disclosed herein provide for a micro electro mechanical system (MEMS) device comprising a workpiece, a passivation layer on the workpiece, and a chamber above the workpiece. The device also includes a heater element extending from a sidewall of the chamber into the chamber. The heater element has a first region comprising a two metal alloy and a second region comprising a nitride of the two metal alloy.
In yet another aspect, embodiments disclosed herein provide for a micro electro mechanical system (MEMS) device comprising a bottom layer disposed over a substrate, an inner material layer disposed on the bottom layer, a top layer disposed on the inner material layer. The device also includes a moving element disposed on the top layer, wherein the inner material layer comprises an alloy of at least two metals, and wherein the top and bottom layers comprise the alloy and nitrogen, and wherein the top layer, the inner material layer, and the bottom layer form a hinge supporting the moving element.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, it will be readily understood by those skilled in the art that many of the features, functions, processes, and materials described herein may be varied while remaining within the scope of the present invention.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application is a divisional of U.S. patent application Ser. No. 15/959,988, filed on Apr. 23, 2018, and entitled “MEMS Devices and Methods of Fabrication Thereof,” which is a divisional of U.S. patent application Ser. No. 14/859,835, filed on Sep. 21, 2015, now U.S. Pat. No. 9,950,522 issued on Apr. 24, 2018, and entitled “MEMS Devices and Methods of Fabrication Thereof,” which is a divisional of U.S. patent application Ser. No. 12/683,550, filed on Jan. 7, 2010, now U.S. Pat. No. 9,138,994 issued on Sep. 22, 2015, and entitled “MEMS Devices and Methods of Fabrication Thereof,” which claims the benefit of U.S. Provisional Application No. 61/157,127, entitled “MEMS Devices and Methods of Fabrication Thereof,” filed on Mar. 3, 2009, which applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61157127 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15959988 | Apr 2018 | US |
Child | 16587912 | US | |
Parent | 14859835 | Sep 2015 | US |
Child | 15959988 | US | |
Parent | 12683550 | Jan 2010 | US |
Child | 14859835 | US |