1) Field of the Invention
The invention in general relates to MEMS (microelectromechanical systems) devices and more particularly to a MEMS device utilized in the explosive train to set off a main charge of a munitions round.
2) Description of the Related Art
A fuze is a device designed to set off an explosive train in a munitions round such as a mortar round, artillery shell or rocket warhead, by way of example. In general, three components of the fuze: the explosive, the initiator and safety locks, have been fabricated individually and then assembled in a package.
The safety components are mechanical devices built from multiple machined parts and assembled into complex intricate mechanisms. Although the initiator has been miniaturized, it is still a separate part of the fuze. The explosive has always been formed apart from all other parts and then carefully assembled with the other components to make a functional fuze.
It is an object of the invention to provide a MEMS assembly in which is integrated all of the components parts of a fuze.
A MEMS microdetonator/initiator arrangement for a MEMS fuze in accordance with the invention includes a bottom substrate layer, a top device layer and an intermediate oxide layer joining the top and bottom layers. A slider is defined in the device layer and has an end portion, with the portion of slider adjacent to the end being devoid of any underlying oxide layer so as to permit movement thereof relative to the substrate layer. A slider drive is operable to move the slider from an initial position to a final position. A walled chamber is defined in the substrate layer and is connected to the enlarged end portion of the slider by the oxide layer. The substrate layer adjacent the walled chamber is removed to allow movement of the walled chamber.
The walled chamber has a hollow interior extending to the underside of the enlarged end portion of the slider, with a microdetonator being positioned within the hollow interior of the walled chamber. The substrate layer includes a void adjacent the walled chamber to allow movement of the walled chamber into the void when the slider is moved by the drive to the final position. An initiator is positioned so that when the slider is in the final position, the initiator, when supplied with current, is operable to initiate the microdetonator.
In the drawings, which are not necessarily to scale, like or corresponding parts are denoted by like or corresponding reference numerals.
The components of the MEMS apparatus described herein may be formed by a DRIE (deep reactive ion etching) process that removes unwanted portions of device layer 30. The DRIE process is a well-developed micromachining process used extensively with silicon based MEMS devices. For this reason, in an exemplary embodiment, silicon is a material for the MEMS fuze assembly of the present invention, although other materials are possible.
One embodiment of the present invention is illustrated in
The slider 12 is supported by spring sets 38 and 40 connected to respective anchors 42 and 44, and is mechanically moved by driver 46, which may be a thermoelectric actuator. Slider 12 is prevented from movement until certain predetermined conditions are met. More particularly, locking arms 48 and 50 of locks 34 and 36 are in interlocking engagement and prevent movement of slider 12 until withdrawn. Withdrawal of locking arm 48 may occur upon attainment of a certain axial acceleration force and withdrawal of locking arm 50 may occur upon attainment of a certain centrifugal acceleration.
Slider 12 includes an end portion 52, which, by way of example, is enlarged relative to the remaining portion of slider 12. Enlarged end portion 52 includes a notch 54. The microdetonator 10 may be seen through the notch 54, as well as a wall 56 of the container for the microdetonator 10. Initiator 18 includes initiator arms 58 and 60 connected to respective anchors 62 and 64. The ends of initiator arms 58 and 60 are connected by a thin section 65 of semiconductor such that when a voltage is applied to one of the anchors, current through the thin section 65 will generate sufficient heat to initiate microdetonator 10.
To operate as a MEMS fuze, the thin portion of slider 12, as well as springs and other components must be free to move and therefore must be devoid of any underlying silicon dioxide insulating layer 28 (
After the munitions round has been fired and the locking arms 48 and 50 disengaged, driver 46 will move slider 12 to the final position illustrated in
As illustrated in
Thin etched sections 82 and 84 extending all the way through the substrate 68 ensure that the walled chamber 74 is free to move relative to substrate 68 (a similar thin section is also etched at the unseen back of chamber 74). Chamber 74 remains connected to enlarged end portion 52 by virtue of the oxide layer 72 and may move with it. After formation of chamber 74, microdetonator 10 is formed or placed within hollow interior 76, as seen in
The bottom surface 92 of base layer 88 is etched upward to a degree to form a second cavity 96 that leaves a thin membrane 98 at the top surface 90. The secondary lead (not illustrated) is positioned directly below cavity 96. When slider 12 and microdetonator 10 are in a final position for initiation and the microdetonator 10 explodes, it will rupture thin membrane 98 and propel its fragments down into the secondary lead to initiate it, which then initiates the main charge (not illustrated).
It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been herein described and illustrated in order to explain the nature of the invention, may be made by those skilled in the art within the principle and scope of the invention as expressed in the appended claims.
Finally, any numerical parameters set forth in the specification and attached claims are approximations (for example, by using the term “about”) that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of significant digits and by applying ordinary rounding.
The invention described herein may be manufactured and used by or for the Government of the United States of America for Governmental purposes without the payment of any royalties thereon or therefor.
Number | Name | Date | Kind |
---|---|---|---|
6173650 | Garvick et al. | Jan 2001 | B1 |
6431594 | Swann et al. | Aug 2002 | B1 |
6584911 | Bergerson et al. | Jul 2003 | B2 |
6640719 | Pacella et al. | Nov 2003 | B1 |
6964231 | Robinson et al. | Nov 2005 | B1 |
6986307 | Bernhard et al. | Jan 2006 | B2 |
7051656 | Koehler et al. | May 2006 | B1 |
7383774 | Koehler et al. | Jun 2008 | B1 |
20050183609 | Greywall | Aug 2005 | A1 |
20060070547 | Combes et al. | Apr 2006 | A1 |
20060236887 | Childs et al. | Oct 2006 | A1 |