All patents, patent applications, and publications cited within this application are incorporated herein by reference to the same extent as if each individual patent, patent application, or publication was specifically and individually incorporated by reference.
The invention relates to detecting molecular binding events as well as photochemical spectral emission and/or absorption in a two-dimensionally discriminated manner such as, for example, in an array. The observation of molecular binding and affinity is a key element in biochemical and pharmaceutical research and development and analytical assays. In this field, the use of arrays is desirable in order to increase assay throughput and decrease the amount of expensive reagents consumed. Microarray technologies are commonly used in fluorescence, electrochemical, and mass spectrometry analytical instruments. However, microarray technologies based on surface plasmon resonance (SPR), which is a powerful method used for the detection of molecular affinity and binding, have developed more slowly.
SPR imaging and detection of materials at metal interfaces and binding events on metal surfaces has been well described in the art, for example see J. M. Brockman, B. P Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultrathin Organic Films,” Ann. Rev. Phys. Chem. 2000, 51, 41-63. One of the determining factors of sensitivity in SPR imaging ellipsometry is the light source intensity of the system. The signal strength from the metal surface is linearly proportional to the incoming light strength, so a laser light source is preferred over LEDs and halogen lamps. However, expanding a spot Gaussian profile from a laser source using optical elements does not necessarily provide homogeneous illumination, which results in signal variation across the spot, i.e., sensing area. This requires a background correction that can limit the sensitivity of detection. This is particularly challenging for imaging larger areas by SPR, especially when within the larger areas there is a need for uniform detection, such as in a microarray. Therefore the is need for simpler and effective SPR sensing methods and instruments can image large areas with uniformity for use in bioanalytics, biopharmaceutics, and proteomics with relatively compact size at low cost.
One embodiment is a method of generating surface plasmon resonance using excitation light directed at a thin metal film by a micromirror. Another embodiment uses excitation light directed at a thin metal film by a micromirror scanner device. Another embodiment is a surface plasmon resonance imager comprising a micromirror that directs light to the surface of a thin metal film. Another embodiment is a method, comprising: a) directing light toward a thin metal film using a micromirror and b) detecting dynamic chemical events at or near the surface of the thin metal film. The dynamic events may be, for example, a fluidic change or a binding event. In many embodiments, directing light toward the thin film comprises using a micromirror scanner device.
One embodiment is a method of generating surface plasmon resonance using excitation light directed at a thin metal film by a micromirror. Another embodiment uses excitation light directed at a thin metal film by a micromirror scanner device. In many embodiments, this method uses a single small spot or pixel of light generated by reflection or direction off of or from a micromirror or assembly of micromirrors. The spot or pixel may be scanned over a predetermined area by movement of the micromirror, which allows uniform detection over large and small surface areas. For an example of a micromirror scanner device, see U.S. Pat. No. 6,245,590; U.S. Pat. No. 6,362,912; U.S. Pat. No. 6,433,907; and U.S. Pat. No. 5,629,790. The thin metal film may be subdivided into a microarray. The microarray spots may be arranged in a variety of patterns. Other embodiments include various surface plasmon resonance sensors comprising a micromirror scanner device as a light source. Such system architecture allows for a low cost and simplistic design for an array based Surface Plasmon Resonance based analyzer for the detection of molecular binding events.
Another embodiment is a surface plasmon resonance imager comprising a micromirror that directs light to the surface of a thin metal film. The light may also pass through other optical elements, for example, a collimator, a polarizer, or a prism, before reaching the thin metal film. Referring to
Surface plasmon resonance may also be used to excite molecules attached to or near the surface of the thin metal film, for example see T. Neumann, M. L. Johansson, D. Kambhampathi, and W. Knoll, “Surface-Plasmon Resonance spectroscopy,” Adv. Fun ct. Mater, 2002, 12(9), 575-586. Another embodiment is a surface plasmon imager as described above that further comprises, referring to
Another embodiment is a method, comprising: a) directing light toward a thin metal film using a micromirror and b) detecting dynamic chemical events at or near the surface of the thin metal film. The dynamic events may be, for example, a fluidic change or a binding event. In many embodiments, directing light toward the thin film comprises using a micromirror scanner device. In other embodiments, the detecting dynamic chemical events at or near the surface of the thin metal film comprises receiving light reflected from the thin metal film. In other embodiments, the detecting dynamic chemical events at or near the surface of the thin metal film comprises receiving light from molecules attached to from the thin metal film. In other embodiments, the detecting dynamic chemical events at or near the surface of the thin metal film comprises both receiving light reflected from the thin metal film and receiving light from molecules attached to from the thin metal film.
Dynamic chemical events that may be chemical bind events. Chemical binding events typically include chemical binding pairs. For example, the first component of the binding pair is immobilized on the thin metal film and the second component of the binding pair is bound to a chemical such as a protein. During the assay, the second component is introduced to the thin metal film by, for example, printing or solution flooding, which allows the second component to come into contact with the first component to initiate the binding event and produce a complex. The chemical binding pairs can include, for example, a biotin/avidin pair, a hapten/antibody pair, an antigen/antibody pair, a peptide-peptide pair, or complementary strands of DNA or RNA. In all embodiments, a third chemical component may bind the complex of the first component and second component. The first component can be immobilized by reaction with a first functional group bound to the microarray surface. The first functional group may be any chemical moiety that can react with the first component of the binding pair. Depending on the composition of the first component of the binding pair, the first functional group may include, for example, an amine, a carboxylic acid or carboxylic acid derivative, a thiol, a maleimide, biotin, a hapten, an antigen, an antibody, or an oligonucleotide. The first functional group itself may be bound to the surface of the microarray through a second functional group that forms a covalent bond with the spots of the microarray. In some embodiments, first functional group is biotin, the second functional group is a thiol, and the thin metal film comprises gold.
A surface plasmon resonance (SPR) sensing instrument using a Kretschmann configuration was constructed using a micromirror scanner device available from Microvision, Inc of Bothell, Wash. and described in U.S. Pat. No. 6,245,590; U.S. Pat. No. 6,362,912; U.S. Pat. No. 6,433,907; and U.S. Pat. No. 5,629,790. The micromirror scanner device is that used in the NOMAD product. The light source was a laser beam pigtailed in from the micromirror scanner device controller box unit had a wavelength of 658 nm. The laser beam carried a maximum power of 35 mW. The Krestschmann configuration prism coupler module included a prism made from high index material (Shott SF10 glass), a replaceable substrate, and a flow cell that carried solution under study. The substrate was made from the same material as the prism and was coupled with the prism through an index liquid matching fluid (Cargille labs, 1815Y) from the non-metallic coating side. The thin metal film on the substrate was gold with a thickness 47 nm. A flow cell with an o-ring gasket (18.5 mm O.D.) was pressed on the gold coated substrate forming a void that allowed the solvent exchange on the surface of the gold film. The small index change from the solution in contact with gold caused reflectivity change, and the area image is captured by a CCD/CMOS camera and the imaging files were recorded in a PC. The image recorded on the CCD/CMOS camera while water was in the flow cell is shown in
Other embodiments are within the following claims.
This application claims the benefit of priority under 35 U.S.C. §119(e)(1) to U.S. provisional application 60/687,964, filed Jun. 7, 2005.
Number | Date | Country | |
---|---|---|---|
60687964 | Jun 2005 | US |