1. Field of the Invention
The present invention relates to a MEMS (Micro-Electro-Mechanical System) switch formed using MEMS technique capable of realizing an ultra-fine mechanical mechanism using a fine processing technique for semiconductors.
2. Description of the Related Art
Recently, demand for RF technology has increasingly risen. Various requirements are made of RF devices to follow functional diversification and a sharp increase in users of the RF devices. It is particularly desired to provide low loss and high isolation characteristics as well as downsizing and low cost to a switch because of need of power consumption saving. In such a social background, attention has been paid to MEMS technique for application of portable wireless terminal devices. This is because a MEMS device is characterized by low power consumption, high density packaging, broadband characteristics, and the like.
A MEMS switch has been actively studied mainly in the U.S.A. since the late 1990s. Currently, domestic and overseas companies have started providing MEMS switch samples. These products mainly replace electromagnetic relays and can characteristically downsize devices, and excellent RF characteristics of MEMS switches are expected to create new markets such as that of directional antennas.
Documents related to the present invention are as follows:
Patent Document 1: Japanese patent laid-open publication No. JP-2006-310052-A;
Patent Document 2: Japanese patent laid-open publication No. JP-2006-310053-A;
Non-Patent Document 1: Gabriel M. Rebeiz et al., “RF MEMS Switches and Switch Circuits”, IEEE Microwave Magazine, pp. 59-71, December 2001; and
Non-Patent Document 2: Tomonori SEKI et al., “Development of Electrostatic Actuator for Ohmic-Contact RF MEMS Switch/Relay”, The Institute of Electrical Engineers of Japan (IEEJ) Paper, IEEJ, Volume 126-E Number 2, pp. 65-71, February 2006.
Non-Patent Document 1 discloses study and practical application of MEMS switches. Types of the MEMS switches are classified into a serial resistance type, a parallel resistance type, a serial capacitance type, and a parallel capacitance type. A resistance MEMS switch is characterized in that characteristic impedance is constant in wide frequency bands from a DC band to a high frequency band. A MEMS switch according to a prior art disclosed in Non-Patent Document 2 will be particularly described below as a prior art relevant to the present invention with reference to
The MEMS switch according to the prior art is configured as follows. As shown in
(A) such a state that the movable contact 63 contacts with the RF signal line; and
(B) such a state that the movable contact 63 does not contact with the RF signal line.
Then this makes it possible to switch over between ON and OFF states of an electric signal flowing along the RF signal line.
In order to improve the RF characteristics of the MEMS switch according to the prior art, it is necessary to reduce the contact resistance between the movable contact 63 and the strip conductors 51 constituting the RF signal line. The contact force that can be used in a small-sized MEMS switch is as low as several mN or less. Therefore, according to the prior art, a gold-based material having low contact resistance has been used as a material of the movable contact 63.
However, the gold-based material has a relatively high sticking force or adhesion after contact. Due to this, in order to overcome the sticking force, it is necessary to provide springs each having a high spring constant so as to detach the movable contact 63 from the strip conductors 51 of the RF signal line. This results in such a serious problem that driving voltage for driving the device is relatively higher. Therefore, because of the problem that the driving voltage for driving the device is higher (equal to or higher than 40 V), it takes disadvantageously and remarkably long time to achieve practical use of the MEMS switch.
It is an object of the present invention to provide a MEMS switch having RF characteristics capable of solving the above-stated problems, remarkably reducing the sticking force as compared with the prior art to turn on or off the switch, greatly reducing driving voltage, and satisfactorily transmitting an RF signal.
In order to achieve the aforementioned objective, according to one aspect of the present invention, there is provided a MEMS switch including a movable electrode member, a substrate, a transmission line electrode, and a fixed electrode. The substrate includes a bump formed at a predetermined position to support the movable electrode member at application of a driving voltage. The transmission line electrode is formed on the substrate, and is made of an electrically conductive material having a predetermined sticking force. The fixed electrode is formed on the substrate, and made of an electrically conductive material. The movable electrode member includes a movable electrode, first and second contacts. The movable electrode is formed to be opposed to the fixed electrode, the first contact is formed to be opposed to the transmission line electrode, and the second contact is formed to be opposed to the bump. The movable electrode member is supported between the fixed electrode and the movable electrode at a predetermined initial gap, and is made of an electrically conductive material. The MEMS switch is configured so that, at application of a predetermined driving voltage to the fixed electrode, the movable electrode member moves in a direction of the substrate by an electrostatic force generated between the fixed electrode and the movable electrode, and so that the first contact and the transmission line electrode contact with each other to turn the first contact and the transmission line electrode into a conductive state. At least one of the bump and the second contact is formed of a material having a sticking force smaller than that of the electrically conductive material of the transmission line electrode.
In the above-mentioned MEMS switch, the material having the smaller sticking force is one of a platinum-based metal, ceramics, and organic resin.
In addition, in the above-mentioned MEMS switch, the substrate is one of a dielectric substrate and a semiconductor substrate, and
Further, in the above-mentioned MEM switch, the electrically conductive material is one of Au, Ag and Cu.
Furthermore, in the above-mentioned MEMS switch, the movable electrode member is supported on the substrate via a spring so that an initial gap between the fixed electrode and the movable electrode is smaller than the predetermined initial gap.
Still further, in the above-mentioned MEMS switch, he movable electrode member includes a slit formed at a position opposed to the transmission line electrode.
Therefore, according to the MEMS switch according to the present invention, at least one of the bump and the second contact is formed of the material having a sticking force smaller than that of the electrically conductive material forming the transmission line electrode. Therefore, the sticking force is reduced, and then, the switch can be repeatedly driven at lower driving voltage by smaller restoring force of the spring. Namely, as compared with the prior art, the switch can be turned on or off with remarkably reducing the sticking force, and then, the driving voltage can be greatly reduced. Furthermore, since the MEMS switch can be manufactured using an LSI process by means of the MEMS technique, high integration can be realized and high reliability can be ensured because of no accumulation of electric charges. Moreover, by forming the slit, the insertion loss can be greatly reduced, band can be made wider, and isolation characteristics can be improved. It is thereby possible to provide the MEMS switch having RF characteristics capable of satisfactorily transmitting RF signals.
These and other objects and features of the present invention will become clear from the following description taken in conjunction with the preferred embodiments thereof with reference to the accompanying drawings throughout which like parts are designated by like reference numerals, and in which:
Preferred embodiments according to the present invention will be described hereinafter with reference to the drawings. In the preferred embodiments below, similar constituent elements are denoted by the same reference symbols, respectively.
Referring to
In this case, each of the strip conductor 21, the ground conductors 22 and 23, and the fixed electrodes 24 and 25 is made of an electrically conductive material having a predetermined sticking force such as Au, Ag or Cu. As described later in detail, the bumps 12 are made of a material having a sticking force smaller than that of the electrically conductive material. Concrete examples of the material of the bumps 12 include platinum-based metal, ceramics, and organic resin. In this case, examples of the platinum-based metal include platinum, palladium, rhodium, osmium, ruthenium, and iridium. Further, the organic resin is Teflon (registered trademark).
The movable electrode member 30 fixed to the anchors 11 so as to cover up a central portion of the silicon substrate 10 includes the following:
(a) rectangular movable electrodes 30A and 30B formed to be opposed to the fixed electrodes 24 and 25, respectively;
(b) a contact 30c formed to be opposed to a central portion of the strip conductor 21;
(c) contacts 30t formed to be opposed to the bumps 12, respectively; and
(d) four beams 30b formed to extend from central portions of two opposed sides of the movable electrodes 30A and 30B to respective anchors 30a each into a thin and long shape, and each including a spring function.
Further, the contact 30c of the movable electrode member 30 is provided immediately under a central bar 30C connecting the movable electrodes 30A and 30B to each other, and two slits 30s are formed to be opposed to the strip conductor 21 of the coplanar line 20 across the central bar 30C. The movable electrode member 30 is fixed to and supported by anchors 10a each at a predetermined initial gap “g” (See
In the above-stated preferred embodiment, the silicon substrate 10 is employed as a substrate. However, the present invention is not limited to this. The substrate may be constituted by a dielectric substrate or a semiconductor substrate such as a GaAs substrate.
First of all, as shown in
As shown in
The means for solving the problem of the sticking force described in “RELATED ART” part will be next described.
The inventors of the present invention paid attention to a material of the MEMS switch to try to solve the problems. The types of the material of the switch are classified into two groups. As for a first material group of soft metal typified by gold, a sticking phenomenon tends to occur but the first material group is low in contact resistance and excellent as a contact material. As for the other group that is a second material group of hard metal typified by platinum, the sticking phenomenon less occurs but the second material group is high in contact resistance and not so suitable as the contact material. Many switches have been manufactured so far by forming alloy to blend features of the two material groups. In the switch according to the present preferred embodiment, gold is used as the contact material of the contact 30c whereas the bumps 12 are formed of platinum. Generally speaking, if a contact force is stronger, then a contact resistance is smaller and a sticking force is larger. Therefore, the switch according to the present preferred embodiment is configured so that the contact 30c made of gold secures a necessary contact force and an unnecessary contact force is distributed to the bumps 12 made of platinum. In the above arrangement, the switch produced by the inventors of the present invention as a prototype was successfully able to greatly reduce the sticking force down to 0.5 mN when the Pt bumps 12 were used, as compared with the sticking force of 2.7 mN when the switch was formed using only Au. Moreover, the springs 30p having strong restoring force were arranged so as to be able to absorb the remaining sticking force.
By securing the strong restoring force as stated above, the driving voltage rises. However, by setting the initial gap “g” that is an inter-electrode distance smaller than that according to the prior art so as to reduce the driving voltage, the driving voltage can be greatly reduced. In this case, by narrowing the inter-electrode distance, parasitic capacitance between the movable electrode 30A or 30B and the coplanar line 20 increases. In order to solve this problem, the slits 30s are formed, and then, the insertion loss can be remarkably reduced. This win be described later in detail in the following implemental example.
Table 1 below shows calculated characteristics of the MEMS switch produced by the inventors of the present invention as the prototype.
Namely, as obvious from
Accordingly, as mentioned above in details, according to the MEMS switch according to the present invention, at least one of the bump and the second contact is formed of the material having a sticking force smaller than that of the electrically conductive material forming the transmission line electrode. Therefore, the sticking force is reduced, and then, the switch can be repeatedly driven at lower driving voltage by smaller restoring force of the spring. Namely, as compared with the prior art, the switch can be turned on or off with remarkably reducing the sticking force, and then, the driving voltage can be greatly reduced. Furthermore, since the MEMS switch can be manufactured using an LSI process by means of the MEMS technique, high integration can be realized and high reliability can be ensured because of no accumulation of electric charges. Moreover, by forming the slit, the insertion loss can be greatly reduced, band can be made wider, and isolation characteristics can be improved. It is thereby possible to provide the MEMS switch having RF characteristics capable of satisfactorily transmitting RF signals. In particular, the MEMS switch according to the present invention is useful for use in RF-MEMS device such as mobile telephones and wireless LAN systems.
Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications are apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims unless they depart therefrom.
Number | Date | Country | Kind |
---|---|---|---|
2008-119798 | May 2008 | JP | national |