The present invention relates to a microelectromechanical system (MEMS) switch, systems, and devices. In particular, the present invention relates to a MEMS switch with multiple pull-down electrodes between terminal electrodes to limit off-state capacitance.
Microelectromechanical system (MEMS) switches provide high-performance relays that operate across a wide variety of frequency ranges. Unwanted or parasitic capacitance may occur in MEMS switches, such as between the input terminal electrode and the output terminal electrode. Such parasitic capacitance is undesirable as it results in on-state electrical loss and off-state electrical coupling. Reducing this off-state capacitance is desirable, such as to enable more advanced relay applications as tuning elements.
Embodiments of the disclosure are directed to microelectromechanical system (MEMS) switches with multiple pull-down electrodes between terminal electrodes to limit off-state capacitance. In exemplary aspects disclosed herein, a plurality of pull-down electrodes are positioned between the input terminal electrode and the output terminal electrode. The plurality of pull-down electrodes are offset from each other to limit off-state capacitance between the input terminal electrode and the output terminal electrode. The separation between the pull-down electrodes disrupts the off-state capacitive path between the input terminal electrode and the output terminal electrode, thereby further insulating the contacts from each other. Limiting off-state capacitance reduces on-state electrical loss and increases off-state electrical isolation for improved performance.
One embodiment of the disclosure relates to a microelectromechanical system (MEMS) switch including an input terminal electrode, an output terminal electrode, a plurality of pull-down electrodes positioned between the input terminal electrode and the output terminal electrode, and a beam element. The beam element is configured to move between an on-state adjacent to the plurality of pull-down electrodes to electrically couple the input terminal electrode and the output terminal electrode to the beam element and an off-state away from the plurality of pull-down electrodes to electrically isolate the input terminal electrode and the output terminal electrode from the beam element. The plurality of pull-down electrodes are offset from each other to limit off-state capacitance between the input terminal electrode and the output terminal electrode.
An additional embodiment of the disclosure relates to a microelectromechanical system (MEMS), including a plurality of MEMS switches. Each switch includes an input terminal electrode, an output terminal electrode, a plurality of pull-down electrodes positioned between the input terminal electrode and the output terminal electrode, and a beam element. The beam element is configured to move between an on-state adjacent to the plurality of pull-down electrodes to electrically couple the input terminal electrode and the output terminal electrode to the beam element and an off-state away from the plurality of pull-down electrodes to electrically isolate the input terminal electrode and the output terminal electrode from the beam element. The plurality of pull-down electrodes are offset from each other to limit off-state capacitance between the input terminal electrode and the output terminal electrode.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description, serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It should be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It should also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element, or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
It should be understood that, although the terms “upper,” “lower,” “bottom,” “intermediate,” “middle,” “top,” and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed an “upper” element, and, similarly, a second element could be termed an “upper” element depending on the relative orientations of these elements, without departing from the scope of the present disclosure.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having meanings that are consistent with their meanings in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The MEMS switch 100 (may also be referred to herein as a MEMS relay, MEMS ohmic switch, etc.) further includes a moveable beam 116 (may also be referred to as a floating beam) mechanically anchored at both ends by flexible anchors 117 (e.g., springs). In this way, the moveable beam 116 is configured to move between a first position (off-state) and a second position (on-state) for up and down electrostatic actuation. The moveable beam 116 is connected to a ground connection 118.
Referring to
Referring to
The MEMS switch 100 further includes an up isolation circuit 120 between the pull-up electrode 102 and the Vup coupling 112 (may also be referred to as Vup connection, Vup source, etc.), a second isolation circuit 122 disposed between the moveable beam 116 and electrical ground potential 118, and a down isolation circuit 124 between the pull-down electrode 104 and the Vdn coupling 114 (may also be referred to as Vdn connection, Vdn source, etc.). Each of the isolation circuits 120, 122, 124 (may be referred to as Ziso) includes at least one resistor. The isolation circuits 120, 122, 124 isolate the MEMS switch 100 to prevent RE leakage (e.g., through the Vup coupling 112, the Vdn coupling 114, and/or the ground connection 118) by adding electrical impedance at RF leakage points. The source impedance of the MEMS switch 100 is represented by Zsrc 126, and the load impedance of the MEMS switch 100 is represented by Zload 128. Additionally, the first and second isolation circuits 120, 124 are utilized to isolate the control voltage sources, such as the Vup coupling 112 and Vdn coupling 114.
The isolation circuits 120, 122, 124 provide several benefits. The isolation circuits 120, 122, 124 bias the direct current potential to allow for electrostatic actuation and further provide a path for transient currents during switching. The components of each of the isolation circuits 120, 122, 124 are chosen such that the resistance levels limit RE leakage while enabling the MEMS switch 100 to function as intended (e.g., movement speed of moveable beam 116, providing bleed current to withstand electrostatic discharge events, maintain electric potential at the pull-up electrode 102 and pull-down electrode 104 during the switching transients), among other advantages (e.g., accurate engineering of actuation waveforms). In particular, the isolation circuits 120, 122, 124 provide a high degree of reliability for the MEMS switch 100 by neutralizing charge that may accumulate during life cycling while maintaining a zero potential between touching MEMS elements. The isolation circuits 120, 122, 124 provide for leakage paths for electrostatic discharge events to further increase the reliability of the MEMS relay. The isolation circuits maintain RF performance (voltage handling, insertion loss, isolation linearity, etc.) while providing proper power handling by uniform RF current distribution.
In certain embodiments, isolation circuit 120 includes resistor 120′ disposed between a pull-up electrode 102 and the Vup coupling 112. In certain embodiments, isolation circuit 124 includes resistor 124′ disposed between a pull-down electrode 104 and the Vdn coupling 114 such that the Vdn coupling 114 is isolated to provide proper control of voltage within the MEMS switch 100. Resistors 120′, 124′ are utilized to isolate the control voltage sources, such as the Vup coupling 112 and the Vdn coupling 114.
In certain embodiments, isolation circuit 122 includes resistor 122A′, 122B′, and/or 122C′. In particular, resistor 122C′ is disposed between the movable beam 116 and DC ground connection 118 to provide a direct current bias of the movable beam 116 to DC ground connection 118. In certain embodiments, resistors 122A′, 122B′ are disposed adjacent to anchored ends of the movable beam 116. The resistor 122A′ is disposed between the movable beam 116 and input electrode 106, and resistor 122B′ is disposed between the movable beam 116 and output electrode 108. In certain embodiments, resistors 122A′, 122B′ are equivalent in value (e.g., about 75 Kohm to about 1.5 Mohm). In certain embodiments, the value of resistors 120′, 124′ is greater than resistor 122A′-122C′. In certain embodiments, resistors 122A′-122C′ and may have about the same value.
In certain embodiments, resistors 122A′, 122B′ provide for RF isolation and provide for extra reliability of the MEMS switch 100 by neutralizing electrical change that may accumulate within the MEMS switch 100. Resistors 122A′, 122B′ having the second value also provides a sufficient level of “bleed” current for dissipating externally applied charge due to electrostatic discharge events. Additionally, resistors 122A′, 122B′ are utilized to avoid the RF-terminals from floating to an uncontrolled direct current potential when left open.
The movable beam 116 is configured to move between an on-state adjacent to the plurality of pull-down electrodes 104A, 104B to electrically couple the input terminal electrode 106 and the output terminal electrode 108 to the movable beam 116, and an off-state away from the plurality of pull-down electrodes 104A, 104B to electrically isolate the input terminal electrode 106 and the output terminal electrode 108 from the movable beam 116. In certain embodiments, the moveable beam 116 is coupled to an RF node.
In certain embodiments, each of the plurality of pull-down electrodes 104A, 104B are respectively coupled to an isolation circuit 124A, 124B to isolate a lower voltage source from the plurality of pull-down electrodes 104A, 104B. In certain embodiments, an isolation circuit 122 is positioned between the movable beam 116 and an electrical common ground connection 118. In certain embodiments, the pull-up electrode 102 is coupled to an up isolation circuit 120 to isolate an upper voltage source from the pull-up electrode 102.
The plurality of pull-down electrodes 104A, 104B are offset (and electrically isolated) from each other to limit off-state capacitance between the input terminal electrode 106 and the output terminal electrode 108. In certain embodiments, the plurality of pull-down electrodes 104A, 104B consists of two pull-down electrodes 104. In certain embodiments, the plurality of pull-down electrodes 104A, 104B includes three or more pull-down electrodes 104. Similarly, in certain embodiments, the MEMS switch 200 includes a plurality of pull-up electrodes 102 configured to electrically bias the movable beam 116 toward the off-state.
In certain embodiments, isolation circuit 124 includes resistors 124A′, 124B′ disposed between a pull-down electrodes 104A, 104B, and the Vdn coupling 114 such that the Vdn coupling 114 is isolated to provide proper control of voltage within the MEMS switch 100.
Although described above as a single switch, other arrangements may be utilized. Multiple relays may be included together into one arrangement. In some non-limiting embodiments, four relays may be provided.
The pull-down electrodes 104A, 104B are covered with a dielectric layer 306 to avoid a short-circuit between the movable beam 116 and the pull-down electrodes 104A, 104B in the on-state. Suitable materials for the dielectric layer 306 include silicon-based materials including silicon-oxide, silicon-dioxide, silicon-nitride, and silicon-oxynitride. The thickness of the dielectric layer 306 is typically in the range of 50 nm to 150 nm to limit the electric field in the dielectric layer 306.
On top of the input terminal electrode 106 is the input terminal contact 308 (may also be referred to as an input RF contact), and on top of the output terminal electrode 108 is the output terminal contact 310 (may also be referred to as an output RF contact). The movable beam 116 forms an ohmic contact with the input terminal electrode 106 and the output terminal electrode 108 in the pulled-down state. On top of the anchor electrodes 302A, 302B are anchor contacts 312A, 312B to which the movable beam 116 is anchored. Suitable materials used for the contacts 308, 310, 312A, 312B include Ti, TiN, TiAl, TiAlN, AlN, Al, W, Pt, Ir, Rh, Ru, RuO2, ITO, and Mo and combinations thereof.
In certain embodiments, the MEMS switch 300 includes a center stopper 314 positioned on the dielectric layer 306. The center stopper 314 extends above the substrate 304 by a greater distance than the terminal contacts 308, 310, so that upon actuation, the moveable beam 116 comes into contact with center stopper 314 first. In one embodiment, the center stopper 314 extends above the substrate 304 by a distance that is equal to the terminal contacts 308, 310. Suitable materials that may be used for the stopper 314 include Ti, TiN, TiAl, TiAlN, AlN, Al, W, Pt, Ir, Rh, Ru, RuO2, ITO, Mo, and silicon-based materials such as silicon-oxide, silicon-dioxide, silicon-nitride, and silicon-oxynitride and combinations thereof.
The movable beam 116 (may also be referred to as a switching element, MEMS bridge, etc.) includes lower conductive layer 316 and upper conductive layer 318, which are joined together using an array of vias 320. Opposing ends of the upper layer 318 are anchored to opposing ends of the lower layer 316 by vias 322A, 322B. Opposing ends of the lower conductive layer 316 of the moveable beam 116 are anchored to the anchor contacts 312A, 312B by vias 324A, 324B, which provides low compliance to permit operating voltages (e.g., 25 V to 40 V) to pull the moveable beam 116 in contact with the terminal contacts 308, 310 and center stopper 314. This allows for a cheap integration of the CMOS (complementary metal-oxide-semiconductor) controller with a charge-pump to generate the voltages to drive the MEMS switch 300. In other words, ends of the movable beam 116 are mounted to the substrate 304 such that the movable beam 116 is suspended above the input terminal electrode 106, output terminal electrode 108, and plurality of pull-down electrodes 104A, 104B in the off state.
In certain embodiments, the MEMS switch 300 includes a cover 326 mounted to the substrate 304 and defines a cavity 328 between the cover 326 and the substrate 304. The movable beam 116 is positioned within the cavity 328.
The first set of pull-down electrodes 104A(1), 104A(2) are in electrical communication with isolation circuit 124A, and the second set of pull-down electrodes 104B(1), 104B(2) are in electrical communication with isolation circuit 124B. In other words, each of the first set of pull-down electrodes 104A(1), 104A(2) is coupled to a first down isolation circuit 124A and each of the second set of pull-down electrodes 104B(1), 104B(2) is coupled to a second down isolation circuit 124B to isolate a Vdn coupling 114 from the plurality of pull-down electrodes 104A(1)-104B(2).
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.