The present disclosure is in the field of transducers, and specifically to improvements to range or efficiency of transducers.
Although various types of transducers are available, range and efficiency continue to be challenges faced in transducer design.
In an embodiment, an ultrasonic device includes a substrate, a transmitter disposed over the substrate, the transmitter including an ultrasonic transmitting transducer configured to generate ultrasonic signals, and a receiver disposed over the substrate, the receiver including an ultrasonic receiving transducer configured to sense ultrasonic signals. The ultrasonic device further includes a first horn-shaped acoustic channel, wherein a material of at least one portion of the first horn-shaped acoustic channel is the same as a material of at least one portion of the transmitter or the receiver.
In an embodiment, an ultrasonic device includes a substrate, a transmitter disposed over the substrate including an ultrasonic transmitting transducer configured to generate ultrasonic signals, and a receiver disposed over the substrate including an ultrasonic receiving transducer configured to sense ultrasonic signals. The ultrasonic device further includes a first housing disposed over the substrate defining a first cavity, the first cavity including the transmitter and the receiver, and a surface of the first housing defines a first aperture. The ultrasonic device further includes an acoustic channel having a first opening and an opposing second opening, the first opening coupled to the first aperture and the second opening coupled to the cavity, and a length of the acoustic channel is substantially equal to one half of an operating wavelength of the transmitter or the receiver.
In an embodiment, an ultrasonic device includes a substrate having a first planar surface and a second opposing planar surface, a transmitter disposed over the first planar surface of the substrate, and a receiver disposed over the first planar surface of the substrate. The ultrasonic device further includes a first horn-shaped acoustic channel defined by the substrate, the first horn-shaped acoustic channel extending from a first opening defined in the first planar surface to a second opening defined in the second planar surface, wherein the first opening is proximate to the transmitting transducer. The ultrasonic device further includes a second horn-shaped acoustic channel defined by the substrate, the second horn-shaped acoustic channel extending from a third opening defined in the first planar surface to a fourth opening defined in the second planar surface, wherein the third opening is proximate to the receiving transducer.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the following drawings and the detailed description.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the figures, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.
The present disclosure describes devices and techniques to improve a range and an efficiency of ultrasonic transducers. In one or more embodiments, range and efficiency of ultrasonic proximity sensors incorporating microelectromechanical systems (MEMS) transducers are improved.
In one or more embodiments, a MEMS microphone is used as a transducer. A MEMS microphone may include, for example, a MEMS die with one or more diaphragm and one or more back plate. The MEMS die may be supported by a base or substrate and enclosed by a housing (e.g., a cupped cover or cover with walls). A port may extend through the substrate (for a bottom port device) or through the top of the housing (for a top port device). Sound energy traverses through the port, moves the diaphragm, and creates a changing electrical potential of the back plate, which creates an electrical signal.
In one or more embodiments, a proximity sensor may include a piezoelectric device. A piezoelectric device may be constructed with such materials that bending or application of stress to the piezoelectric device generates electrical energy.
In one or more embodiments, horns are incorporated into one of, or both, a transmitter and a receiver of a proximity sensor.
In one or more embodiments, a bandpass enclosure is incorporated to house a transmitter and a receiver of a proximity sensor.
In one or more embodiments, horns and a bandpass enclosure are incorporated into a proximity sensor.
The ultrasonic transducer 100 also includes a transducer housing 110 that defines a first cavity 112 and encompasses the transmitter 102, the receiver 104, and the IC 106. The transducer housing 110 also defines a first opening 114 over its surface to allow for sound generated by the transmitter 102 to exit the transducer housing 110, and to allow sound to enter the cavity 112. For example, sound generated by the transmitter 102 and exited through the first opening 114 may be reflected by objects near the first opening 114 and may re-enter the first cavity 112 through the first opening 114 and be potentially sensed by the receiver 104.
The transmitter 102 includes a transmitter housing 116 that defines a second cavity 118 and encompasses a transmitting transducer 120. The transmitter housing 116 also defines an aperture on one of its sides, where the aperture serves as a transmitter port 122 to allow for ultrasonic sound generated by the transmitting transducer 120 to exit the transmitter housing 116. In one or more embodiments, the aperture can be formed on a different surface of the transmitter housing 116 than the one shown in
In embodiments such as illustrated in
In one or more embodiments, both the transmitter 102 and the receiver 104 are implemented within a single device. For example, a MEMS microphone can be utilized to implement both the transmitting transducer 120 and the receiving transducer 128. In such embodiments, the MEMS microphone may be operated as a transmitter of ultrasonic sound waves for a first duration, during which it can operate as a speaker. That is, the MEMS microphone, during the first duration, can convert electrical signals into ultrasonic sound. The MEMS microphone can also be operated as a receiver for a second duration, during which it may be operated as a microphone. That is, the MEMS microphone can receive ultrasonic sound during the second duration and convert the received ultrasonic sound into electrical signals. The first and second durations can be interspaced over time to allow the MEMS microphone to alternate between transmitting and receiving ultrasonic sound. A controller, such as the IC 106, can be configured to control the mode of the MEMS microphone (e.g., control when the MEMS microphone switches between operation as a transmitter and operation as a receiver).
The transmitter 102 transmits ultrasonic signals, such as sound signals having frequencies above the human audible range (e.g., above about 20 kHz). For example, the ultrasonic signals transmitted by the transmitter 102 can be in a range of about 20 kHz to about 200 kHz. Although the embodiments described herein discuss the transmitter 102 and the receiver 104 as operating in the ultrasonic frequency range, in one or more embodiments, the transmitter 102 and the receiver 104 also can operate in other frequency bands. For example, in one or more embodiments, the transmitter 102 is configured to transmit sound signals that overlap both an audible range of frequencies and an ultrasonic range of frequencies. For example, the transmitter 102 can be used in a telephone (e.g., a mobile phone) as a speaker, which not only transmits voice signals generated by the telephone, but also transmits ultrasonic signals that are utilized to determine a proximity of a user to the telephone. In one or more embodiments, the receiver 104 is configured to receive sound in an ultrasonic frequency range. In other embodiments, the receiver 104 is configured to receive sound in both audible frequency ranges and ultrasonic frequency ranges. For example, the receiver 104 can be utilized in a telephone to sense sounds emitted by the user (e.g., the user's voice), and also to sense ultrasonic sound signals transmitted by an ultrasonic transmitter to detect the proximity of the user to the telephone.
As mentioned above, the IC 106 can be electrically connected to the transmitter 102 and the receiver 104. The IC 106 can include various analog and digital components for controlling the transmitter 102 and the receiver 104 and to process signals to the transmitter 102 and from the receiver 104. For example, the IC 106 can include processing circuitry for generating data signals to be transmitted by the transmitter 102 and for processing signals received from the receiver 104. To that end, the processor may also include digital-to-analog converters (DACs) and analog to digital converters (ADCs) for converting signals between the analog and digital domain. The processor can also be coupled to analog components such as amplifiers, oscillators, transistors, resistors, capacitors, inductors, power supplies, transformers, and so forth that can aid in the operation of the processor.
As mentioned above, the ultrasonic transducer 100 shown in
The transmitter horn 240 and the receiver horn 242 can improve efficiency and directionality of the transmitter 102 and the receiver 104. In one or more embodiments, the transmitter horn 240 can increase a load experienced by the transmitting transducer 120, thereby improving its efficiency. In one or more embodiments, the receiver horn 242 can strengthen a sound energy incident on the receiving transducer 128, thereby improving its sensitivity. In addition, the transmitter horn 240 and the receiver horn 242 improve the directionality of the transmitter 102 and the receiver 104, respectively. In one or more embodiments, one of, or both of, the transmitter horn 240 and the receiver horn 242 are configured to provide a coverage angle of about 45° to about 135° centered around a longitudinal axis of the respective horn.
The shape and dimensions of the transmitter horn 240 and the receiver horn 242 can impact acoustic responses of the horns. In particular, the shape and dimensions of the transmitter horn 240 (e.g., DT, DM, and L, shown in
In one or more other embodiments, in which an exponentially shaped transmitter horn 240 with the throat 244 and the mouth 246 having circular cross-sections is utilized, for a given operating frequency fc, an area of the cross section of the mouth 246 can be approximated by the following Equation (1):
where c is the speed of sound. Further, a relationship between the frequency fc, the cross sectional area AT of the throat 244, and the length L can be approximated by the following Equation (2):
Thus, selecting one of the length L or the throat cross sectional area AT the other of L and AT can be determined. The above equations for determining the dimensions of the transmitter horn 240 also can be applied to determine the dimensions of the receiver horn 242, where the frequency fc corresponds to a sensing frequency of the receiving transducer 128. It should be understood that the above discussed technique for determining the dimensions of the transmitter horn 240 and the receiver horn 242 is discussed by way of example, and that other techniques including different expressions relating the dimensions of the horns to the operational frequency can be utilized. In one or more embodiments, given the operational frequency, the dimensions of the horns also can be determined based on experimental techniques or by using acoustic simulation software.
In one or more embodiments, throats of the transmitter horn 240 and the receiver horn 242 can be attached to the transmitter housing 116 and the receiver housing 124, respectively, by a bonding agent, such as for example, glue, solder, or epoxy. In one or more such embodiments, the diameter of the ports 122 and 130 can be equal to the diameter DT of the throats 244 and 248, respectively. The mouths of the transmitter horn 240 and the receiver horn 242 can be attached to the transducer housing 110 also by a bonding agent. For example, the transducer housing 110 can include apertures that can accommodate the shape and size of the mouths 246 and 250 of the transmitter horn 240 and the receiver horn 242, respectively. In one or more embodiments, the transmitter horn 240 and the receiver horn 242 can be formed of a material such as metal, plastic or resin, or a combination of metal, plastic or resin, or other material, the material providing sufficient wall strength to maintain the designed horn shape.
In some other embodiments, the transmitter horn 240 and the receiver horn 242 can be integrated respectively into the transmitter 102 and the receiver 104. In particular, instead of separately manufacturing horns and attaching the manufactured horns to the transmitter 102 and the receiver 104 as the transmitter horn 240 and the receiver horn 242, respectively, the transmitter horn 240 and the receiver horn 242 can be manufactured along with the respective transmitter 102 and receiver 104 (e.g., in a same manufacturing process stage). In one or more such implementations, the material(s) used for forming the transmitter horn 240 and the receiver horn 242 can be similar to material(s) used in forming other features of the transmitter 102 and receiver 104.
After the deposition of the horn layer 374, the horn layer can be patterned, such as by using photomasks and etching techniques. During patterning, a portion 376 of the horn layer 374 and the underlying portion of the transmitter housing 316 can be etched to form an auditory channel to the cavity formed by the transmitter housing 316, thereby forming a throat of a horn. The sacrificial layer 372 is then removed, thereby resulting in a horn such as the transmitter horn 240 shown in
By forming the horn structure during the MEMS fabrication of the transmitter and receiver, one can take advantage of the natural bonding provided by a MEMS deposition process. Thus, a horn structure (e.g., formed by the horn layer 374 in
In one or more embodiments, such as the one shown in
In one or more embodiments, the substrate 408 can be a printed circuit board over which the ultrasonic transducer 400 is mounted. In other embodiments, the substrate 408 can be a semiconductor die over which the ultrasonic transducer 400 is fabricated. In yet other embodiments, the substrate 408 can be a combination of a semiconductor die and a printed circuit board. One advantage of the ultrasonic transducer 400 with bottom port connected horns is that no additional material is needed to form the horns; instead, the existing substrate 408 can be utilized for forming the horns.
The dimensions and the shape of the transmitter horn 440 and the receiver horn 442 can be determined in a manner similar to that discussed above in relation to the transmitter horn 240 and the receiver horn 242 shown in
where c denotes the speed of sound, A denotes the cross-sectional area of the tuned port 501, L denotes a length of the tuned port 501, and V0 denotes a static volume of the first cavity 112 formed by the transducer housing 510. In one or more embodiments, a size of the transducer housing 510, and hence the volume V0, may be constrained by application size of a device in which the ultrasonic transducer 500 is deployed. Thus, given a volume V0, the area A and the length L of the tuned port 501 can be selected such that the resonance frequency of the bandpass enclosure is substantially equal to an operating frequency of the ultrasonic transducer 500. By designing the resonance frequency of the bandpass enclosure to be substantially equal to the operating frequency of the ultrasonic transducer 500, the enclosure can amplify sound produced by the transmitter 102. Thus, an efficiency of the transmitter 102 can be improved and a sensitivity of the receiver 104 can be improved as well. It should be understood that the relationship between the resonant frequency of the bandpass enclosure and the dimensions of the enclosure as described above is presented by way of non-limiting example. A person skilled in the art can realize a different set of equations to determine the dimensions of the transducer housing 510 and the tuned port 501 to achieve a resonant frequency that is substantially equal to the operating frequency of the ultrasonic transducer 500. In one or more embodiments, the dimensions of the transducer housing 510 and the tuned port 501 can be determined experimentally or by using computer simulations. In one or more embodiments, the length L of the tuned port 501 can be selected to be about ½ the wavelength of the operating frequency of the ultrasonic transducer 500 to achieve resonance.
The dimensions of the horn-shaped tuning port 701 can be selected based on the operating frequency of the transceiver 704. In particular, a length L of the horn-shaped tuning port 701 can be selected such that a resonance frequency of the transducer housing 710 is substantially equal to an operating frequency fc of the transceiver 704. For example, in one or more embodiments, the length L of the horn-shaped port 701 can be selected to be about ½ the wavelength of the operating frequency of the ultrasonic transducer 700. In one or more embodiments, a gap between the throat 744 and the transceiver housing 724 also can be selected to adjust the frequency characteristics of the transducer 700. The horn-shaped tuning port 701 provides strengthening of the sound energy in and out of the transducer 700, thereby improving a range of the transducer 700. In addition, the horn shape of the horn-shaped tuning port 701 provides directionality to the transmission and reception of sound at the transducer 700, thereby reducing a sensitivity of the transceiver 704 to extraneous noise. In one or more embodiments, a shape and dimensions of the throat 744 and the mouth 746 of the horn-shaped tuning port 701 can be determined in a manner similar to that discussed above in relation to the transmitter horn 240 and the receiver horn 242 shown in
The transceiver 704 can function as both a transmitter and as a receiver. For example, a MEMS microphone can be utilized to implement the transceiver 704, where the MEMS microphone, in conjunction with the IC 706 can operate as a transmitter for a first duration, and operate as a receiver for a second separate duration. Specifically, when operating as a transmitter, the transceiver 704 converts electrical signals received from the IC 706 into ultrasonic signals. When operating as a receiver, the transceiver 704 converts sensed ultrasonic signals into electrical signals, which are provided to the IC 706. In one or more embodiments, the first and second durations can be interspaced over time to allow the transceiver 704 to alternate between transmitting and receiving ultrasonic sound. A controller, such as the IC 706, can be configured to control the mode of the transceiver 704 (e.g., control when the transceiver 704 switches between operation as a transmitter and operation as a receiver).
In one or more embodiments, such as the one shown in
The transceiver 804 and the IC 806 can be similar to the transceiver 704 and the IC 706 discussed above in relation to
The acoustic transducers discussed above in relation to
In one or more embodiments, the ultrasonic transducers discussed above in relation to
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are illustrative, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
With respect to the use of plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations).
Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.” Further, unless otherwise noted, the use of the words “approximate,” “about,” “around,” “substantially,” etc., mean plus or minus ten percent.
The foregoing description of illustrative embodiments has been presented for purposes of illustration and of description. It is not intended to be exhaustive or limiting with respect to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosed embodiments. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/370,160, filed Aug. 2, 2016, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US17/44471 | 7/28/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62370160 | Aug 2016 | US |