1. Field of the Invention
This invention involves a type of automated monitoring and a diagnostic system for the mental and physical health status of the patient. It refers especially to a type of close and long range monitor, diagnosis, control, and response functions to maintain a continuous two-way monitoring system for the user's mental and physical health. This also means it can provide the user medical advice to promote personal health.
2. Description of the Prior Art
As times change, people live more comfortably and demand a higher standard of living. Due to the advancement in the medical field, human life expectancy is increasing.
On the other hand, in order to pursue more material goods, everyday life has become busier. Due to differing life styles, living habits change regularly to adapt and incorrect living habits can cause many people to not eat, sleep, and function properly. Many people experience too much pressure and are easily affected by their surroundings; these people are easily aggravated, can't relax easily, eat irregularly, are over worked, sleep during the day and lack exercise. All these things lead to poor physical and mental health and the person often leads an unhappy life.
Consequently, building an enriching environment for further advance in the psychological and material worlds has become an important field of study for human health.
In the daily life of an average person, his or her behavior will not exceed the emotional and physical boundaries, but day after day, these changes in behavior can affect that person's health. This invention uses this basis and records down the emotional and physical changes for a continuous long term period. Using close range automated systems; it continuously gathers information to diagnose the user's mental and physical status. It automatically gives advice and continuously checks for improving status. If necessary, this system can also contact the monitoring station for further disease prevention and health care issues.
Because everyone's living style changes with a regular pattern, this invention's goal is to provide a clothing system that monitors physical and mental health and automatically analyzes, diagnoses, and provides solutions for any health problems that occur. Through continuous monitoring, analysis and diagnosis of the user's health status, it provides the user with proper health advice to achieve better personal health.
This invention includes but is not limited to the following:
This invention's method for monitoring first involves the analysis of human behavior, placing sensors in selected areas of the garment, and regularly monitoring the behavioral changes in these areas. Because muscles have a standard structure and limited range for movement, improper actions and movement can lead to improper use of muscles and cause poor health and limit bodily growth. Although modern medicine has already established proper actions and behavior guidelines that benefits personal health, it is difficult to pinpoint different regions of the body and provide proper advice. Through this invention's methods, we can monitor specific regions and record daily behavior, and then based on this data, provide proper suggestions for long-term correction, thus improving the user's health.
At the same time, this invention also monitors body fat distribution in the body. Since food consumption quality has improved, fat and calorie intake is abnormally high. When combined with lack of exercise or improper exercise, this can lead to irregular distribution of body fat causing obesity or eating disorders. These irregularities and disorders further lower a person's immunity, causing more sickness such as diabetes, heart problems, high cholesterol, et cetera. Using this invention, the person can know in advance his or her own body fat distribution and through proper guidance, exercise the proper areas and burn the proper amount of calories or through the correct nutrition correct and control body figure.
Other important factors affecting personal health today are psychological and emotional. Due to busy lifestyles, many people cannot withstand the stress, causing uncontrolled emotions leading to depression, insomnia and other disorders. This invention can monitor the emotional change of the user through the user's tone of voice, focus, change of heart rate, blood pressure and breathing patterns to analyze the person's mood and suggest proper relaxation methods to achieve medical health.
Furthermore, this invention can be used to monitor pregnant mothers, elderly, diabetic, over weight, depressed, blind, deaf, and people suffering from eating disorders, memory loss, and even smoking. This invention provides exercise guidelines to promote physical health. This invention also provides emergency assistance when the need arises to prevent lose of life.
As
Barcodes can be installed onto items that the user comes in contact with often, such as the fridge, toilet, television, door, food, cloth and various other items. Then by installing a sensor to read these barcodes, information could be gathered about the frequency that the user uses such items. Electronic tags can be used in place of the barcodes and a radio frequency identification system can be used in place of the barcode reader. By analyzing this data; for example, how many times a day the user comes into contact with the fridge, we can know if the user has abnormal eating habits that could be harmful to his/her health. This invention also allows for sensors to be installed on the walls of the user's home, these sensors may include camera (CCD or CMOS ) or heat imaging sensors to determine the user's position at home. The camera and heat imaging sensors could be allowed to move along grids in the wall to follow the user. If the user is in an abnormal position in the home for an abnormal duration of time, for example, showering for 2 hours, then other sensors could be activated to check on the user's status.
The data collected by sensor (1) as stated above are transmitted to the close range monitoring system (2). The close-range monitoring system (2) can be placed directly inside the garment or be separately placed elsewhere (for example: PDA, cellular phone, computer, et cetera). The system can also include functions such as GPS, LEOS (Low earth orbit system), GPRS (General Packet Radio Service), 3G (Third generation mobile signal transmission), ECDS (An instant image transferal service), MMS (Multi-media service), Blue Tooth, GSM (Global system for mobile communication), CDMA (Code division multiple access), or MPS (mobile positioning system). If the close-range monitoring system is placed apart from the garment, then people living in the same environment can share or trade the close-range monitoring system among them. One user is also allowed to use multiple close-range monitoring systems, for example, use one located in the computer at home, then use one located in the cellular phone when not at home. The close range monitoring system can receive information, analyze, store and provide suggestions to the user (3). Through pictures, images, voice, words, feel, vibration, 3D projections, VR software or electric shocks, the system can guide the user. For example, a VR software located at the close range monitoring system could proved certain tests for the user to determine his or her mental state or intelligence, allowing user (3) to further understand his or her living status. When necessary, the user can communicate with the long-range monitoring station 4 and speak with medical personnel, physical therapists, psychologists or nutritionists to receive instructions to improve the user's situation. For example, the sensors can determine the user's body fat distribution and then have physicians instruct the user on how to exercise to lose weight. After the advice, the system can continuously follow-up to determine if the user performs the exercises properly and burns the proper amount of calories, then test the user's muscular activity and calories burned each day to determine if the proper results are being achieved. Camcorders can be used in all this to determine the user's dietary intake. If necessary, the user can contact the close-range monitoring system or the long-range monitoring station for assistance.
Also, this invention can be used during sleep. While sleeping, the user's eye muscles will move. This allows the invention to monitor and analyze the time the user went to bed, the time it took the user to fall asleep, sleep duration, level of relaxation for different regions of the body, breathing and heart rate changes to determine sleep quality and give suggestions for improvements. For example the suggestion could be medication or behavior therapy, which includes:
A) Sleep hygiene: whether the sleeper could be woken up by calling him or her; does the person sleep regularly; does the person wake up regularly; if the person does not fall asleep after going to bed for twenty minutes, the system may suggest the user to get out of bed and perform various repetitive tasks and go back to bed when the user feels tired.
B) Relaxation therapy: uses images and voice to guide the user to perform progressive muscle relaxations and at the same time follow-up and determine if the user's muscles are relaxing properly; or the system could suggest meditation, imagery or biofeedback to let the user fall asleep more easily. Various VR software could be used to heighten this effect.
C) Stimulus control therapy: by suggesting certain behavior changes, lower the amount of stimulus that could possible wake up the user from sleep to allow the user to sleep better.
D) Chronotherapy: use voice, words, images, feel, vibration and various VR software to adjust the time frame which the user sleeps to match those of a normal time frame.
E) Light therapy: suggest the user to shine a light on his/her face for a duration of time at sunrise or sunset to advance or delay the user's biological clock and then use images, voice, words, feel, vibration, various 3D projections and VR software to guide the user while continuously following-up on the results. If no improvements are made, suggest the user to seek out medical personnel or contact the long range monitoring station (4) for assistance.
Taking things one step further, the monitoring system can use camcorders to provide real time images for the close-range monitoring system to judge the user's status, or it can transmit these images to the long-range monitoring station (4( for analysis. Even the two way communication between the user and the long range monitoring station can utilize these camcorders to transmit images or utilize various messaging systems for two way messaging.
As shown in
a-1) First signaling the user to log in.
a-2) Analyzing if this is a new user.
a-3) If this is a new user, proceed with registration.
a-4) If this is not a new user, inquire if personal information needs to be altered.
a-5) Establish the user's basic information, especially emergency contacts through phone, cell phone, pager, PDA, e-mail, MSN, ICQ, Messenger, et cetera.
a-6) Initialize physical and mental monitoring systems and biomedical profile.
a-7) Check if the sensors are present. If there is no response, then verify sensor's position.
a-8) Check if sensor signals are normal. If not, then verify sensor status.
a-9) Check if other software and hardware are functional. If not, reset software and hardware.
The above procedure will ensure the proper functioning of the system.
As shown in
b-1) Initiate biomedical status check.
b-2) Regularly obtain the position of the user to use as a basis for suggestions.
b-3) Obtain information on individual muscle usage and intensity, calories burned, body fat content, fluid content, MEG, heat flow, stress and torque information to use as a basis for suggestions.
b-4) Use picture, image, word, voice or 3D projection to show the biomedical profile of the user along with positional changes to allow medical personnel to better understand the situation.
b-5) Use picture, image, voice, word, feel, vibration, 3D projection or electric shock to suggest the proper exercise form to lose fat in certain areas.
b-6) Monitor if certain exercises are preformed properly, if not, then give new suggestion.
b-7) Continuously record various biomedical information to build a data bank for analysis.
b-8) Use the information described above to analyze the accuracy of personal position changes and the amount of calories burned, if incorrect, then repeat the step before and re-monitor.
b-9) Use picture, image, voice, word, tactile, vibration, 3D projection or electric shock to suggest different body positions, and continuously follow up to correct the user's posture.
b-10) Perform regular biomedical and psychological cross-analysis to determine the user's mental and physical status. Using the depression index to show signs of depression or using the MMSE (Mini-Mental State Examination) intelligence index to show intelligence, or using the Barthel's Score to show personal daily life functions and use drawing software (such as digital white board and paint) to allow the user to express his/her emotions and self evaluate his or her daily functions. The system can suggest the depressed to listen to music, and provide long term follow up. If necessary, contact the psychologist or physician for help.
As shown in
c-1) Perform biomedical status check;
c-2) When the user experiences certain abnormalities, the system will give warning and suggestions to the user or signal for medical personnel located at the long range monitoring station to give assistance. For example, if the user remains in a certain improper position for too long, the system will inform the user to correct his/her posture. Also, when the user experiences rising blood pressure, difficulty breathing, increased heart rate or dramatic temperature change, the system will warn the user and alert the medical personnel located at the long range monitoring station for help;
c-3) When the user feels discomfort, he/she can use buttons, words or voice to request EMG values and other biomedical profile values be analyzed to find the source of the discomfort. The close range monitoring system will then continuously follow up on the status of the user. When necessary, the system will perform certain medical procedures such as heating/cooling applications, ultra sound or TENS treatment;
c-4) The user can communicate at any time with the personnel located at the long range monitoring station 4 through phone, cellular phone, radio, PDA, computer or internet. This allows the user to receive better medical care as well as allow the personnel located at the long range monitoring station to contact the user when abnormal conditions are detected;
c-5) Maintain a continuous record, analyze information, storing results and transmitting the results to the long range monitoring station (4) to establish a personal biomedical profile for comparison analysis along with blood sugar concentration, cholesterol level, liver functions and kidney functions. The results are transferred back to the close range monitoring system for suggestions;
c-6) Regularly analyzes body fat distribution, muscular activity and calories burned to determine if the user's lifestyle is normal. The system can also analyze the user's weight, blood pressure, breathing and other biomedical information;
c-7) Suggest overall life style changes like diet, sleep and exercise methods, using picture, image, voice, word, feel, vibration, 3D projection or other techniques to alert the user and make proper adjustments. If the user performs certain exercises incorrect and cause muscular inflammation, then the close range monitoring system can signal the garment to auto inflate or allow the user to manual inflate to apply pressure to the proper regions, after a set duration of time, the garment will automatically deflate to prevent side effects from occurring.
Of course, this invention can also be used to monitor various disorders, for example, asthma, lung cancer or other substance abuse disorders. The system can suggest and guild the user through various tasks over a long period of time. In lab tests, after having diagnosed the user who has coughed continuously for two to three month, the close range monitoring system signals the user to get an X-ray examination or to examine the user's mucus. If no improvements are made, then the system checks to see wither the user has lung cancer and sends this information to the long range monitoring station for analysis. If it does turn out to be a certain disorder, then the system will continuously remind the user to take his/her medication. For patients that must be isolated from others, for example: SARS, we can measure the user's biomedical profile and transfer this information to the long range monitoring station to be analyzed. For patients that must be separated from the other patient, for example: SARS patients, the system can monitor their body temperature and transfer any abnormal changes to the long range monitoring station (4) for analysis. When any values are in the abnormal range, the frequency of follow ups will increase and continuously increase to more effectively gather vital information. For example, if body temperature is set to be checked once every twenty minutes and the user's temperature rises abnormally, then the system will increase the frequency to measure body temperature every ten minutes. If there is still no improvements, the system will begin to check every five minutes and eventually every two minutes to acquire more accurate data. For monitoring substance abuse, the close range monitoring system will monitor if such substances are used and signal the long range monitor station (4) if the substance is used. In other words, this invention is not limited to use by normal individuals, it can be used to monitor convicts and patients in isolation as well to prevent any accidents from occurring. This invention can be further modified to monitor animal health, all that needs to be changed is to define the special characteristics of the animal and decide which regions require monitoring.
Some examples of this invention's applications are as follows:
1.) The pregnant mother's physical and mental state along with the contraction rate can be combined to analyze the status of the pregnant mother. At the same time the system could monitor the pulse and movements of the fetus and signal the long range monitoring station if any aid is required.
2.) This invention can be modified to monitor animal daily behavior.
3.) If the user is blind, this invention can use camcorders and other sensors to guide the user through daily tasks.
4.) If the user is deaf, this system can use sound detection sensors to detect sounds and display them using image, word, picture, vibration, feel or 3D projection to the user in the form of language or sign language. If the user is mute, then the system can translate the user's input into sound to communication with others.
5.) If the user is a smoker, this invention could be used to keep record of the amount and frequency in which the user smokes and regularly give warning and suggestions to the user.
6.) The close range monitoring system can also be used to alert the user of various daily tasks like taking medication, injections or using inhalers on a set schedule and follow up on the effects of these tasks and analyze the results.
7.) The close range monitoring system can also be used to alert the medical personnel or family members when psychological disorders occur.
As shown in
d-1) Initialize emotional monitoring.
d-2) If this is the user's first time using the system, then first acquire information about the user such as distinct voice characteristics, volume, tone, living environment, work place environment and other surrounding information to perform combinational analysis.
d-3) Record various emotional key words and phrases, including those that express feeling which may affect personal health. Also record various key words that express discomfort or various symptoms for disease. Based on voice characteristics of the user, build an emotions data bank.
The initial acquisition of the user's voice can be done voluntarily by the user or at the request of the close range monitoring system (2) or the long range monitoring station (4). Once the emotions data bank is established, depression score, MMSE IQ and other statistics could be acquired through various VR or drawing software.
d-4) Use voice recognition to inquire if the test should be preformed.
d-5) When the audio signal is unclear, then allow the close range monitoring system (2) to inquire if emotions are normal. The close range monitoring system can also acquire camera imaging to aid in the evaluation.
d-6) If emotions are not normal, then distinguishes between happy and unhappy, and record the incident in the data bank;
d-7) If the audio signal is recognizable, then analyze if the voice characteristics are normal.
d-8) If the voice characteristics are normal, then analyze if any emotional key words are used, if no emotional key words are used, then evaluate the user's emotions as being normal.
d-9) If the voice characteristics are not normal, or if any emotional key words are used, then analyze if GSR, heart rate, breathing or body movements are abnormal.
d-10) If GSR, heart rate or breathing patterns are normal, then ask the user if personal emotions are abnormal, if yes, record in data bank. The close range monitoring system can also acquire camera imaging to aid in the evaluation.
d-11) If GSR, heart rate or breathing patterns are not normal, then record in data bank and also record the number of times these abnormal emotions occur and the duration that they occur for. In the future, if similar problems occur, the close range monitoring system will not need to ask all these questions again.
d-12) After the above procedure determines if emotions are normal or abnormal, the system can regularly perform physical and mental analysis to determine the user's health status, depression index, intelligence level and various other statistics. The close range monitoring system will give suggestions to the user based on the result of this analysis. If necessary, physicians, physical therapists or psychologists could be contacted for two way communication.
To deal with noisy environment, poor sleep quality and any other emergencies that may happen, this invention has the following procedure:
a. Record the duration of time each day that that user is in a noisy environment, and suggest the user to improve on this situation.
b. Record the talk time, volume and tone of the user each day and use word, voice, image, 3D projection or vibration to suggest the user various pronunciation or breathing techniques, if no improvements are made, then contact the medical personnel at the long range monitoring station for help. If the user's breathing stops during sleep, then record and use voice, electric shock or vibration to alert the user.
c. Special key words such as “suicide” or “die” along with not speaking for a long period of time, falling, crying, screaming and other abnormal behavior could cause the system to immediately contact the long range monitoring station (4).
d. The amount of food ingested and the duration of time ingesting could be monitored through EMG or sound, when the signal is unclear the system could directly ask the user.
e. Sleep statistics can be analyzed through posture, breathing, heart rate, various muscular relaxation levels, the time it takes to fall asleep, sleep duration, bed time and other information. The system will give suggestions based on the analysis and suggest things such as medication or behavior therapy and continuously follow up and analyze if improvements are made. If no improvements are made, then the system can contact the long range monitoring station for two way communication.
f. Through an analysis of the user's breathing, the system could determine if the user has COPD, asthma attack or emphysema attack. If yes then the system will suggest the proper medication, if the situation does not improve, then the long range monitoring station could be contacted for two way communication.
g. Through various VR or drawing software, the user can express his/her emotional and intelligence status or self evaluate his/her daily functions.
The procedure mentioned above can determine the user's emotional state and alert the user of his/her state. It can also suggest to the user various treatments such as music, TENS, ultrasound, heating/cooling applications or to contact the long range monitoring station for assistance. Many of these applications could be installed directly on to the garment. When the depression score is too high, or when the user expresses that he/she wants to speak with someone, the close range monitoring system could use 3D projections of live or VR images to interact with the user, when necessary, the personnel located at the long range monitoring station (4) can perform live conferencing with the user to quickly alleviate depression and prevent the occurrence of accidents. When needed, specialists and/or pets could be dispatched to the user. There are many long range monitoring stations, and the user can choose the most appropriate one for service, when necessary, multiple long range monitoring stations can combine efforts to find the best solution. Using camera imaging, the long term monitoring station (4) can also attempt to determine the user's status through facial expressions and present the proper assistance.
This invention will help pregnant mothers maintain their health, through constant monitoring and suggestions, the system will let the pregnant mother know the best exercise to perform. The system also monitors the movement and pulse of the fetus to ensure its health. This invention also helps the mother to slim down after giving birth. This invention can also monitor people that are diabetic, over weight, depressed or have other disorders. If necessary, it will contact the long range monitoring station for two way communication. The close range monitoring system can also be used to monitor the user's environment. For example, if the temperature indoors is too high during sleep, the system could lower the air conditioning; or if there is a gas leak in the house, the system could alert the user.
This invention provides means of monitoring and analyzing the personal physical and mental health status. This invention can scientifically monitor physical and emotional states of the user for analysis, and this invention will continuously follow up to promote a healthier living. By analyzing and suggesting various health tips and precautions, this invention can help create a healthier society. This invention can also be modified to monitor the health of animals for analysis.
Many changes and modifications in the above described embodiments of the invention can, of course, be carried out without departing from the scope thereof. Accordingly, to promote the progress in science and the useful arts, the invention is disclosed and is intended to be limited only by the scope of the appended claims.