Mercaptosilane-carbon black blend

Information

  • Patent Grant
  • 9598562
  • Patent Number
    9,598,562
  • Date Filed
    Monday, March 11, 2013
    11 years ago
  • Date Issued
    Tuesday, March 21, 2017
    7 years ago
Abstract
The invention provides mercaptosilane-carbon black blends comprising at least 20 wt. % of mercaptosilanes of the general formula I
Description

The invention relates to a mercaptosilane-carbon black blend, method for producing same, and use thereof.


EP 1285926 and EP 1683801 disclose mercaptosilanes having polyether groups.


Additionally, KR 850000081 discloses silane/filler blends.


A disadvantage of the known mercaptosilane/filler blends is the poor shelf life.


It is an object of the present invention to provide blends of mercaptosilanes with carbon black that enjoy an improved shelf life.


The invention provides a mercaptosilane-carbon black blend comprising at least 20 wt. %, preferably at least 25 wt. %, more preferably at least 30 wt. %, of mercaptosilane of the general formula I




embedded image



based on the mercaptosilane-carbon black blend,

  • wherein R1 is an alkyl polyether group —O—(R6—O)m—R6, with R5 being identical or different at each occurrence and being a branched or unbranched, saturated or unsaturated, aliphatic divalent C1-C30 hydrocarbon group, preferably CH2—CH2, CH2—CH(CH3), —CH(CH3)—CH2— or CH2—CH2—CH2, m being on average 1 to 30, preferably 2 to 20, more preferably 2 to 15, very preferably 3 to 10, exceptionally preferably 3.5 to 7.9, and R6 consisting of at least 1, preferably at least 11, more preferably at least 12, C atoms and being an unsubstituted or substituted, branched or unbranched monovalent alkyl, alkenyl, aryl or aralkyl group,
  • R2 is identical or different at each occurrence and is an R1, C1-C12 alkyl or R7O group, with R7 being H, methyl, ethyl, propyl, C9-C30 branched or unbranched monovalent alkyl, alkenyl, aryl or aralkyl group or (R8)3Si group, with R8 being C1-C30 branched or unbranched alkyl or alkenyl group,
  • R3 is a branched or unbranched, saturated or unsaturated, aliphatic, aromatic or mixed aliphatic/aromatic divalent C1-C30, preferably C1-C6, more preferably C3, hydrocarbon group, and
  • R4 is H, CN or (C═O)—R9, with R9 being a branched or unbranched, saturated or unsaturated, aliphatic, aromatic or mixed aliphatic/aromatic monovalent C1-C30, preferably C5 to C30, more preferably C5 to C20, very preferably C7 to C15, exceptionally preferably C7 to C11, hydrocarbon group, and carbon black,
  • which is characterized in that the mercaptosilane-carbon black blend has an iron content <9 ppm, very preferably of 0.1-6 ppm.


The mercaptosilane-carbon black blend may comprise a mixture of different mercaptosilanes of the general formula I and/or their condensation products.


The carbon black in the mercaptosilane-carbon black blend may have a sieve residue ≦50 ppm, preferably <40 ppm, more preferably <35 ppm.


The mercaptosilanes of the general formula I may be compounds wherein R1 is an alkyl polyether group —O—(R6—O)m—R6, with R5, identical or different at each occurrence, being a branched or unbranched, saturated or unsaturated, aliphatic divalent C1-C30 hydrocarbon group, m being on average 1 to 30, and R6 consisting of at least 11 C atoms and being an unsubstituted or substituted, branched or unbranched monovalent alkyl, alkenyl, aryl or aralkyl group,

  • R2 is identical at each occurrence and is a C1-C12 alkyl or R7O group, with R7 being H, ethyl, propyl, C9-C30 branched or unbranched monovalent alkyl, alkenyl, aryl or aralkyl group or (R8)3Si group, with R8 being C1-C30 branched or unbranched alkyl or alkenyl group,
  • R3 is a branched or unbranched, saturated or unsaturated, aliphatic, aromatic or mixed, aliphatic/aromatic divalent C1-C30 hydrocarbon group, and
  • R4 is H, CN or (C═O)—R9, with R9 being a branched, unbranched, saturated or unsaturated, aliphatic, aromatic or mixed aliphatic/aromatic monovalent C1-C30 hydrocarbon group.


The mercaptosilanes of the general formula I may be compounds wherein R1 is

  • —O—(C2H4—O)5—C11H23, —O—(C2H4—O)5—C12H25, —O—(C2H4—O)5—C13H27, —O—(C2H4—O)5—C14H29, —O—(C2H4—O)5—C15H31, —O—(C2H4—O)3—C13H27, —O—(C2H4—O)4—C13H27, —O—(C2H4—O)6—C13H27, —O—(C2H4—O)7—C13H27, —O—(CH2CH2—O)5—(CH2)10CH3, —O—(CH2CH2—O)5—(CH2)11CH3, —O—(CH2CH2—O)5—(CH2)12CH3, —O—(CH2CH2—O)5—(CH2)13CH3, —O—(CH2CH2—O)5—(CH2)14CH3, —O—(CH2CH2—O)3—(CH2)12CH3, —O—(CH2CH2—O)4—(CH2)12CH3, —O—(CH2CH2—O)6—(CH2)12CH3, —O—(CH2CH2—O)7—(CH2)12CH3,




embedded image


  • R2 is different and is an R1—, C1-C12 alkyl or R7O group, with R7 being H, methyl, ethyl, propyl, C9-C30 branched or unbranched monovalent alkyl, alkenyl, aryl or aralkyl group or (R8)3Si group, with R8 being C1-C30 branched or unbranched alkyl or alkenyl group,

  • R3 is a branched or unbranched, saturated, or unsaturated, aliphatic, aromatic or mixed aliphatic/aromatic divalent C1-C30 hydrocarbon group, and

  • R4 is H, CN or (C═O)—R9, with R9 being a branched or unbranched, saturated or unsaturated, aliphatic, aromatic or mixed aliphatic/aromatic monovalent C1-C30 hydrocarbon group.



The mercaptosilanes of the general formula I may be compounds wherein R1 is

  • —O—(C2H4—O)5—C11H23, —O—(C2H4—O)5—C12H25, —O—(C2H4—O)5—C13H27, —O—(C2H4—O)5—C14H29, —O—(C2H4—O)5—C15H31, —O—(C2H4—O)3—C13H27, —O—(C2H4—O)4—C13H27, —O—(C2H4—O)6—C13H27, —O—(C2H4—O)7—C13H27, —O—(CH2CH2—O)5—(CH2)10CH3, —O—(CH2CH2—O)5—(CH2)11CH3, —O—(CH2CH2—O)5—(CH2)12CH3, —O—(CH2CH2—O)5—(CH2)13CH3, —O—(CH2CH2—O)5—(CH2)14CH3, —O—(CH2CH2—O)3—(CH2)12CH3, —O—(CH2CH2—O)4—(CH2)12CH3, —O—(CH2CH2—O)6—(CH2)12CH3, —O—(CH2CH2—O)7—(CH2)12CH3,




embedded image


  • R2 is R1 group,

  • R3 is a branched or unbranched, saturated or unsaturated, aliphatic, aromatic or mixed aliphatic/aromatic divalent C1-C30 hydrocarbon group, and

  • R4 is H, CN or (C═O)—R9, with R9 being a branched, unbranched, saturated or unsaturated, aliphatic, aromatic or mixed aliphatic/aromatic monovalent C1-C30 hydrocarbon group.



Preferred compounds of the formula I with R4═H may be:

  • [(C11H23O—(CH2—CH2O)2] (EtO)2Si(CH2)3SH,
  • [(C11H23O—(CK2—CH2O)3] (EtO)2Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)4] (EtO)2Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)5] (EtO)2Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)6] (EtO)2Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)2] (EtO)2Si(CH2)3SH,
  • [(C12H25O—(CK2—CH2O)3] (EtO)2Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)4] (EtO)2Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)5] (EtO)2Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)6] (EtO)2Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)2] (EtO)2Si(CH2)3SH,
  • [(C13H27O—(CK2—CH2O)3] (EtO)2Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)4] (EtO)2Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)5] (EtO)2Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)6] (EtO)2Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)2] (EtO)2Si(CH2)3SH,
  • [(C14H29O—(CK2—CH2O)3] (EtO)2Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)4] (EtO)2Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)5] (EtO)2Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)6] (EtO)2Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)2] (EtO)2Si(CH2)3SH,
  • [(C15H31O—(CK2—CH2O)3] (EtO)2Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)4] (EtO)2Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)5] (EtO)2Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)6] (EtO)2Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)2] (EtO)2Si(CH2)3SH,
  • [(C16H33O—(CK2—CH2O)3] (EtO)2Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)4] (EtO)2Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)5] (EtO)2Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)6] (EtO)2Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)2] (EtO)2Si(CH2)3SH,
  • [(C17H35O—(CK2—CH2O)3] (EtO)2Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)4] (EtO)2Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)5] (EtO)2Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)6] (EtO)2Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)2]2(EtO)Si(CH2)3SH,
  • [(C11H23O—(CK2—CH2O)3]2(EtO)Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)4]2(EtO)Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)5]2(EtO)Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)6]2(EtO)Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)2]2(EtO)Si(CH2)3SH,
  • [(C12H25O—(CK2—CH2O)3]2(EtO)Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)4]2(EtO)Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)5]2(EtO)Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)6]2(EtO)Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)2]2(EtO)Si(CH2)3SH,
  • [(C13H27O—(CK2—CH2O)3]2(EtO)Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)4]2(EtO)Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)5]2(EtO)Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)6]2(EtO)Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)2]2(EtO)Si(CH2)3SH,
  • [(C14H29O—(CK2—CH2O)3]2(EtO)Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)4]2(EtO)Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)5]2(EtO)Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)6]2(EtO)Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)2]2(EtO)Si(CH2)3SH,
  • [(C15H31O—(CK2—CH2O)3]2(EtO)Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)4]2(EtO)Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)5]2(EtO)Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)6]2(EtO)Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)2]2(EtO)Si(CH2)3SH,
  • [(C16H33O—(CK2—CH2O)3]2(EtO)Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)4]2(EtO)Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)5]2(EtO)Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)6]2(EtO)Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)2]2(EtO)Si(CH2)3SH,
  • [(C17H35O—(CK2—CH2O)3]2(EtO)Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)4]2(EtO)Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)5]2(EtO)Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)6]2(EtO)Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)2]3Si(CH2)3SH,
  • [(C11H23O—(CK2—CH2O)3]3Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)4]3Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)5]3Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)6]3Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)2]3Si(CH2)3SH,
  • [(C12H25O—(CK2—CH2O)3]3Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)4]3Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)5]3Si(CH2)3SH,
  • [(C12H25O—(CH2—CH2O)6]3Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)2]3Si(CH2)3SH,
  • [(C13H27O—(CK2—CH2O)3]3Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)4]3Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)5]3Si(CH2)3SH,
  • [(C13H27O—(CH2—CH2O)6]3Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)2]3Si(CH2)3SH,
  • [(C14H29O—(CK2—CH2O)3]3Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)4]3Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)5]3Si(CH2)3SH,
  • [(C14H29O—(CH2—CH2O)6]3Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)2]3Si(CH2)3SH,
  • [(C15H31—(CK2—CH2O)3]3Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)4]3Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)5]3Si(CH2)3SH,
  • [(C15H31O—(CH2—CH2O)6]3Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)2]3Si(CH2)3SH,
  • [(C16H33—(CK2—CH2O)3]3Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)4]3Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)5]3Si(CH2)3SH,
  • [(C16H33O—(CH2—CH2O)6]3Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)2]3Si(CH2)3SH,
  • [(C17H35—(CK2—CH2O)3]3Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)4]3Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)5]3Si(CH2)3SH,
  • [(C17H35O—(CH2—CH2O)6]3Si(CH2)3SH,
  • [(C11H23O—(CH2—CH2O)2](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)3](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)4](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)5](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)6](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)2](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)3](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)4](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)5](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)6](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)2](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)3](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)4](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)5](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)6](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)2](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)3](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)4](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)5](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)6](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)2](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)3](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)4](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)5](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)6](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)2](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)3](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)4](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)5](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)6](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)2](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)3](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)4](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)5](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)6](EtO)2Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)2]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)3]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)4]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)5]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)6]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)2]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)3]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)4]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)5]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)6]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)2]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)3]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)4]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)5]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)6]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)2]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)3]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)4]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)5]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)6]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)2]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)3]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)4]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)5]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)6]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)2]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)3]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)4]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)5]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)6]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)2]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)3]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)4]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)5]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)6]2(EtO)Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)2]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)3]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)4]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)5]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C11H23O—(CH2—CH2O)6]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)2]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)3]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)4]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)5]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C12H25O—(CH2—CH2O)6]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)2]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)3]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)4]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)5]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C13H27O—(CH2—CH2O)6]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)2]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)3]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)4]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)5]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C14H29O—(CH2—CH2O)6]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)2]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)3]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)4]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)5]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C15H31O—(CH2—CH2O)6]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)2]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)3]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)4]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)5]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C16H33O—(CH2—CH2O)6]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)2]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)3]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)4]3Si—CH2—CH(CH3)—CH2—SH,
  • [(C17H35O—(CH2—CH2O)5]3Si—CH2—CH(CH3)—CH2—SH, or
  • [(C17H35O—(CH2—CH2O)6]3Si—CH2—CH(CH3)—CH2—SH, wherein R6 may be branched or unbranched.


Preferred compounds of the formula I with R4=CN may be:

  • [(C11H23O—(CH2—CH2O)2](EtO)2Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)3](EtO)2Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)4](EtO)2Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)5](EtO)2Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)6](EtO)2Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)2](EtO)2Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)3](EtO)2Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)4](EtO)2Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)5](EtO)2Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)6](EtO)2Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)2](EtO)2Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)3](EtO)2Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)4](EtO)2Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)5](EtO)2Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)6](EtO)2Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)2](EtO)2Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)3](EtO)2Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)4](EtO)2Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)5](EtO)2Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)6](EtO)2Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)2]2(EtO)Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)3]2(EtO)Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)4]2(EtO)Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)5]2(EtO)Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)6]2(EtO)Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)2]2(EtO)Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)3]2(EtO)Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)4]2(EtO)Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)5]2(EtO)Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)6]2(EtO)Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)2]2(EtO)Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)3]2(EtO)Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)4]2(EtO)Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)5]2(EtO)Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)6]2(EtO)Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)2]2(EtO)Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)3]2(EtO)Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)4]2(EtO)Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)5]2(EtO)Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)6]2(EtO)Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)2]3Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)3]3Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)4]3Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)5]3Si(CH2)3SCN,
  • [(C11H23O—(CH2—CH2O)6]3Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)2]3Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)3]3Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)4]3Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)5]3Si(CH2)3SCN,
  • [(C12H25O—(CH2—CH2O)6]3Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)2]3Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)3]3Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)4]3Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)5]3Si(CH2)3SCN,
  • [(C13H27O—(CH2—CH2O)6]3Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)2]3Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)3]3Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)4]3Si(CH2)3SCN,
  • [(C14H29O—(CH2—CH2O)5]3Si(CH2)3SCN, or
  • [(C14H29O—(CH2—CH2O)6]3Si(CH2)3SCN, wherein R6 may be branched or unbranched.


Preferred compounds of the formula I with R4=—C(═O)—R9 and R9=branched or unbranched —C5H11, —C6H13, —C7H15, —C8H17, —C9H19, —C10H21, —C11H23, —C12H25, —C13H27, —C14H29, —C15H31, —C16H33, —C17H35 and —C6H5 (phenyl) may be:

  • [(C11H23O—(CH2—CH2O)2](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)3](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)4](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)5](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)6](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)2](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)3](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)4](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)5](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)6](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)2](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)3](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)4](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)5](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)6](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)2](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)3](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)4](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)5](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)6](EtO)2Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)2]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)3]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)4]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)5]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)6]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)2]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)3]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)4]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)5]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)6]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)2]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)3]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)4]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)5]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)6]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)2]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)3]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)4]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)5]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)6]2(EtO)Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)2]3Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)3]3Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)4]3Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)5]3Si(CH2)3—C(═O)—R9,
  • [(C11H23O—(CH2—CH2O)6]3Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)2]3Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)3]3Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)4]3Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)5]3Si(CH2)3—C(═O)—R9,
  • [(C12H25O—(CH2—CH2O)6]3Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)2]3Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)3]3Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)4]3Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)5]3Si(CH2)3—C(═O)—R9,
  • [(C13H27O—(CH2—CH2O)6]3Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)2]3Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)3]3Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)4]3Si(CH2)3—C(═O)—R9,
  • [(C14H29O—(CH2—CH2O)5]3Si(CH2)3—C(═O)—R9, or
  • [(C14H29O—(CH2—CH2O)6]3Si(CH2)3—C(═O)—R9.


R6 may preferably be C12 to C17, very preferably C12 to C16, exceptionally preferably C12 to C14, unsubstituted or substituted, branched or unbranched monovalent alkyl.


R6 may be a —C11H23, —C12H25, —C13H27, —C14H29, —C15H31, —C16H33 or —C17H35 alkyl group.


R6 may preferably be C11 to C35, more preferably C11 to C30, very preferably C12 to C30, exceptionally preferably C13 to C20, unsubstituted or substituted, branched or unbranched monovalent alkenyl.


R6 may preferably be C11 to C14 and/or C16 to C30, very preferably C11 to C14 and/or C16 to C25, exceptionally preferably C12 to C14 and/or C16 to C20, unsubstituted or substituted, branched or unbranched monovalent aralkyl.


R6 as alkenyl may be C11H21, —C12H23, —C13H25, —C14H27, —C15H29, —C16H31 or —C17H33.


R1 may be an alkoxylated castor oil (e.g. CAS 61791-12-6).


R1 may be an alkoxylated oleylamine (e.g. CAS 26635-93-8).


The polyether group (R5O)m may comprise random ethylene and. propylene oxide units, or may comprise polyether blocks of polyethylene oxide and polypropylene oxide.


The mercaptosilane-carbon black blend may comprise a mixture of different mercaptosilanes of the general formula I.


The mixture of different mercaptosilanes of the general formula I may have a molecular weight distribution of the polyether group.


The mixture of different mercaptosilanes of the general formula I may comprise different mercaptosilanes of the general formula I wherein R6 consists of different C atom chain lengths and. has a molecular weight distribution.


The mixture of different mercaptosilanes of the general formula I may comprise different mercaptosilanes of the general formula I with R4 being —CN or condensation products thereof.


The mixture of different mercaptosilanes of the general formula I may comprise different mercaptosilanes of the general formula I with R4 being (C═O)—R9 or condensation products thereof.


The polyether group (R5—O)m may preferably be:

  • (—O—CH2—CH2—)a,
  • (—O—CH(CH3)—CH2—)a,
  • (—O—CH2—CH(CH3)—)a,
  • (—O—CH2—CH2—)a(—O—CH(CH3)—CH2—),
  • (—O—CH2—CH2—)(—O—CH(CH3)—CH2—)a,
  • (—O—CH2—CH2—)a(—O—CH2—CH(CH3)—),
  • (—O—CH2—CH2—)(—O—CH2—CH(CH3)—)a,
  • (—O—CH(CH3)—CH2—)a(—O—CH2—CH(CH3)—),
  • (—O—CH(CH3)—CH2—)(—O—CH2—CH(CH3)—)a,
  • (—O—CH2—CH2—)a(—O—CH(CH3)—CH2—)b(—O—CH2—CH(CH3)—)c or combination with one another,
  • where a, b and c are independent of one another and
  • a is 1-50, preferably 2-30, more preferably 3-20, very preferably 4-15, exceptionally preferably 5-12,
  • b is 1-50, preferably 2-30, more preferably 3-20, very preferably 4-15, exceptionally preferably 5-12, and
  • c is 1-50, preferably 2-30, more preferably 3-20, very preferably 4-15, exceptionally preferably 5-12.


The indices a, b and c are integers and denote the number of repeating units.


For R4 as —H, —CN or —C(═O)—R9, the group (R5—O)m may preferably comprise ethylene oxide units (CH2—CH2—O)a or propylene oxide units (CH(CH3)—CH2—O)a and/or (CH2—CH(CH3)—O)a.


For R4 as —H, —CN or —C(═O)—R9, the group (R5—O)m may preferably comprise ethylene oxide units (CH2—CH2—O)a and propylene oxide units (CH(CH3)—CH2—O)a and/or (CH2—CH(CH3)—O)a, randomly distributed or in blocks.


For R4 as —H, the alkyl polyether group (R5—O)m may preferably comprise ethylene oxide units (CH2—CH2—O)a and propylene oxide units (CH(CH3)—CH2—O)a and/or (CH2—CH(CH3)—O)a, randomly distributed or in blocks.


For R4 as —H, the group (R5—O)m may preferably comprise propylene oxide units (CH(CH3)—CH2—O)a and/or (CH2—CH(CH3)—O)a.


For R4 as —H, —CN or —C(C═O)—R9, the alkyl polyether group O—(R5—O)m—R6 may be:

  • O—(CH2—CH2O)2—C11H23, O—(CH2—CH2O)3—C11H23, O—(CH2—CH2O)4—C11H23, O—(CH2—CH2O)5—C11H23, O—(CH2—CH2O)6—C11H23, O—(CH2—CH2O)7—C11H23,
  • O—(CH(CH3)—CH2O)2—C11H23, O—(CH(CH3)—CH2O)3—C11H23, O—(CH(CH3)—CH2O)4—C11H23, O—(CH(CH3)—CH2O)5—C11H23, O—(CH(CH3)—CH2O)6—C11H23, O—(CH(CH3)—CH2O)7—C11H23,
  • O—(CH2—CH2O)2—C12H25, O—(CH2—CH2O)3—C12H25, O—(CH2—CH2O)4—C12H25, O—(CH2—CH2O)5—C12H25, O—(CH2—CH2O)6—C12H25, O—(CH2—CH2O)7—C12H25,
  • O—(CH(CH3)—CH2O)2—C12H25, O—(CH(CH3)—CH2O)3—C12H25, O—(CH(CH3)—CH2O)4—C12H25, O—(CH(CH3)—CH2O)5—C12H25, O—(CH(CH3)—CH2O)6—C12H25, O—(CH(CH3)—CH2O)7—C12H25,
  • O—(CH2—CH2O)2—C13H27, O—(CH2—CH2O)3—C13H27, O—(CH2—CH2O)4—C13H27, O—(CH2—CH2O)5—C13H27, O—(CH2—CH2O)6—C13H27, O—(CH2—CH2O)7—C13H27,
  • O—(CH(CH3)—CH2O)2—C13H27, O—(CH(CH3)—CH2O)3—C13H27, O—(CH(CH3)—CH2O)4—C13H27, O—(CH(CH3)—CH2O)5—C13H27, O—(CH(CH3)—CH2O)6—C13H27, O—(CH(CH3)—CH2O)7—C13H27,
  • O—(CH2—CH2O)2—C14H29, O—(CH2—CH2O)3—C14H29, O—(CH2—CH2O)4—C14H29, O—(CH2—CH2O)5—C14H29, O—(CH2—CH2O)6—C14H29, O—(CH2—CH2O)7—C14H29,
  • O—(CH(CH3)—CH2O)2—C14H29, O—(CH(CH3)—CH2O)3—C14H29, O—(CH(CH3)—CH2O)4—C14H29, O—(CH(CH3)—CH2O)5—C14H29, O—(CH(CH3)—CH2O)6—C14H29, O—(CH(CH3)—CH2O)7—C14H29,
  • O—(CH2—CH2O)2—C15H31, O—(CH2—CH2O)3—C15H31, O—(CH2—CH2O)4—C15H31, O—(CH2—CH2O)5—C15H31, O—(CH2—CH2O)6—C15H31, O—(CH2—CH2O)7—C15H31,
  • O—(CH(CH3)—CH2O)2—C15H31, O—(CH(CH3)—CH2O)3—C15H31, O—(CH(CH3)—CH2O)4—C15H31, O—(CH(CH3)—CH2O)5—C15H31, O—(CH(CH3)—CH2O)6—C15H31, O—(CH(CH3)—CH2O)7—C15H31,
  • O—(CH2—CH2O)2—C16H33, O—(CH2—CH2O)3—C16H33, O—(CH2—CH2O)4—C16H33, O—(CH2—CH2O)5—C16H33, O—(CH2—CH2O)6—C16H33, O—(CH2—CH2O)7—C16H33,
  • O—(CH(CH3)—CH2O)2—C16H33, O—(CH(CH3)—CH2O)3—C16H33, O—(CH(CH3)—CH2O)4—C16H33, O—(CH(CH3)—CH2O)5—C16H33, O—(CH(CH3)—CH2O)6—C16H33, O—(CH(CH3)—CH2O)7—C16H33,
  • O—(CH2—CH2O)2—C17H35, O—(CH2—CH2O)3—C17H35, O—(CH2—CH2O)4—C17H35, O—(CH2—CH2O)5—C17H35, O—(CH2—CH2O)6—C17H35, O—(CH2—CH2O)7—C17H35,
  • O—(CH(CH3)—CH2O)2—C17H35, O—(CH(CH3)—CH2O)3—C17H35, O—(CH(CH3)—CH2O)4—C17H35, O—(CH(CH3)—CH2O)5—C17H35, O—(CH(CH3)—CH2O)6—C17H35 or O—(CH(CH3)—CH2O)7—C17H35.


The group R5 may be substituted. The group R6 may be C13—H27.

  • R1 may be —O—(C2H4—O)5—C11H23, —O—(C2H4—O)5—C12H25, —O—(C2H4—O)5—C13H27, —O—(C2H4—O)5—C14H29, —O—(C2H4—O)5—C15H31, —O—(C2H4—O)3—C13H27, —O—(C2H4—O)4—C13H27, —O—(C2H4—O)6—C13H27, —O—(C2H4—O)7—C13H27, —O—(CH2CH2—O)5—(CH2)10CH3, —O—(CH2CH2—O)5—(CH2)11CH3, —O—(CH2CH2—O)5—(CH2)12CH3, —O—(CH2CH2—O)5—(CH2)13CH3, —O—(CH2CH2—O)5—(CH2)14CH3, —O—(CH2CH2—O)3—(CH2)12CH3, —O—(CH2CH2—O)4—(CH2)12CH3, —O—(CH2CH2—O)6—(CH2)12CH3, —O—(CH2CH2—O)7—(CH2)12CH3,




embedded image


The average branching index of the carbon chain R6 may be 1 to 5, preferably 1.2 to 4. This average branching index is defined as the number of CH3 groups −1.

  • R3 may be CH2, CH2CH2, CH2CH2CH2, CH2CH2CH2Ch2, CH(CH3), CH2CH(CH3), CH(CH3)CH2, C(CH3)2, CH(C2H5), CH2CH2CH(CH3), CH2CH(CH3)CH2 or




embedded image


The mixture of different mercaptosilanes of the general formula I may comprise different mercaptosilanes of the general formula I having different R1 and R2 groups, with the R1 and R2 groups consisting of alkoxy and alkyl polyether groups.


The mixture of different mercaptosilanes of the general formula I may comprise different mercaptosilanes of the general formula I with different R2s.


The mixture of different mercaptosilanes of the general formula I may comprise different mercaptosilanes of the general formula I with different R1 and R2 groups, the R1 and R2 groups consisting of ethoxy and alkyl polyether groups, and R6 having an alkyl chain length of 13 C atoms, R5 being ethylene and m being on average 5.


The mixture of different mercaptosilanes of the general formula I may comprise different mercaptosilanes of the general formula I wherein R2 is identical or different at each occurrence and is an ethoxy or alkyl polyether group (R1), R6 an alkyl chain length of 13 C atoms, R5 is ethylene and m is on average 5, and R2 is different.


The mixture of different mercaptosilanes of the general formula I may comprise different mercaptosilanes of the general formula I wherein R1 and R2 are alkoxy and alkyl polyether groups and R6 consists of different C atom chain lengths and has a molecular weight distribution.


The mixture of different mercaptosilanes of the general formula I may comprise different mercaptosilanes of the general formula I wherein r2 is identical or different at each occurrence and is an alkoxy or alkyl polyether group (R1) and R2 in the mixture is different, R6 consists of different C atom chain lengths and has a molecular weight distribution.


The mixture of different, mercaptosilanes of the general formula I may preferably comprise




embedded image



and/or hydrolysis and/or condensation products of the aforementioned compounds.


From the mercaptosilanes of the formula I it is easily possible, by adding water and optionally adding additives, to form condensation products—that is, oligosiloxanes and polysiloxanes.


These oligomeric or polymeric siloxanes of the compounds of the formula I may be used as coupling reagents for the same applications as the monomeric compounds of the formula I.


The mercaptosilane compounds may also take the form of a mixture of the oligomeric or polymeric siloxanes of mercaptosilanes of the general formula I or the form of mixtures of mercaptosilanes of the general formula I with mixtures of the oligomeric or polymeric siloxanes of mercaptosilanes of the general formula I.


The carbon black may have an STSA surface area (measured according to ASTM D 6556) of 10-150 m2/g, preferably of 15-90 m2/g. The carbon black may have an OAN number (measured according to ASTM D 2414) of 50-150 ml/100 g, preferably of 70-140 ml/100 g.


With particular preference the carbon black may have an STSA surface area of 20-70 m2/g and an OAK number of 100-135 ml/100 g.


The weight ratio of mercaptosilane of the general formula I to carbon black may be 30:70 to 80:20, preferably 40:60 to 70:30.


The invention further provides a method for producing the mercaptosilane-carbon black blend of the invention, the method being characterized in that at least 20 wt. %, preferably at least 25 wt. %, more preferably at least 30 wt. %, of mercaptosilanes of the general formula I, based on the mercaptosilane-carbon, black blend, are mixed with carbon black, the carbon black having an iron content of <9 ppm, very preferably of 0.1-6 ppm.


The method of the invention may be carried out continuously or discontinuously.


The mercaptosilane of the general formula I may be used in a weight ratio to carbon black of 30:70 to 80:20, preferably of 40:60 to 70:30.


The method of the invention may be carried out at. temperatures between 5 and 200° C., preferably between 10 and 100° C., more preferably between 15 and 60° C. In order to avoid condensation reactions it may be advantageous to carry out the reaction in a water-free environment, ideally in an inert gas atmosphere,


The method of the invention can be carried out under atmospheric pressure or reduced pressure.


The mercaptosilane-carbon black blend of the invention may be used as an adhesion promoter between inorganic materials, for example glass fibres, metals, oxidic fillers, silicas, and organic polymers, for example thermosets, thermoplastics or elastomers, and/or as crosslinking agent and surface modifier. The mercaptosilane-carbon black blend of the invention may be used as a coupling reagent in rubber mixtures, for example tyre treads.


The invention further provides a rubber mixture comprising

  • (A) a rubber or mixture or rubbers,
  • (B) a filler, preferably precipitated silica, and
  • (C) at least one mercaptosilane-carbon black blend, of the invention.


Rubber used may be natural rubber and/or synthetic rubbers. Preferred synthetic rubbers are described for example in W. Hofmann, Kautschuktechnologie, Genter Verlag, Stuttgart 1980. Among others they may be

    • polybutadiene (BR),
    • polyisoprene (IR),
    • styrene/butadiene copolymers, for example emulsion-SBR (E-SBR) or solution-SBR (S-SBR), preferably having styrene contents of 1 to 60 wt. %, more preferably 5 to 50 wt. % (SBR),
    • chloroprene (CR)
    • isobutylene/isoprene copolymers (IIR),
    • butadiene/acrylonitrile copolymers with acrylonitrile contents of 5 to 60, preferably 10 to 50 wt. % (NBR),
    • partly hydrogenated or fully hydrogenated NBR rubber (HNBR),
    • ethylene/propylene/diene copolymers (EPDM),
    • abovementioned rubbers additionally possessing functional groups, such as carboxyl, silanol or epoxy groups, examples being epoxidized NR, carboxy-functionalized NBR or silanol-(—SiOH) and/or siloxy-functionalized (—Si—OR) SBR,


      and also mixtures of these rubbers.


In one preferred embodiment the rubbers may be sulphur-vulcanizable. For the production of car tyre treads it is possible in particular to use anionic polymerized S-SBR rubbers (solution-SBR) with a glass transition temperature of more than −50° C., and also mixtures thereof with diene rubbers. With particular preference it is possible to use S-SBR rubbers whose butadiene moieties have a vinyl fraction of more than 20 wt. %. With very particular preference it is possible to use S-SBR rubbers whose butadiene moieties have a vinyl fraction of more than 50 wt. %.


With preference it is possible to use mixtures of the aforementioned rubbers which have an S-SBR fraction of more than 50 wt. %, mere preferably more than 60 wt. %.


Fillers that may be used for the rubber mixture of the invention include the following fillers:

    • Carbon blacks: the carbon blacks to be used in this context are produced by the lamp black, furnace, gas black or thermal process and possess BET surface areas of 20 to 200 m2/g. The carbon blacks may optionally also contain heteroatoms such as Si, for example.
    • Amorphous silicas, produced for example by precipitating solutions of silicates or by flame hydrolysis of silicon halides, having specific surface areas of 5 to 1000 m2/g, preferably 20 to 400 m2/g (BET surface area) and having primary particle sizes of 10 to 400 nm. The silicas may optionally also take the form of mixed oxides with other metal oxides, such as Al, Mg, Ca, Ba, Zn and titanium oxides.
    • Synthetic silicates, such as aluminium silicate, alkaline earth metal silicates, such as magnesium silicate or calcium silicate, having BET surface areas of 20 to 400 m2/g and primary particle diameters of 10 to 400 nm.
    • Synthetic or natural aluminium oxides and aluminium hydroxides.
    • Natural silicates, such as kaolin and other naturally occurring silicas.
    • Glass fibres and glass fibre products (mats, strands) or glass microbeads.


With preference it is possible to use amorphous silicas, produced by precipitating solutions of silicates, having BET surface areas of 20 to 400 m2/g, more preferably 100 m2/g to 250 m2/g, in amounts of 5 to 150 parts by weight, based in each case on 100 parts of rubber.


The stated fillers may be used alone or in a mixture.


The rubber mixture may comprise 5 to 150 parts by weight of filler (B) and 0.1 to 35 parts by weight, preferably 2 to 20 parts by weight, more preferably 5 to 15 parts by weight, of mercaptosilane-carbon black blend (C) of the invention, the parts by weight being based on 100 parts by weight of rubber.


The rubber mixture may further comprise silicone oil and/or alkylsilane.


The rubber mixture of the invention may comprise other known rubber assistants, such as, for example, crosslinkers, vulcanization accelerants, reaction accelerants, reaction retardants, ageing inhibitors, stabilizers, processing assistants, plasticizers, waxes or metal oxides, and also, optionally, activators, such as triethanolamine, polyethylene glycol or hexanetriol.


The rubber assistants may be used in customary amounts, which are guided by factors including the intended use. Customary amounts may be, for example, amounts of 0.1 to 50 wt. %, based on rubber.


Crosslinkers which can be used include sulphur or organic sulphur donors.


The rubber mixture of the invention may comprise further vulcanization accelerants. Suitable vulcanization accelerants that may be used include, for example, mercaptobenzothiazoles, sulphenamides, guanidines, dithiocarbamates, thioureas, thiocarbonates, and also zinc salts thereof, such as zinc dibutyldithiocarbamate, for example.


The rubber mixture of the invention may preferably further comprise

  • (D) a thiuram sulphide and/or carbamate accelerant and/or the corresponding zinc salts,
  • (E) a nitrogen-containing co-activator,
  • (F) optionally further rubber assistants and
  • (G) optionally further accelerants,


    the weight ratio of accelerant(s) (D) to nitrogen-containing co-activator (E) being greater than or equal to 1.


The rubber mixture of the invention may comprise (D) tetrabenzylthiuram disulphide or tetramethylthiuram disulphide at not less than 0.25 part by weight, based on 100 parts by weight of rubber, (E) diphenylguanidine at not more than 0.25 part by weight, based on 100 parts by weight of rubber, and (G) cyclohexyl or dicyclohexyl sulphenamide, with more parts by weight than (D).


With preference it is possible to use sulphenamides together with guanidines and thiurams, more preferably cyclohexyl sulphenamide or dicyclohexyl sulphenamide together with diphenylguanidine and tetrabenzylthiuram disulphide or tetramethylthiuram disulphide.


The vulcanization accelerants and sulphur can be used in amounts of 0.1 to 10 wt. %, preferably 0.1 to 5 wt. %, based on the rubber used. With particular preference it is possible to use sulphur and sulphenamides in amounts of 1 to 4 wt. %, thiurams in amounts of 0.2 to 1 wt. % and guanidines in amounts from 0 wt. % to 0.5 wt. %.


The invention further provides a method for producing the rubber mixture of the invention, this method being characterized in that the rubber or mixture of rubbers (A), the filler (B), at least one mercaptosilane-carbon black blend (C) of the invention and optionally further rubber assistants are mixed in a mixing assembly.


The blending of the rubbers with the filler, optionally rubber assistants, and the mercaptosilanes of the invention may be carried our in customary mixing assemblies, such as rolls, internal mixers and mixing extruders. Such rubber mixtures can typically be produced in internal mixers, in which case first of all, in one or more successive thermomechanical mixing stages, the rubbers, the filler, the mercaptosilanes of the invention and. the rubber assistants are incorporated by mixing at 100 to 170° C. The sequence of this addition and the time of this addition of the individual components may have decisive consequences for the mixture properties obtained. The resulting rubber mixture can usually be admixed with the crosslinking chemicals in an internal mixer or on a roll at 40 to 110° C., and processed to give what is known as the crude mixture for the subsequent, processing steps, such as shaping and vulcanization, for example.


Vulcanization of the rubber mixture of the invention may take place at temperatures of 80 to 200° C., preferably 130 to 180° C., optionally under a pressure of 10 to 200 bar.


The rubber mixture of the invention can be used for producing mouldings, as for example for producing pneumatic tyres, tyre treads, cable sheathing, hoses, drive belts, conveyor belts, roll coverings, other tyres, footwear soles, sealing elements, such as sealing rings, for example, and damping elements.


The invention additionally provides mouldings obtainable by vulcanization from the rubber mixture of the invention.


An advantage of the mercaptosilane-carbon black blends of the invention is that even in the case of a prolonged storage time, the mercaptosilane does not alter to the degree observed with the known mercapto/filler blends.







EXAMPLES

Determination of Iron Content in Mercaptosilane-carbon Black Blend


Total Iron Assay After High-pressure Ashing Using ICP-MS:


Approximately 200-300 mg of the mercaptosilane-carbon black blend, are weighed out to an accuracy of 0.1 mg into a vessel made of vitreous silica.


10 ml of HNO3 (approximately 65 wt. %, super-pure) are added and the sample is digested completely in a pressure vessel at a temperature from at least 280° C. to not more than 500° C.


Thereafter the digestion product is made up to 50 ml with water (ultra-pure) and transferred to a volumetric flask (plastic).


Digestion takes place with a duplicate determination.


Prior to each digestion, 1 ml is introduced into a test-tube and made up to 10 ml with water (ultra-pure).


Each solution is subjected to measurement in an inductively coupled plasma mass spectrometer (ICP-MS) with a calibration.


For the calibration, four reference solutions and one blank solution are produced from a standard solution, based on an NIST reference material.


Corresponding chemical blank values are subjected to measurement together with the sample solutions. An internal standard is added at the same concentration to all of the measurement solutions.


Determination of Carbon Black by Sieve Residue


The 325 mesh sieve residue is determined in accordance with ASTM D1514, in ppm.


STSA Surface Area


The STSA is determined in accordance with ASTM D 6556.


OAN Number


The OAN is determined in accordance with ASTM D 2414.


Shelf Life, Determination by GPC:


Procedure:


The acetonitrile extracts are analyzed on a GPC column. To quantify the amounts of silane, a 1-point calibration is carried out with a pure specimen of the particular silane being assayed.


Instrument Settings:


HPLC system: HPLC pump S2100 from SFD, Autosampler SIL10-AF from Shimadzu, RI detector 7515A from ERC, Controller CBM-20A from Shimadzu analysis software Class VP5 from Shimadzu


Preliminary column: MZ-gel SDplus 50 Å 5μ 50×3 mm, from MZ-Analysentechnik


Analytic column: MZ-gel SDplus 50 Å 5μ 300×8 mm, from MZ-Analysentechnik


Mobile phase: 100% methyl ethyl ketone (MEK)


Flow rate: 1.0 ml/min


Metering volume: 30 μl Analysis temperature: room temperature 20° C.


10 g of product are admixed with 180 ml of acetonitrile and stirred for 2 hours, then filtered, diluted 1:1 with methyl ethyl ketone, and injected.


The parameter evaluated is the peak area of the respective silane in the HPLC chromatogram of the RI detector (no GPC molar mass evaluation).


In the comparative examples, the reference carbon block used is N 330 (iron content: 16 ppm), and Purex HS 45 (iron content: 6 ppm) is used in the inventive examples (both commercial products from Orion Engineered Carbons). The mercaptosilane of the formula I that is used is Si 363 ((R*O)3Si(CH2)3SH with R*═C13H27(OC2H4)n and C2H5, average C2H5 content=33%, average number n=5) from Evonik Industries.


Example 1

A Henschel mixer is charged with 1 kg of carbon black (a: N 330, b: Purex HS 45). At a through-flow temperature of 20° C., a rotary speed of 1500 rpm and a pressure of 40 bar, in one stage with a nozzle diameter of 0.5 mm, 462 g of mercaptosilane Si 363 are added until a final mixing temperature of 62-65° C. is reached (fill level: 45%).


The shelf life is determined by storing the mercaptosilane-carbon black blends at T=20° C. and 60% atmospheric humidity for 18 days.


The measurement for the comparative mercaptosilane-carbon black blend (a: N 330/Si 363 11 ppm Fe) after storage gives 7-1 wt. % of Si 363, relative to the theoretical value. The measurement for the inventive mercaptosilane-carbon black blend (b: Purex 45/Si 363 4 ppm Fe) after storage gives 85 wt. % of Si 363, relative to the theoretical value.


Example 2

The formula used for the rubber mixtures is shown in Table 1 below. In the table, the unit phr denotes weight fractions relative to 100 parts of the crude rubber used.












TABLE 1






Amount
Amount
Amount


Substance
[phr]
[phr]
[phr]







1st stage
Reference
Reference
Inventive



rubber
rubber
rubber



mixture I
mixture II,
mixture,



“in situ”
containing
containing




mercaptosilane-
mercaptosilane-




carbon black
carbon black




blend as per
blend as per




Example 1a
Example 1b


Buna VSL 5025-1
96
96
96


Buna CB 24
30
30
30


Ultrasil 7000 GR
80
80
80


ZnO
3
3
3


Stearic acid
2
2
2


Naftolen ZD
10
10
10


Vulkanox 4020
1.5
1.5
1.5


Corax N 330
10




Protektor G 3108

1
1


Si 363
10




Mercaptosilane-

20
20


carbon black





blend





2nd stage





Batch stage 1





3rd stage





Batch stage 2





Perkacit TBzTD
0.2
0.2
0.2


Vulkacit CZ
1.5
1.5
1.5


Sulphur
2.2
2.2
2.2









The polymer VSL 5025-1 is a solution polymerized SBR copolymer from Bayer AG, having a styrene content of 25 wt. % and a butadiene content of 75 wt. %. The copolymer contains 37.5 phr of oil and has a Mooney viscosity (ML 1+4/100° C.) of 50.


The polymer Buna CB 24 is a cis-1,4-polybutadiene (neodymium type) from Bayer AG, having a cis-1,4 content of at least 96% and a Mooney viscosity of 44±5.


Ultrasil 7000 GR is a readily dispersible silica from Evonik Industries AG and has a BET surface area of 170 m2/g. Corax N330 is a carbon black from Orion Engineered Carbons with an STSA surface area of 76 in2/g.


Naftolen ZD from Chemetall is used as aromatic oil; Vulkanox 4020 is 6PPD from Bayer AG, and Protektor G3108 is an ozone protection wax from Paramelt B.V. Vulkacit D (DPG) and Vulkacit CZ (CBS) are commercial products of Bayer AG, Perkacit TBzTD (Tetrabenzylthiuram disulphide) is a product from Flexsys N.V.


The rubber mixture is produced in three stages in an internal mixer in accordance with Table 2.











TABLE 2









Stage 1














Settings




Mixing
Werner & Pfleiderer GK 1.5E



assembly




Rotary speed
70 min-1



Ram pressure
5.5 bar



Through-flow
80° C.



temp.




Mixing




0 to 1 min
Buna VSL 5025-1 + Buna CB 24



1 to 2 min
½ Ultrasil 7000 GR, ZnO, stearic acid,




Naftolen ZD, carbon black, silane-carbon




black blend



2 to 4 min
½ Ultrasil 7000 GR, Vulkanox 4020,




Protektor G3108



4 to 5 min
Mixing (changing rotary speed if




necessary) at 155° C.



5 min
Aerating



5 to 6 min
Mixing and discharging



Batch temp.
150-160° C.



Storage
24 h at 20° C.













Stage 2














Settings




Mixing
As in stage 1 except for:



assembly




Rotary speed
80 min-1



Mixing




0 to 2 min
Breakup stage 1 batch



2 to 5 min
Maintain batch temperature 155° C. by speed




variation



5 min
Discharging



Batch temp.
150-160° C.



Storage
4 h at 20° C.













Stage 3














Settings




Mixing
As in stage 1 except for:



assembly




Rotary speed
40 min-1



Through-flow
50° C.



temp.




Mixing




0 to 0.5 min
Stage 2 batch



0.5 to 2 min
Accelerant(s) and sulphur



2 min
Discharge and form milled sheet on




laboratory mixing rolls




(Diameter 200 mm, length 450 mm,




through-flow temperature 50° C.)




Homogenizing:




cut in 5* left, 5* right and fold over




and




roll 3* with narrow roll nip (3 mm) and




3* with wide roll nip (6 mm) and




then draw off a milled sheet



Batch temp.
<110° C.










The general method for producing rubber mixtures and vulcanizates thereof is described in “Rubber Technology Handbook”, W. Hofmann, Hanser Verlag 1994.


Technical rubber testing takes place in accordance with the test methods specified in Table 3.












TABLE 3







Physical testing
Standard/conditions









ML 1 + 4, 100° C. (3rd stage)
DIN 53523/3, ISO 667



Ring tensile test, 23° C.
DIN 53504, ISO 37



Tensile strength




Stress values




Elongation at break




Shore A hardness, 23° C.
DIN 53 505



Ball rebound, 60° C.
DIN EN ISO 8307 Steel




ball 19 mm, 28 g



DIN abrasion, 10 N force
DIN 53 516



Viscoelastic properties
DIN 53 513, ISO 2856



0 and 60° C., 16 Hz, 50 N initial




force and 25 N amplitude force




Complex modulus E* (MPa)




Loss factor tan δ (−)










Table 4 reports the technical rubber data for crude mixture and vulcanizate.













TABLE 4









Inventive






rubber






mixture






containing






mercapto-






silane-






carbon




Reference

black




rubber
Reference
blend as




mixture I
rubber
per




in situ
mixture II
Example 1b


















Crude mixture results














ML (1 + 4) at 100° C., 3rd
[MU]
64
107
64


stage














Vulcanizate results














Stress value 100%
[MPa]
2
1.9
1.9


Elongation at break
[%]
290
305
315


DIN abrasion
[mm3]
73
81
77


Ball rebound, 70° C.
[%]
70.2
61.1
69.1


MTS, 16 Hz, 50 N






Initial force, 25 N






Amplitude force






Loss factor tan δ,
[−]
0.888
0.134
0.091


60° C.









It is found that only in the case of the inventive rubber mixture is it possible to achieve the values of the in situ mixture (reference rubber mixture I). Reference rubber mixture II, which contains a carbon black with an iron fraction greater than 9 ppm, exhibits marked disadvantages in viscosity and in the dynamic data, corresponding to a significantly poorer rolling resistance.


Example 3

The formula used for the rubber mixtures is given in Table 5 below. The unit phr denotes weight fractions relative to 100 parts of the crude rubber used.


The silane-carbon black blend X 50-S (Si 69 on N 330) used for the reference rubber mixtures is available commercially from Evonik Industries.











TABLE 5






Amount
Amount


Substance
[phr]
[phr]







1st stage
Reference
Inventive rubber



rubber
mixture



mixture
containing



III
mercaptosilane-




carbon black




blend as per




Example 1b


Buna VSL 5025-1
96
96


Buna CB 24
30
30


Ultrasil 7000 GR
80
80


ZnO
3
3


Stearic acid
2
2


Naftolen ZD
10
10


Vulkanox 4020
1.5
1.5


Protektor G 3108
1
1


X 50-S
12.8



Silane-carbon

20


black blend




2nd stage




Batch stage 1




3rd stage




Batch stage 2




Vulkacit D
2
0


Perkacit TBzTD
0.2
0.5


Vulkacit CZ
1.5
1.5


Sulphur
1.5
2.2









The polymer VSL 5025-1 is a solution polymerized SBR copolymer from Bayer AG, having a styrene content of 25 wt. % and a butadiene content of 75 wt. %. The copolymer contains 37.5 phr of oil and has a Mooney viscosity (ML 1+4/100° C.) of 50.


The polymer Buna CB 24 is a cis-1,4-polybutadiene (neodymium type) from Bayer AG, having a cis-1,4 content of at least 96% and a Mooney viscosity of 44±5.


Ultrasil 7000 GR is a readily dispersible silica from Evonik Industries AG and has a BET surface area of 170 m2/g.


Naftolen ZD from Chemetall is used as aromatic oil; Vulkanox 4020 is 6PPD from Bayer AG, and Protektor G3108 is an ozone protection wax from Paramelt B.V. Vulkacit D (DPG) and Vulkacit CZ (CBS) are commercial products of Bayer AG. Perkacit TBzTD (Tetrabenzylthiuram disulphide) is a product from Flexsys N.V.


The rubber mixture is produced in three stages in an internal mixer in accordance with Table 2.


The general method for producing rubber mixtures and vulcanizates thereof is described in “Rubber Technology Handbook”, W. Hofmann, Hanser Verlag 1994.


Technical rubber testing takes place in accordance with the test methods specified in Table 3.


Table 6 reports the technical rubber data for crude mixture and vulcanizate.











TABLE 6







Inventive rubber




mixture




containing


Methods

mercaptosilane-


(vulcanization
Reference
carbon black


time: 25 min at
rubber mixture
blend as per


165° C.)
III
Example 1b


















Tensile strength
[MPa]
13.0
14.7


Modulus 100%
[MPa]
2.5
2.2


Modulus 300%
[MPa]
12.2
10.6


Modulus 300%/
[−]
4.9
4.8


100%





Elongation at
[%]
310
370


break





Shore A hardness
[SH]
70
71


Ball rebound, RT
[%]
36
42


DIN Abrasion
[mm3]
83
77


Tear propagation
[N/mm]
18
40


resistance





MTS, 16 Hz, 50 N





+/− 25 N





E*, 0° C.
[MPa]
33.5
29


E*, 60° C.
[MPa]
13.0
13.9


E″, 0° C.
[MPa]
12.0
8.8


E″, 60° C.
[MPa]
1.5
1.2


tan δ, 0° C.
[−]
0.390
0.314


tan δ, 60° C.
[−]
0.112
0.088









In comparison to the reference rubber mixture III, the inventive rubber mixture comprising the mercaptosilane-carbon black blend, as per Example 1b exhibits better tensile strength, greater elongation at break, lower DIN abrasion (corresponding to reduced wear), a significantly higher tear propagation resistance, a very low tanδ at 60° C. (corresponding to a level reduced by 20% relative to the X50-S reference), which is an indicator of a significantly improved rolling resistance.

Claims
  • 1. Mercaptosilane-carbon black blend, comprising at least 20 wt. % of mercaptosilane of the general formula I
  • 2. Mercaptosilane-carbon black blend according to claim 1, wherein it comprises a mixture of mercaptosilanes of the general formula I.
  • 3. Mercaptosilane-carbon black blend according to claim 1, wherein the mixture of mercaptosilanes of the general formula I comprises
  • 4. Method for producing mercaptosilane-carbon black blend according to claim 1, wherein at least 20 wt. % of mercaptosilane of the general formula I, based on the mercaptosilane-carbon black blend, is mixed with carbon black, the carbon black having an iron content of <9 ppm.
  • 5. Rubber mixture wherein it comprises (A) a rubber or mixture of rubbers,(B) a filler and(C) at least one mercaptosilane-carbon black blend according to claim 1.
  • 6. Method for producing the rubber mixture containing (a) a rubber or mixture of rubbers, (b) a filler and (c) at least one mercaptosilane-carbon black blend, comprising, mixing at least one mercaptosilane-carbon black blend according to claim 1, the rubber or mixture of rubbers, the filler, optionally further rubber assistants.
  • 7. A process for producing a shaped article comprising, providing a rubber mixture, which includes the mercaptosilane-carbon black blend according to claim 1, and moulding the mixture to form the shaped article.
  • 8. A process according to claim 7, wherein the shaped article is pneumatic tyres, tyre treads, cable sheathing, hoses, drive belts, conveyor belts, roll coverings, tyres, footwear soles, sealing rings or damping elements.
Priority Claims (1)
Number Date Country Kind
10 2012 205 642 Apr 2012 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/054847 3/11/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2013/149790 10/10/2013 WO A
US Referenced Citations (8)
Number Name Date Kind
6849754 Deschler Feb 2005 B2
7323582 Deschler et al. Jan 2008 B2
8013178 Klockmann et al. Sep 2011 B2
20030229166 Krafczyk et al. Dec 2003 A1
20080319128 Korth Dec 2008 A1
20110217229 Inomata Sep 2011 A1
20120270974 Steinhauser et al. Oct 2012 A1
20140206809 Miyazaki Jul 2014 A1
Foreign Referenced Citations (6)
Number Date Country
102009023915 Dec 2010 DE
1285926 Feb 2003 EP
1367059 Dec 2003 EP
1683801 Jul 2006 EP
62-181346 Aug 1987 JP
850000081 Feb 1985 KR
Non-Patent Literature Citations (2)
Entry
Notification of Transmittal of International Preliminary Report on Patentability (Forms PCT/IB/326, 373, and 237) , for Application No. PCT/EP2013/054847 dated Oct. 7,2014.
Notification of Transmittal of International Preliminary Report on Patentability (Forms PCT/IB/338, 373 and 237), for Application No. PCT/EP2013/054847 dated Oct. 7, 2014.
Related Publications (1)
Number Date Country
20150175782 A1 Jun 2015 US