The present invention relates to an automated clinical sample handling worksystem with two or more independent processing stations having samples supplied thereto by an automated conveyor system. More particularly, the present invention relates to a method for enabling samples to return to the conveyor from a processing station without interfering with samples on the conveyor.
Clinical diagnostic analyzers are being developed with increasing levels of complexity and sophistication in order to fully automated the performance of chemical assays and immunoassays of biological fluid samples such as urine, blood serum, plasma, cerebrospinal liquids and the like, these fluid samples almost universally being contained in open or capped sample tubes. Generally, chemical reactions between an analyte in a patient's biological sample and reagents used during performing the assay result in generating various signals that can be measured by the analyzer. From these signals the concentration of the analyte in the sample may be calculated.
A wide variety of automated chemical analyzers are known in the art and are continually being improved to increase analytical menu and throughput, reduce turnaround time, and decrease requisite sample volumes. See for example, U.S. Pat. Nos. 6,103,193, and 6,027,691 and 5,482,861. Such improvements, while necessary in themselves, may be hampered if sufficient corresponding advances are not made in the automation of pre-analytical sample preparation and handling operations like sorting, batch preparation, centrifugation of sample tubes to separate sample constituents, cap removal to facilitate fluid access, and the like.
Automated sample pre-treatment systems generally include the use of conveyor systems for conveying specimens to analyzers, such as those described in U.S. Pat. Nos. 5,178,834, and 5,209,903. Typical of such systems, a sample is transported to an analyzer by a primary conveyor and either removed from the primary conveyor by a robotic-like device and placed into a sampling area of an adjacent analyzer or may be shuttled onto an analyzer-specific conveyor that transports the sample to the sampling area of an adjacent analyzer. In the later instance, when sufficient sample aliquots have been removed from the sample, the sample is returned to the primary conveyor and transferred thereto from the analyzer-specific conveyor.
As automated clinical chemistry sample handling workstations become increasingly complex, the number of instances wherein samples interfere with one another during transportation processes also increase. Clearly, a problem to be avoided is any form of interference between the sample transferring from the analyzer-specific conveyor with samples already on the primary conveyor and being transported thereby.
U.S. Pat. No. 6,019,945 discloses a transfer mechanism for transferring a sample container holder between a conveyor line and a sampling area formed in each of several analyzers, the transfer mechanism being connectable to each one of the plurality of analyzers. At least two analyzers units are different from one other in either the types of reagent supply means, the number of analysis items that can be analyzed, the number of tests that can be processed in a unit time, or the species of samples to be processed.
U.S. Pat. No. 5,087,423 discloses a plurality of analyzing modules, a plurality of analyzing routes and at least one bypass route bypassing at least one analyzing module are arranged. Each analyzing module is capable of analyzing samples with respect to one or more items, and samples successively supplied from the introduction sides of the modules are selectively delivered into each module.
U.S. Pat. No. 6,060,022, automatically presents pre-treated samples in open containers to robotic devices operated in conjunction with independent stand-alone analyzers. In order to provide precise and accurate handling of the sample tubes, it is critical to position and align the tubes within a sample tube carrier accurately so that the various robotic handling devices may automatically and consistently remove or replace tubes from tube carriers as needed.
Although these prior art systems have advanced sample handling and processing throughput, what has not been addressed is the challenge of replacing a sample onto a moving conveyor belt while the belt is conveying other samples without adversely affecting either of the two samples.
The present invention provides a method for replacing a sample onto a moving primary conveyor while the conveyor is conveying other samples without adversely affecting either of the two samples. As a first step, any samples transported on the primary conveyor are stopped or slowed down at a position upstream of the sample transferring from an analyzer-specific conveyor onto a primary conveyor. As a second step, samples on the primary conveyor are stopped or slowed down in a manner that eliminates abrupt or uncontrolled motions that might otherwise disturb the sample. This new method for operating a sample handling worksystem provides an improved capability to operate a clinical laboratory's automated sample handling worksystem by improving the overall reliability and efficiency of moving and processing samples.
For a better understanding of the invention as well as other objects and further features thereof, reference is made to the following detailed description of various preferred embodiments thereof, taken in connection with the accompanying drawings wherein:
FIGS. 6-6A-6B-6C is a schematic view of the present invention for handling sample within the automated sample handling system of
Referring to
The sample handling worksystem 10 comprises an operating base 12 on which a belt-like conveyor track 14 transports a plurality of individual sample tube containers 20 carried in sample tube carriers 22 from a sample tube loading/unloading station 16 to an automated centrifuge 24 to an automated tube de-capper 30 for automatically removing caps from capped sample containers 20 and to one or more conventional clinical analyzers 32, 38, and 42 before returning each sample container 20 to the sample tube loading/unloading robotic station 16. It will be understood that more than three analyzers 32, 38, and 42 may be linked by conveyor track 14, but for purposes of simplicity, only three are shown. The sample handling worksystem 10 has a number of sensors, not illustrated, for detecting the location of a sample tube container 20 by means of identifying indicia placed on or within each sample tube carrier 22. Conventional bar-code readers may be employed in such tracking operations.
Centrifuge 24 and each analyzer 38, 42 and 32 are generally equipped with various robotic mechanisms 26 and 28, 40 and 44 or analyzer tracks 34 and 36, respectively, for removing a sample tube carrier 22 from conveyor track 14, moving the sample tube carrier 22 to and from centrifuge 24, to and from or into and out from analyzers 38, 42 and 32, respectively. Typically, the loading/unloading station 16 includes at least two robotic arms 21 conventionally equipped with clamping robotic hands.
The sample handling worksystem 10 is controlled by a conventional computer 15 preferably a microprocessor based central processing unit CPU 15 housed as part of or separate from the system 10 to move the sample tube carrier 22 to each operating station 24, 30, 32, 38, 42 and 16 whereat various types of assay processing occurs. CPU 15 controls sample handling system 10 according to software, firmware, or hardware commands or circuits like those used on the Dimension® clinical chemistry analyzer sold by Dade Behring Inc. of Deerfield, Ill., and are typical of those skilled in the art of computer-based electromechanical control programming.
These and similar problems are eliminated by the present invention in which each and every sample tube carrier 22C that is transported along conveyor track 14 is led through a generally propeller-shaped turnstile 60 (
In operation, described in conjunction with
Those skilled in the art will appreciate that the embodiments of the invention disclosed herein are illustrative of the principles of the invention and that other modifications may be employed which are still within the scope of the invention. For example, obvious variants of the invention would include turnstile 60 comprising three radially extending blades 68 as might be preferable in the instance of larger diameter sample tube carriers 20. Another obvious variant of the invention would include any propeller-shaped turnstile comprising multiple blades rotatably mounted proximate the primary conveyor.
Number | Name | Date | Kind |
---|---|---|---|
2936062 | M.J. Wilcox | May 1960 | A |
4805469 | Commarmot | Feb 1989 | A |
5087423 | Ishibashi | Feb 1992 | A |
5178834 | Kagayama et al. | Jan 1993 | A |
5209903 | Kanamori et al. | May 1993 | A |
5445037 | Itoh | Aug 1995 | A |
5623415 | O'Bryan et al. | Apr 1997 | A |
5846491 | Choperena et al. | Dec 1998 | A |
5876670 | Mitsumaki et al. | Mar 1999 | A |
5941366 | Quinlan et al. | Aug 1999 | A |
6019945 | Ohishi et al. | Feb 2000 | A |
6060022 | Pang et al. | May 2000 | A |
6117683 | Kodama et al. | Sep 2000 | A |
6290907 | Takahashi et al. | Sep 2001 | B1 |
6599749 | Kodama et al. | Jul 2003 | B1 |
20040124109 | Hassinen et al. | Jul 2004 | A1 |
20050207937 | Itoh | Sep 2005 | A1 |
20060142090 | Henry | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
H02-138015 | May 1990 | JP |
H05-014021 | Feb 1993 | JP |
3059194 | Mar 1999 | JP |
2006-103867 | Apr 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20080038827 A1 | Feb 2008 | US |