The present invention refers to novel merocyanine derivatives comprising specific polar groups consisting of hydroxyl- and ether-functionalities.
Furthermore the present invention relates to the use of these compounds for protecting household products from photolytic and oxidative degradation, as plastic additives, preferably for food and pharmaceutical packaging applications, for preventing photo-degradation of food by incorporation of these compounds into transparent food containers, for protection of UV-A sensitive drugs from photo-degradation by incorporation of UV absorber in transparent blister foils or transparent pharmacy containers, as additives for photographic and printing applications, as additives for electronic applications and for protecting the ingredients in agriculture applications.
Accordingly, the present invention relates to the compounds of formula
and/or its E/E-, E/Z- or Z/Z-geometrical isomer forms, wherein
Preferred are compounds of formula (1) or (2), wherein
Preferred are compounds of formula (1), wherein
Preferred are also compounds of formula (1), wherein
More preferred are also compounds of formula (1), wherein
Preferred are compounds of formula (2), wherein
Even more preferred are compounds of formulas (1) and (2), wherein
Preferred are also compounds of formulas (1) and (2), wherein
Most preferred are compounds of formula (1), wherein
Most preferred are compounds of formula (1), wherein
Most preferred are compounds of formula (2), wherein
Most preferred are compounds of formula (2), wherein
Even more preferred are compounds of formula (2), wherein
The merocyanine compounds of the invention may be in the E/E-, E/Z- or Z/Z-geometrical isomer forms.
Alkyl, cycloalkyl, alkenyl, alkylidene or cycloalkenyl may be straight, chained or branched, monocyclic or polycyclic.
C1-C22alkyl is for example methyl, ethyl, n-propyl, isopropyl, n-butyl, sec.-butyl, isobutyl, tert.-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethylpropyl, n-hexyl, n-octyl, 1,1,3,3-tetramethylbutyl, 2-ethylhexyl, nonyl, decyl, n-octadecyl, eicosyl or dodecyl.
Hydroxy-substituted alkyl is for example hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl, hydroxypentyl, hydroxyhexyl, hydroxyheptyl, hydroxyoctyl, hydroxynonyl or hydroxydecyl.
C2-C22alkenyl is for example straight-chain C2-C12alkenyl or preferably branched C3-C12alkenyl. C1-C12alkyl, like vinyl, allyl, 2-propen-2-yl, 2-buten-1-yl, 3-buten-1-yl, 1,3-butadien-2-yl, 2-cyclobuten-1-yl, 2-penten-1-yl, 3-penten-2-yl, 2-methyl-1-buten-3-yl, 2-methyl-3-buten-2-yl, 3-methyl-2-buten-1-yl, 1,4-pentadien-3-yl, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl, 3-cyclohexen-1-yl, 2,4-cyclohexadien-1-yl, 1-p-menthen-8-yl, 4(10)thujen-10-yl, 2-norbornen-1-yl, 2,5-norbornadien-1-yl, 7,7-dimethyl-2,4-norcaradien-3-yl or the different isomers of hexenyl, octenyl, nonenyl, decenyl or dodecenyl.
C3-C12cycloalkyl is for example cyclopropyl, cyclobutyl, cyclopentyl, trimethylcyclohexyl or preferably cyclohexyl.
Examples of merocyanines according to the present invention are listed in Table A:
The most preferred merocyanine derivatives of the invention are selected in the group of the following compounds and their E/E-, E/Z- or Z/Z-geometrical isomer forms:
Very most preferred is 2-ethoxyethyl(2Z)-cyano{3-[(3-methoxypropyl)amino]cyclohex-2-en-1-ylidene}ethanoate in its E/E and/or its E/Z geometrical isomer corresponding to the formula
The E/Z form has the following structure:
The E/E form has the following structure:
The Applicant discovered that those particular compounds have the following properties: better chemical stability after 2 months at 45° C. in ethanol/water 1/1 mixture at 0.5% of concentration, a less yellow coloring.
The compounds of formula (1) and (2) are novel. They may be prepared according to known processes, as disclosed for example in J. Org. Chem. USSR (Engl. Transl.) 26(8), p. 1562f (1990); J. Heterocycl. Chem. 33(3), p. 763-766 (1996); Khimiya Geterotsiklicheskikh Soedinenii 11, p. 1537-1543 (1984); Khimiya Geterotsiklicheskikh Soedinenii 3, p. 397-404 (1982); Chem. Heterocycl. Comp. (Engl. Transl.) 24(8), 914-919 (1988) and in Synthetic Communications Vol. 33, No. 3, 2003, p 367-371.
The synthesis of the compounds used in the present invention is also disclosed in US2003/0181483A1, WO 0234710, Eur. J. Org. Chem. 2003, 2250-2253, J. Med. Chem. 1996, 39, 1112-1124 and J. Org. Chem., Vol. 37, No. 8, 1972, 1141-1145 as follows:
Vinylogene CH-acid compounds are reacted with acetales of amides.
In J. Heterocyclic Chem., 27, 1990, 1143-1151 aminoacrylic acid esters or aminoacrylnitriles are reacted with ethoxymethylenecyanoacetates in ethanol to the corresponding compounds used in the present invention.
Compounds of formula (1) and (2) wherein R4 and R5 or R9 and R10 together form a carbocyclic ring containing 6 C atoms, respectively, may be prepared according to procedures described in WO 2007/071582, in IP.com Journal (2009), 9(5A), 29-30 under the title “Process for producing 3-amino-2-cyclohexan-1-ylidene compounds” and in U.S. Pat. No. 4,749,643 on col, 13, line 66-col. 14, line 57 and the references cited therein.
The merocyanines of formula
and/or its E/E-, E/Z- or Z/Z-geometrical isomer forms, wherein
Preferably compounds of formula (1′) or (2′) are used wherein at least one of R1, R2, R3 and R6, R7 and R8, or R11 is substituted by hydroxy; and/or interrupted by one or more than one —O—.
“Household products” in the sense of the present invention are those products which are outside cosmetic personal care applications.
Examples of compounds of formula (1′) and (2′) are those listed in Table A and the compound
Mixtures of these compounds with other UV absorbers as listed in Tables 1-3, phenolic or non-phenolic antioxidants or with complex formers are also suitable.
Examples of organic UV filters that can be used in admixture with the compounds of formulas (1′) and (2′) are listed in the following Table:
umbilicalis (INCI: Porphyra Umbilicalis) that are encapsulated
The compounds of formulas (1′) and (2′) may also be used in admixture with phenolic or lactone-type antioxidants as disclosed for example in WO00/25731 or with hindered amine light stabilizers as disclosed in WO 03/103622, e.g. hindered nitroxyl, hydroxylamine and hydroxylamine salt compounds.
The stabilizer systems of the present invention are preferably used in household cleaning and treatment agents, for example in laundry products and fabric softeners, liquid cleansing and scouring agents, glass detergents, neutral cleaners (all-purpose cleaners), acid household cleaners (bath), bathroom cleaners, WC cleaners, for instance in washing, rinsing and dishwashing agents, kitchen and oven cleaners, clear rinsing agents, dishwasher detergents, shoe polishes, polishing waxes, floor detergents and polishes, metal, glass and ceramic cleaners, textile-care products, rug cleaners and carpet shampoos, agents for removing rust, color and stains (stain remover salt), furniture and multipurpose polishes and leather and vinyl dressing agents (leather and vinyl sprays) and air fresheners.
Household cleaning agents are aqueous or alcoholic (ethanol or isopropyl alcohol) solutions of one or more of the following components:
for basic products inorganic (NaOH or KOH) or organic bases;
waxes and/or silicones for maintenance and protection of surfaces,
polyphosphates,
substances which eliminate hypochlorite or halogens;
peroxides comprising bleaching activators like TAED, for example sodium perborate or H2O2;
Colored cleaning agents can comprise the following dyes:
soluble anionic or cationic dyes, like acid dyes (anionic), basic dyes (cationic), direct dyes, reactive dyes or solvent dyes.
Generally, for the coloration of household products all substances are suitable which have an absorption in the visible light of electromagnetic radiation (wave length of ca. 4000 to 700 nm). The absorption is often caused by the following chromophores: Azo-(mono-, di, tris-, or poly-)stilbene-, carotenoide-, diarylmethane-, triarylmethane-, xanthene-, acridine-, quinoline, methine- (also polymethin-), thiazole-, indamine-, indophenol-, azin-, oxazine, thiazin-, anthraquinone-, indigoid-, phtalocyanine- and further synthetic, natural and/or inorganic chromophores.
The present invention also relates to home care and fabric care products such as drain cleaners, disinfectant solutions, upholstery cleaners, automotive care products (e.g., to clean and/or polish and protect paint, tires, chrome, vinyl, leather, fabric, rubber, plastic and fabric), degreasers, polishes (glass, wood, leather, plastic, marble, granite, and tile, etc.), and metal polishes and cleaners. Antioxidants are suitable to protect fragrances in above products as well as in dryer sheets. The present invention also relates to home care products such as candles, gel candles, air fresheners and fragrance oils (for the home).
Typical examples of household cleaning and treating agents are listed in the table below:
The stabilizers of formula (1′) and/or (2′) according to the present invention are for example incorporated by dissolution in an oil phase or alcoholic or water phase, where required at elevated temperature.
The present household products have high stability towards color changes and chemical degradation of the ingredients present in these products. For example, present compositions that comprise a dye are found to have excellent color stability.
Furthermore, the merocyanines of the formulas (1′) and (2′) can be used as additives in organic materials, preferably natural or synthetic organic polymers.
Examples of organic polymers are
The organic material is preferably a synthetic polymer, in particular from one of the above groups. A polyolefin homo- or copolymer is preferred. Polyethylene, polypropylene, a polyethylene copolymer or a polypropylene copolymer are particularly preferred.
Of interest is also ethylene/propylene/diene elastomer (EPDM).
The compound of the formulas (1′) and/or (2′) may be present in the organic material in an amount of preferably 0.005 to 5%, in particular 0.01 to 1% or 0.05 to 1%, relative to the weight of the organic material.
The compound of the formulas (1′) and (2′) can be incorporated into the organic material to be stabilized by known methods, for example before or during shaping or by applying the dissolved or dispersed stabilizer to the organic material, if necessary with subsequent evaporation of the solvent. The stabilizer can be added to the organic material in the form of a powder, granules or a master batch, which contains said stabilizer in, for example, a concentration of from 2.5 to 25% by weight.
The materials stabilized according to this invention can be used in a wide variety of forms, for example as films, fibres, tapes, moulding compositions, profiles or as binders for paints, adhesives or putties.
Preferably the compounds of formula (1′) and/or (2′) are used for food and pharmaceutical packaging applications.
Any packaging article or structure intended to completely enclose a product will be deemed to have a “packaging wall,” as that term is used herein, if the packaging article comprises a wall, or portion thereof, that is, or is intended to be, interposed between a packaged product and the atmosphere outside of the package and such wall or portion thereof comprises at least one layer incorporating the compounds of formula (1′) and/or (2′) according to the present invention. Thus, bowls, bags, liners, trays, cups, cartons, pouches, boxes, bottles and other vessels or containers which are intended to be sealed after being filled with a given product are covered by the term “packaging wall” if the compounds of formula (1′) and/or (2′) according to the present invention are present in any wall of such vessel (or portion of such wall) which is interposed between the packaged product and the outside environment when the vessel is closed or sealed. One example is where the compounds of formula (1′) and/or (2′) according to the present invention are fabricated into, or between, one or more continuous thermoplastic layers enclosing or substantially enclosing a product. Another example of a packaging wall according to the present invention is a monolayer or multilayer film containing the compounds of formula (1′) and/or (2′) used as a cap liner in a beverage bottle (i.e., for beer, wine, fruit juices, etc.) or as a wrapping material. To prepare a packaging wall, the compounds of formula (1′) and/or (2′) are compounded into or otherwise combined with a suitable packaging resin whereupon the resulting resin formulation is fabricated into sheets, films or other shaped structures. Extrusion, co-extrusion, blow moulding, injection moulding and any other sheet, film or general polymeric melt-fabrication technique can be used. Sheets and films obtained from the compounds of formula (1′) and/or (2′) can be further processed, e.g. by coating or lamination, to form multilayered sheets or films, and then shaped, such as by thermoforming or other forming operations, into desired packaging walls in which at least one layer contains the compounds of formula (1′) and/or (2′) according to the present invention. Such packaging walls can be subjected to further processing or shaping, if desired or necessary, to obtain a variety of active-barrier end-use packaging articles. The present invention reduces the cost of such barrier articles in comparison to conventional articles which afford barrier properties using passive barrier films.
An example of a packaging article using the packaging wall described above is a two-layer or three-layer dual ovenable tray made of crystalline polyethylene terephthalate (“C-PET”) suitable for packaging pre-cooked single-serving meals. In a three-layer construction, an oxygen-scavenging layer of 250 to 500 μm thickness is sandwiched between two non-scavenging C-PET layers of 70 to 250 μm thickness.
A primary application for the packaging walls, and packaging articles of the invention is in the packaging of perishable foods. For example, packaging articles utilizing the invention can be used to package milk, yogurt, ice cream, cheeses; stews and soups; meat products such as hot dogs, cold cuts, chicken, beef jerky; single-serving pre-cooked meals and side dishes; homemade pasta and spaghetti sauce; condiments such as barbecue sauce, ketchup, mustard, and mayonnaise; beverages such as fruit juice, wine, and beer; dried fruits and vegetables; breakfast cereals; baked goods such as bread, crackers, pastries, cookies, and muffins; snack foods such as candy, potato chips, cheese-filled snacks; peanut butter or peanut butter and jelly combinations, jams, and jellies; dried or fresh seasonings; and pet and animal foods; etc. The foregoing is not intended to be limiting with respect to the possible applications of the invention. Generally speaking, the invention can be used to enhance the barrier properties in packaging materials intended for any type of product which may degrade in the presence of oxygen.
Preferably the compounds of formula (1′) and/or (2′) are used for protection of UV-A sensitive drugs from photo-degradation by incorporation of the compounds of formula (1′) and/or (2′) according to the present invention in transparent blister packs or transparent pharmacy containers.
“Blister pack” is a term for several types of pre-formed plastic packaging used for small consumer goods, foods, and for pharmaceuticals.
The primary component of a blister pack is a cavity or pocket made from a “formable” web, usually a thermoformed plastic. This usually has a backing of paperboard or a “lidding” seal of aluminum foil or plastic. A blister that folds onto itself is often called a clamshell.
Blister packs are commonly used as unit-dose packaging for pharmaceutical tablets, capsules or lozenges. Blister packs can provide barrier protection for shelf life requirements, and a degree of tamper resistance. Blister packs are the main packaging type since pharmacy dispensing and re-packaging are not common.
Other types of blister packs consist of carded packaging where goods such as toys, hardware, and electrical items are contained between a specially made paperboard card and clear pre-formed plastic such as PVC.
A hinged blister is known as a clamshell, used for a variety of products. It can be used as a security package to deter package pilferage for small high-value items, such as consumer electronics. It consists of one sheet folded over onto itself and sometimes fused at the edges.
Medical Blister trays differ from Pharmaceutical blister packs in that these are not push-through packs. The thermoformed base web is made of a thicker plastic sheet, generally between 500μ to 1000μ and cannot be collapsed, thus forming a solid tray. The lidding film provides a peel-open feature and is generally porous to allow sterilization. Such medical blister packs are used for medical devices, used in hospitals. The blisters are produced by thermoforming or cold forming processes.
In the case of thermoforming, a plastic film or sheet is unwound from the reel and guided though a pre-heating station on the blister line. The temperature of the pre-heating plates (upper and lower plates) is such that the plastic will soften and become pliable. The warm plastic will then arrive in a forming station where a large pressure (4 to 8 bar) will form the blister cavity into a negative mold. The mold is cooled such that the plastic becomes rigid again and maintains its shape when removed from the mold. In case of difficult shapes, the warm film will be physically pushed down partially into the cavity by a “plug-assist” feature. Plug-assist results in a blister cavity with more uniform wall distribution and is typically used when the cavity size and shape is larger than a small tablet.
In the case of cold forming, an aluminum-based laminate film is simply pressed into a mold by means of a stamp. The aluminum will be elongated and maintain the formed shape. In the industry these blisters are called cold form foil (CFF) blisters. The principal advantage of cold form foil blisters is that the use of aluminum offers a near complete barrier for water and oxygen, allowing an extended product expiry date. The principal disadvantages of cold form foil blisters are: the slower speed of production compared to thermoforming; the lack of transparency of the package (a therapy compliance disadvantage); and the larger size of the blister card (aluminum cannot be formed with near 90 degree angles).
The most basic material for the forming web is PVC or Polyvinyl Chloride. In the case of blister packaging the PVC sheet does not contain any plasticizer and is sometimes referred to as Rigid PVC or RPVC. Multi-layer blister films based on PVC are often used for pharmaceutical blister packaging, whereby the PVC serves as the thermoformable backbone of the structure.
Typical constructions used for pharmaceutical products are 250μ PVC film laminated to 15μ-100μ PCTFE film. Duplex structures are PVC/PCTFE and triplex laminates are PVC/PE/PCTFE. Deeper cavities can be formed by using the triplex structures with PE. Typical WVTR values are between 0.06-0.40 g/m2/day.
Other typical materials are cyclic olefin copolymers (COC) or polymers (COP) which can provide moisture barrier to blister packs, typically in multilayered combinations with polypropylene (PP), polyethylene (PE), or glycol-modified polyethylene terephthalate (PETg). Unlike PVC and other common pharmaceutical barrier resins, cyclic olefin resins do not contain chlorine or other halogens in their molecular structure, being comprised solely of carbon and hydrogen.
The compounds of formula (1′) and/or (2′) can also be used as additives for photographic and printing applications, for electronic applications and for protecting the ingredients in agriculture applications.
55.33 grams of bis-(2-methoxyethyl)amine are reacted with 1,1,3,3-tetramethoxypropane in acetic acid, concentrated and treated with 21.48 grams of ethyl cyanoacetate in the presence of an organic base and a solvent.
The following base/solvent combinations are used:
The reaction temperature is between 0° C. and the boiling point of the solvent.
The reaction end point is confirmed by thin layer chromatography or high performance liquid chromatography.
After the reaction, the product (101) is obtained from the reaction mixture through ordinary product isolation by liquid-liquid separation, column chromatography or crystallization by addition of a poor solvent to the reaction mixture.
The desired product (101) is obtained in yields of 66% (36 grams) as a dark brownish oil which crystallized as yellow crystals (Melting point: 76.9° C.).
55.33 grams of bis-(2-methoxyethyl)amine are condensed with 1,1,3,3-tetramethoxypropane in acetic acid, concentrated and treated with 27.18 grams of 2-methoxyethyl-cyanoacetate in the presence of an organic base and a solvent.
The following base/solvent combinations are used:
After the reaction, the product (102) is obtained from the reaction mixture through silica gel column chromatography (eluent: toluene/acetone).
The desired product (102) is obtained in yields of 75% (45.44 grams) as a yellow powder (melting point: 92.2° C.).
55.33 grams of bis-(2-methoxyethyl)amine are condensed with 1,1,3,3-tetramethoxypropane in acetic acid, concentrated and treated with 29.85 grams of 2-ethoxyethyl-cyanoacetate in the presence of an organic base and a solvent
The following base/solvent combinations are used:
After the reaction, the product (103) is obtained from the reaction mixture through ordinary product isolation by liquid-liquid separation, column chromatography or crystallization by addition of a poor solvent to the reaction mixture.
The desired product (103) is obtained in yields of 66% (39.99 grams) as beige crystals (melting point: 58.3° C.).
70.67 grams of piperidine are condensed with 1,1,3,3-tetramethoxypropane in acetic acid, concentrated and treated with 59.72 grams of 2-ethoxyethyl cyanoacetate cyanoacetate in the presence of an organic base and a solvent.
The following base/solvent combinations are used:
The desired product (104) is obtained in yields of 91% (96.5 grams) as an orange powder.
After silica gel column chromatography (eluent: toluene/acetone) the pure product (104) is obtained yielding dark yellow crystals.
Melting point: 66-67° C.
132.83 grams of piperidine are condensed with 1,1,3,3-tetramethoxypropane in acetic acid, concentrated and treated with 133.38 grams of 2-(2-methoxyethoxy)-ethyl-cyanoacetate in the presence of an organic base and a solvent,
The following base/solvent combinations are used:
The desired product (105) is obtained in yields of 38% (82.4 grams) as an dark oil.
After column chromatography over silica gel and toluene/acetone (9:1) as eluent the product (105) crystallizes from water as orange crystals. Melting point: 43.5-45° C.
By using 5 grams of 3-(1-piperidinyl)-2-propenal and 7.39 grams of 2-(2-methoxyethoxy)ethyl-2-cyano acetic acid ester in the presence of a base and optionally a solvent the desired product is obtained in yields of 32% (3.5 grams) as an dark oil.
The following base/solvent combinations are used:
2.89 grams of piperidine are condensed with 1,1,3,3-tetramethoxypropane in acetic acid, concentrated and treated with 1.22 grams of 2-cyano-N-(2-hydroxyethyl)acetamide in the presence of an organic base and a solvent.
The following base/solvent combinations are used:
The reaction end point is confirmed by thin layer chromatography or high performance liquid chromatography.
After the reaction, the product (106) is obtained from the reaction mixture through ordinary product isolation by liquid-liquid separation, column chromatography or crystallization by addition of a poor solvent to the reaction mixture.
The desired product (106) is obtained as a brownish oil which crystallizes in form of yellow crystals (0.24 g, 10%).
Melting point: 139.4-141.0° C.
27.84 grams of piperidine are condensed with 1,1,3,3-tetramethoxypropane in acetic acid, concentrated and treated with 56.77 grams of (2,2-dimethyl-1,3-dioxolan-4-yl)methyl cyanoacetate in the presence of an organic base and a solvent.
The following base/solvent combinations are used:
74.74 grams of the compound (107) are obtained yielding yellow crystals.
70 ml of hydro chloride acid (1 N) are added to a solution of 74.74 grams of merocyanine compound (107) in 350 ml of ethanol. The reaction mixture is stirred for 24 hours at 40° C. After adding water the product is extracted several times with ethyl acetate. The combined organic phases are dried with sodium sulphate, filtrated and concentrated under vacuum yielding the crude product as a brown oil.
After crystallization 34.44 grams of the product is yielded as a yellow powder.
Melting point: 101° C.
236.72 grams of piperidine are condensed with 1,1,3,3-tetramethoxypropane in acetic acid, concentrated and treated with 217.24 grams of 1-(2-hydroxy)pentyl cyanoacetate in the presence of an organic base and a solvent.
The following base/solvent combinations are used:
500 grams of the crude product (109) are obtained yielding a dark brown oil.
After column chromatography (silica gel, eluent: toluene/ethyl acetate) and crystallization 53.09 grams (23%) of the desired product (109) are obtained yielding yellow crystals.
Melting point: 130° C.
1.81 grams of morpholine are treated with 1,1,3,3-tetramethoxypropane in acetic acid, concentrated and treated with 1.89 grams of (2,2-dimethyl-1,3-dioxolan-4-yl)methyl cyanoacetate in the presence of an organic base and a solvent.
The following base/solvent combinations are used:
2.99 grams of the crude product (110) are obtained yielding a dark brown oil. After column chromatography (silica gel, eluent: toluene/acetone) and crystallization 1.17 grams (50%) of the compound (110) are obtained yielding yellowish crystals.
1 ml of hydro chloride acid (1 N) are added to a solution of 1.17 grams of merocyanine compound (110) in 5 ml of ethanol. The reaction mixture is stirred for 16 hours at room temperature.
The product is filtered off and washed with small amounts of ethanol and water.
After drying under vacuum 0.36 grams of the product (111) is yielded as a yellowish powder.
Melting point: 144.5-146.0° C.
83.40 grams of morpholine are condensed with 1,1,3,3-tetramethoxypropane in acetic acid and treated with 47.15 grams of 2-ethoxyethyl cyanoacetate in the presence of the organic base and a solvent.
The following base/solvent combinations are used:
32.58 grams of the compound (112) are obtained yielding yellow crystals.
Melting point: 81.5° C.
By using 113.00 grams of ethyl-2-hydroxyethylaminoacrolein and 102.47 grams of n-butyl cyanoacetate 123.46 grams of the crude product are obtained yielding a brown oil.
After crystallization 23.29 g of the product is obtained yielding yellowish crystals.
Melting point: 78.0° C.
The merocyanine compound (114) is synthesized according to the synthesis of merocyanine (113) yielding the desired product as a brownish oil.
1H-NMR (CDCl3):
δ=7.73 (1H, d), 7.24 (1H, d), 5.5 (1H, t), 4.07-4.33 (5H, m), 3.44-3.55 (2H, m), 3.16-3.26 (2H, m), 1.67 (2H, m), 1.22-1.45 (12H, m), 0.9 (3H, m).
122.23 grams of 3-[(3-methoxypropyl)amino]-2-cyclohexen-1-one are alkylated with dimethylsulfate or alternatively with diethylsulfate and treated with 75.45 grams of ethyl cyanoacetate in approximately equimolar proportions in the presence of a base and optionally a solvent.
The following base/solvent combinations are used:
Completion of the alkylation reaction can be monitored for example by TLC, GC or HPLC methods.
162.30 grams of the product (115) are obtained yielding a brown oil.
After crystallization the product is obtained yielding yellowish crystals.
Melting point: 92.7° C.
101.00 grams of 3-[(3-methoxypropyl)amino]-2-cyclohexen-1-one are alkylated with dimethylsulfate or alternative with diethylsulfate and treated with 86.00 grams of 2-cyano-N-(3-methoxy-propyl)-acetamide in approximately equimolar proportions in the presence of a base and optionally a solvent.
The following base/solvent combinations are used:
The crude product (116) is obtained yielding a dark brown oil.
After silica gel column chromatography (eluent: toluene/methanol 99:1) 81.8 grams of the product are obtained yielding yellowish crystals.
Melting point: 84.7-85.3° C.
111.0 grams of 3-[(2-ethylhexyl)amino]-2-cyclohexen-1-one are alkylated with dimethylsulfate or alternatively with diethylsulfate and are then treated with 64.10 grams of 2-cyano-N-(2-hydroxy-ethyl)-acetamide in the presence of a base and optionally a solvent.
The following base/solvent combinations are used:
The reaction temperature is between 60 to 120° C.
The crude product is obtained yielding brownish crystals.
After recrystallization 97 grams of the product were obtained yielding yellowish crystals.
Melting point: 117-119° C.
100.56 grams of 3-[(2-hydroxypropyl)amino]-2-cyclohexen-1-one are alkylated with dimethylsulfate or alternatively with diethylsulfate and treated with 84.70 grams of isobutyl cyanoacetate in the presence of a base and optionally a solvent.
The following base/solvent combinations are used:
15.97 grams of the crude product (118) is obtained yielding a dark brown oil.
After silica gel chromatography (eluent: hexane/ethyl acetate) 45.67 grams of the product (118) are obtained yielding yellowish crystals. Melting point: 106.7° C.
13.09 grams of 3-[(3-methoxypropyl)amino]-2-cyclohexen-1-one are alkylated with dimethylsulfate or alternatively with diethylsulfate and treated with 10.12 grams of isobutyl cyanoacetate in the presence of a base and optionally a solvent.
The following base/solvent combinations are used:
15.97 grams of the crude product (119) are obtained yielding a dark brown oil.
After silica gel chromatography (eluent: toluene/acetone) 13.46 grams of the product (119) are obtained yielding yellowish crystals. Melting point: 96.3° C.
222.62 grams of dipropylamine are condensed with 1,1,3,3-tetramethoxypropane in acetic acid and treated with 200.13 grams of (2,2-dimethyl-1,3-dioxolan-4-yl)methyl cyanoacetate in the presence of an organic base and a solvent as described on page 4 in US2003/0181483A1.
The following Base/solvent combinations are used:
327 grams of the crude product (120) are obtained yielding a brown oil.
317 ml of hydro chloride acid (1 N) are added to a solution of 327 grams of crude merocyanine (120) in 990 ml of ethanol.
The reaction mixture is stirred for 16 hours at room temperature.
After removal of ethanol in vacuum the reaction mass was taken up in water and the product is extracted several times with ethyl acetate.
The collected organic phases are concentrated in vacuum.
After silica gel column chromatography (eluent: toluene/ethyl acetate) and crystallization 70 grams of the desired product (121) are obtained yielding yellowish crystals.
Melting point: 73° C.
66.43 grams of dibutylamine are condensed with 1,1,3,3-tetramethoxypropane in acetic acid and treated with 46.81 grams of (2,2-dimethyl-1,3-dioxolan-4-yl)methyl cyanoacetate in the presence of an organic base and a solvent.
The following Base/solvent combinations are used:
82.49 grams of the crude product (122) are obtained yielding a black oil.
80 ml of hydro chloride acid (1 N) are added to a solution of 82.5 grams of crude merocyanine (122) in 250 ml of ethanol. The reaction mixture is stirred for 16 hours at room temperature.
After removal of ethanol in vacuum the reaction mass is taken up in water and the product (122) is extracted several times with ethyl acetate.
The collected organic phases are concentrated in vacuum.
After silica gel column chromatography (eluent: toluene/acetone) 37.85 grams of the desired product are obtained yielding a brownish oil.
HPLC (210 nm): 99.3 A-%. 1H-NMR (CDCl3): δ=7.8 (1H, d), 7.2 (1H, d), 5.6 (1H, t), 4.27 (2H, m), 3.98 (1H, m), 3.5-3.7 (2H, m), 3.25-3.33 (4H, m), 3.00 (2H, s), 1.61 (4H, m), 1.35 (4H, m), 0.96 (6H, m).
148.4 grams of 3-[(3-methoxypropyl)amino]-2-cyclohexen-1-one are alkylated with dimethylsulfate or alternatively with diethylsulfate and treated with 130.00 grams of 2-ethoxyethyl cyanoacetate in the presence of an organic base and a solvent.
The following base/solvent combinations are used:
After column chromatography (silica gel, eluent: toluene/ethyl acetate) and crystallization 134.96 grams of the desired product (124) are obtained yielding yellow crystals.
Melting point: 90-91.5° C.
The UV shielding properties of the merocyanine derivatives are investigated by measuring their UV spectra in ethanol. In the following table the investigated absorption maxima (λmax) together with the corresponding A1%1cm values are listed.
All merocyanine compounds according to the present invention possess extraordinary high shielding properties in the UV region as indicated by A1%1cm values above 1500.
Number | Date | Country | Kind |
---|---|---|---|
PCT/EP2011/062531 | Jul 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2012/053688 | 7/19/2012 | WO | 00 | 1/15/2014 |