This application is a § 371 National Stage Application of PCT International Application No. PCT/EP2016/053839 filed Feb. 24, 2016.
The present invention relates to a mesh handler for a mining machine.
Furthermore, the present invention relates to a mining machine for use in subterranean roadways, in particular suitable for creating tunnels or in subterranean roadways and the like.
A variety of different types of excavation machines have been developed for cutting drifts, tunnels, subterranean roadways and the like in which a rotatable head is mounted on an arm that is in turn movably mounted at a main frame so as to create a desired tunnel cross sectional profile. WO2012/156841, WO 2012/156842, WO 2010/050872, WO 2012/156884, WO2011/093777, DE 20 2111 050 143 U1. All described apparatus for mill cutting of rock and minerals in which a rotating cutting head forced into contact with the rock face as supported by a movable arm. In particular, WO 2012/156884 describes the cutting end of the machine in which the rotatable heads are capable of being raised and lowered vertically and deflecting in the lateral sideways direction by a small angle in an attempt to try enhance the cutting action.
WO 2014/090589 describes a machine for digging roadways tunnels and the like in which a plurality of cutting heads are movable to dig into the rock face via a pivoting arcuate cutting path. US 2003/0230925 describes a rock excavator having a cutter head mounting a plurality of annular disc cutters suitable to operate in an undercutting mode.
Further, different types of devices for the installation of rock bolts are known in the art. Such devices comprise a supporting structure carrying a bolting unit, wherein the bolting unit is configured for drilling a drill hole and moving a rock bolt into a rock face in order to secure the roof of a tunnel or subterranean roadway.
Since the devices for the installation of rock bolts often form part of a cutting apparatus suitable for creating tunnels and subterranean roadways, the bolting process must not lead to a delay of the generation of the tunnel. In order to accelerate the installation of the rock bolts, devices have been developed which are able to simultaneously drill two or more installation holes into the rock face.
Typically, a mesh structure covering the rock face is used for additional protection against roof fall. Such a mesh typically is fixed by means of the bolts installed by the device for installation of rock bolts.
For placing the mesh against the roof, a so called mesh handler is used. US 2012/0213598 A1 discloses such a mesh handler. The system includes a support frame, a lifting system and a feeding system. The support frame holds a plurality of mesh sheets which are fed by the feeding system in a longitudinal direction of the vehicle. The feeding system obtains at least one sheet from the lifting system and feeds the sheet towards installation apparatus for installation on the mine roof. However, it is difficult to cover the whole roof of the mine, in particular when the roof is curved, with such a device.
A further mesh handling device which is able to apply a mesh to a curved roof is disclosed in U.S. Pat. No. 8,137,033 B1. This device uses a flexible rolled and folded mesh which is pulled from a rearward end of the mining machine along with the machine direction to a forward end, defolded and placed by means of four arms which are flexible against the roof. Even though this device is improved, in that a larger single mesh is used instead of a plurality of mesh sheets which must be separately placed in overlapping manner with the roof, even this device is still complicated, in particular it is complicated to place the mesh at the desired position and hold it safely, while bolting.
A further drawback is that the manipulator comprising the arms needs a certain amount of space and must be able to reach the whole profile section of the roof. Moreover, by means of these arms, the mesh can only be positioned step by step. This means that the manipulator starts unrolling the mesh and holds it against the roof. Now the manipulator needs to stay until bolting is finished in this bolting position and subsequently can be advanced to the next position for the next bolting.
Further mesh handling devices are disclosed in RU 2522325, WO 2014/028924 A1, US 2008/0279627 A1, WO 02103162 A1, U.S. Pat. No. 5,816,750 and GB 1244574. All these devices suffer from the above drawbacks.
It is an objective of the present invention to provide a mesh handler for a mining machine allowing accelerated mesh placement and mesh handling, as well as simple and proper placement of a mesh at the roof of a tunnel or a subterranean roadway. It is a further objective of the present invention to provide a mining machine which allows accelerated mesh placement and mesh handling, as well as simple and proper placement of a mesh at the roof of a tunnel or a subterranean roadway.
This objective is achieved by providing a mesh handler for a mining machine comprising a generally U-shaped frame for receiving and positioning a mesh against a roof portion of an underground tunnel. Such a roof portion will in many cases also be generally U-shaped.
The frame includes at least one generally U-shaped rail. The mesh handler moreover includes guide means for guiding the mesh along the rail in a direction substantially perpendicular to a longitudinal direction of the mining machine. The U-shaped frame, according to this invention, is used to push the mesh against the roof portion of the underground tunnel. It shall be understood that U-shaped in this instance, as it is related to a roof portion having general U-shape or to the frame, does not necessarily mean that the frame is arc-shaped or formed as a partial circle. Much more, also an arrangement, in which the legs of the U are substantially rectangular to the U's back, is considered as U-shaped. Nevertheless, most roof portions of subterranean tunnels comprise a certain curvature and are concavely formed. The frame which preferably provides the structure of the mesh handler includes a generally U-shaped rail. This rail preferably extends substantially perpendicular to the longitudinal direction of the mining machine. The longitudinal direction of the mining machine in most cases will be substantially aligned with the longitudinal direction of the subterranean tunnel and therefore, the U-shaped rail extends perpendicular to the longitudinal direction of the subterranean tunnel.
The mesh handler includes guide means for guiding the mesh along the rail in a direction substantially perpendicular to a longitudinal direction of the mining machine and thus, in most cases, also perpendicular to a longitudinal direction of the underground tunnel. According to the invention, the mesh therefore is guided and fed in a direction perpendicular to the longitudinal direction of the mining machine and preferably the tunnel and along a lateral or transverse direction of the underground tunnel. The mesh handler is adapted to handle a flexible mesh which preferably is rolled, and not for handling stiff mesh sheets. Thus, the mesh is guided from one side of the mining machine by means of the guide means along the rail to the other side of the mining machine and positioned by means of the frame against the roof portion of the underground tunnel. The portion covered by the mesh is determined by the length and the width of the mesh while the width of the mesh is measured in the longitudinal direction of the underground tunnel. Using a wider mesh can therefore lead to a substantially increased coverage by one mesh and thus accelerates the meshing of the roof, while a large width of the mesh might have certain drawbacks in respect of bolting.
In an advantageous embodiment of the mesh handler the guide means comprise at least one pull-out mechanism for pulling the mesh along the rails for arranging the mesh on the frame. Such a pull-out mechanism preferably is adapted to engage a mesh for pulling the mesh along the rail. The pull-out mechanism may be driven automatically by means of a motor or the like, or actuated manually by an operator. The pull-out mechanism preferably is adapted to pull a mesh generally perpendicular to a longitudinal direction of the mining machine.
According to a particular preferred embodiment, the mesh handler includes at least two generally U-shaped rails, arranged substantially in parallel and fixed to each other. Having two rails which are arranged parallel to each other, is beneficial in view of supporting the mesh during both, while pulling out the mesh and arranging it on the frame and while holding the mesh and positioning the mesh against the roof portion of the underground tunnel. Preferably a distance between the two rails is chosen such that the distance is smaller than the width of the mesh to be positioned.
Preferably, the U-shaped rails are interconnected by means of rods, wherein the position of the rods relative to the rails is adjustable. In one example, four rods are used and in another example six rods are used. The number of rods depends on the bolting pattern and profile dimension. Thus, the specific number of rods is of minor importance. The position of the rods preferably is adjustable relative to each other. This is advantageous, when a bolting rig is arranged under the frame and thus needs to drill and bolt through the frame. Dependent on the position of the bolts, the position of the rods interconnecting the rails can be chosen.
In a further preferred embodiment the at least one U-shaped rail includes at least one hinge so that a curvature of the U-shaped rail is adjustable to meet a profile of the roof portion of the underground tunnel. The roof portion of the underground tunnel may vary along the tunnel, or between different tunnels, when the mesh handler is used for different mining projects. When positioning the mesh against the roof portion, it is beneficial when the frame profile and thus the curvature of the at least one U-shaped rail meets a curvature of the roof portion as proper as possible. This helps to properly position the mesh and thus to fix the mesh in a proper way against the roof portion so that safety of the underground tunnel is increased. Preferably, the at least one U-shaped rail includes two hinges, three hinges, four hinges, five hinges, six hinges, seven hinges or eight hinges. Depending on the width of the roof profile of the underground tunnel, a different number of hinges may be preferred. In general, two to four hinges have been shown in practise to be sufficient for most application cases.
In an advantageous embodiment, the U-shaped rail includes a fixed central portion and at least first and second arms pivotally hinged against the central portion. According to such an embodiment, the U-shaped rail includes two hinges. The central portion is fixed with respect to a support, supporting the mesh handler on the mining machine or the like. On two axial ends of the fixed central portion, the first and the second arms are pivotally mounted. In an embodiment comprising two U-shaped rails, both rails are preferably formed substantially identical. In such an embodiment, also the second U-shaped rail includes a fixed central portion and first and second arms pivotally hinged against the central portion. The frame in such an embodiment thus has wing-like extensions or flap-like extensions and the curvature of the U-shaped rails and the frame can be adjusted with respect to the profile of the roof portion of the underground tunnel. For example, the fixed central portion forms the back of the “U” of the U-shaped rail and the first and second arms each form a leg of the “U” of the U-shaped rails.
Preferably, the U-shaped rail includes third and fourth arms, pivotally hinged against the first and second arms respectively. According to this embodiment, third and fourth arms are coupled to axial ends of the first and second arms which are each hinged against the fixed central portion. In this embodiment, the U-shaped rail includes four hinges, first and second hinges between the central portion and the first and second arms, and third and fourth hinges between the first and second arms and the third and fourth arms respectively. It shall be understood that the number of arms is preferably chosen dependent on the desired cutting profile and may range from one to five arms or more on each side of the fixed central portion. Thus, also fifth and sixth, seventh and eighth as well as ninth and tenth arms are also preferred. Preferably, the U-shaped rail is formed such that the number of arms can be chosen by the operator. It is preferably, when each arm includes a hinge portion, such that the operator may connect an additional arm or additional arms to the arm or the fixed central portion. Due to such an embodiment, the U-shaped rail and thus the mesh handler is modular and can be adapted with respect to the specific cutting operation.
Moreover, it is preferred that the mesh handler includes a drive for pivoting the first and second arms respectively. Such a drive in a first embodiment might be formed as a first and second piston drives or first a second spindle drives, which are supported at the central portion and act against the first and second arms respectively. The drive might also comprise a first spindle drive and a second piston drive. In the same manner, when the U-shaped rail includes also third and fourth arms, respective third and fourth piston drives which are supported at the first and the second arms and act against the third and fourth arms, may be provided in a preferred embodiment. It shall be noted, that for achieving the adjustability at least one arm must be adjustable, all others can be adjusted by a spindle or with cylinders. This, however, may result in a complex motion of the arms. Piston drives are preferred, since they are a simple and robust way of pivoting the single arm segments of the U-shaped rail. Moreover, mining machines are provided with a hydraulic and/or pneumatic network for supplying different assemblies with pneumatic and/or hydraulic pressure. Such a network can also be used for supplying the piston drives of the mesh handler. The pistons might be provided with a pressure relief valve, such that when the frame is pushed against the roof portion, for positioning the mesh against the roof portion, damaging of the mesh handler is prevented. When e.g. the curvature of the frame does not fit the curvature of the roof portion at a specific section of the underground tunnel, the arms might be forced to pivot, when the frame is pushed against the roof portion. In such a case, a pressure relief valve may open, thus allowing the arm segments to pivot and damage to the mesh handler can be prevented.
In a further advantageous development of the present invention, at least one rail is formed to be extendable in its length direction. Such a rail is preferably formed of two segments which are assembled together and movable with respect to each other. They are assembled to form a telescopic rail. Due to such an embodiment, it is possible to adjust a span of the frame in a transverse direction of the underground tunnel in a certain range.
In a further preferred development of the invention, the pull-out mechanism includes a traction mechanism, having at least one traction means running along the rail. Preferably, each rail is provided with such a traction mechanism, thus, when two rails are provided, two traction means running along each rail are preferred. Preferably, the rail includes a respective groove, in which the traction means runs. The traction mechanism preferably includes a drive for driving the traction means. With such traction mechanism, pulling out and positioning the mesh on the frame is greatly simplified.
Preferably, the traction means includes a chain; alternatively, the traction means includes a belt. A belt, such as a rope, steel rope, tooth belt or the like is preferred. A chain has the advantage that it is simple to drive e.g. by means of a drive sprocket and can easily be driven to a determined position, since the pitch of the chain is known. According to a further preferred embodiment, a carrier is coupled to the traction means to carry a mesh when the traction means moves along the rail. The carrier is preferably formed such that it is able to selectively couple and decouple a mesh to be positioned on the frame. A carrier may automatically grab a mesh, or may manually be brought into position by an operator. Preferably, the carrier is formed such that the carrier releases the mesh when the mesh is readily positioned on the frame.
When two U-shaped rails are provided, it is preferred that the carrier is formed as a bar, extending at least from rail to rail and having holding means for holding a mesh. Such a carrier can act as a clearing blade or clearing shield, clearing the frame from fragmented rock material lying on the frame. The bar, according to this embodiment, preferably has a length which is at least equal to the width of the mesh, preferably larger. This ensures that the frame is cleared from all fragmented material, which might hinder the mesh pull-out.
According to a further preferred embodiment, the mesh handler includes a sensor for determining a position of the carrier with respect to the frame. In specific applications it might be necessary to move the carrier to a specific position during a drilling and bolting operation, or to move the carrier to a specific position for positioning a mesh in a specific manner. It might be necessary not to position each mesh at the same lateral position within the underground tunnel, but at specific points, e.g. at crossings or the like, it might become necessary to position a mesh offset in a lateral position. Having a sensor for determining a position of the carrier with respect to the frame helps to ensure its operation. Such a sensor may be a rotary sensor coupled to a pulley or sprocket for the chain. Preferably, the sensor is calibrated when the carrier is in the starting position. Alternatively, the sensor is formed as a magnetic sensor, sensing the carrier when it moves along the rail.
According to a further preferred embodiment, the mesh handler includes a holding device for receiving a rolled mesh. Such a holding device may be formed as chute which can receive the rolled mesh. The holding device preferably is fixed against the frame, such that the position of the holding device and the frame is fixed with respect to each other. The holding device may be coupled with an axial end of the U-shaped rail, thus with an axial end of the outermost arm. So the device may be formed such that the rolled mesh is placed therein manually by an operator or by means of an automatic feeding device. The holding device may be formed such that it can receive more than one rolled mesh.
Moreover, it is preferred that the mesh handler includes a lifting device for lifting the frame against the roof portion. Such a lifting device is preferably found as a pneumatic or hydraulic device, comprising pneumatic or hydraulic cylinders. The lifting device is preferably supported on the mining machine, preferably on a frame of the mining machine.
Preferably, the lifting device allows axial movement of the frame in a longitudinal direction of the mining machine for overlapping placement of the meshes. When the mining machine moves forward, and the next mesh shall be placed, it is preferred that the lifting device can adjust the frame in the longitudinal direction so that the meshes can be placed properly. It is important that the meshes placed on the roof portion overlap each other to a certain degree, such that no gaps between meshes are present. However, it is also preferred that an overlapping portion between two meshes is not too large so that not too many drilling and bolting operations are necessary for the whole tunnel. This helps increasing efficiency of the meshing process. Alternatively, the axial movement is provided by a separate axial moving means which is not necessarily integrated with the lifting device. Such an axial movement means may be formed as a pusher bar, a plunger, a spindle or the like.
According to a second aspect of the invention, the objective defined in the introductory portion is solved by a mining machine for use in subterranean roadways, in particular suitable for creating tunnels or in subterranean roadways and the like, comprising a drive unit for moving the mining machine in a longitudinal direction and a mesh handler according to at least one of the beforehand described embodiments of a mesh handler according to the first aspect of the invention.
The longitudinal direction refers to the machine direction of the mining machine. In a first preferred embodiment of the mining machine, the mining machine further includes a cutting arm configured for a pivotal movement around at least one axis, a cutting head mounted to the cutting arm, the cutting head comprising at least one rotatable cutting element for detaching material from a rock face, and a device for the installation of rock bolts, wherein the mesh handler is arranged substantially above the device for the installation of rock bolts. And the device for installation of rock bolts preferably includes a support structure and first and second bolting units mounted to their support structure. Each of the bolting units is configured for moving a rock bolt into a rock face. The supporting structure is configured for rotatable moving the first and the second bolting units about a common axis of rotation. Several actuators are mounted to the supporting structure and configured for additionally moving at least one of the first and second bolting units.
Since the first and second bolting units are mounted to the supporting structure that is configured for rotatable moving the first and second bolting units about a common axis of rotation, the first and second bolting units can be roughly aligned to a desired orientation. The common axis of rotation of the first and second bolting units usually corresponds to or extends parallel to a horizontal central middle axis of the tunnel. In order to allow for a radial orientation of at least one of the first and second bolting units to the horizontal central middle axis of the tunnel, the first actuator can be used to adapt the orientation and/or position of at least one of a first and second bolting units after the first and second bolting units have been rotated simultaneously about the common axis of rotation. This ensures radial placement of the bolts. The first and second bolting units can be rotated such that bolts are fed to edges of the mesh to be placed and the mesh can be safely fixed against the roof portion.
A specific implementation of the present invention will now be described, by way of example only, and with reference to the accompanying drawings in which:
Referring to
Mining machine 1000 is configured specially for operation in undercutting mode in which a plurality of rotatable roller cutters 1270 may be forced into the rock to create a groove or a channel and then to be pivoted vertically upwards so as to overcome the reduced tensile force immediately above the groove or a channel and to break the rock. Accordingly, the present mining machine is optimized for forward advancement into the rock or a mineral utilizing less force and energy typically required for a conventional compression type cutters that utilize cutting bits or peaks mounted at rotatable heads. However, the present invention is not limited to such mining machines, but can also be used for other mining machines which advance in the rock or mineral for cutting a tunnel or subterranean roadway.
The main frame 1020 has lateral sides 3020 to be orientated towards the wall or the tunnel; an upward facing region 3000 to be orientated towards a roof of the tunnel; a downward facing region 3010 orientated to be facing the floor of the tunnel; a forward facing end 3030, intended to be positioned facing the cutting face and a rearward facing end 3040 intended to be positioned facing away from the cutting face.
An undercarriage 1090 is mounted generally below main frame 1020 and in turn mounts a pair of crawler tracks 1030 driven by a hydraulic (or electric) motor to provide forward and rearward movement of the mining machine 1000 over the ground, when in a non-cutting mode. A pair of rear ground-engaging jacking legs 1060 is mounted at frame sides 3020 towards rearward end 3040 and is configured to extend and retract linearly relative to frame 1020. A frame 1020 further includes a forward pair of jacking legs 1150 also mounted at each frame side 3020 and towards forward end 3030 and being configured to extend and retract to engage the floor tunnel. By actuating of legs 1060 and 1150, main frame 1020 and in particular tracks 1030 may be raised and lowered in the upward and downward direction so as to suspend tracks 1030 of the ground to position the mining machine 1000 in a cutting mode. A pair of roof engaging grippers 1050, 1080 project upwardly from main frame 1020 at frame rearward end 3040 and are extendable and retractable linearly in the upward and downward direction via control cylinders 1160. Grippers 1050, 1080 are therefore configured to be raised into contact with the tunnel roof and in extendable combination with jacking legs 1060, 1150 are configured to wedge the mining machine 1000 in a stationary position between the tunnel floor and roof when in the cutting mode.
A sledge 1040 is coupled to a linear hydraulic cylinder (not shown in
A pair of hydraulically actuated bolting units 900a, 900b are mounted at main frame 1020 between sledge 1040 and roof gripping unit 1050, 1160, relative to a lengthwise direction of the mining machine 1000. Bolting units 900a, 900b are configured to secure a mesh 100 (see in particular
For a more detailed description of the mining machine 1000, reference is made to the (non-disclosed) application PCT/EP2015/072842.
In use, the mining machine 1000 is wedged between the tunnel floor and roof via jacking legs 1060, 1150 and roof grippers 1050, 1080. The sledge 1040 may then be displaced in a forward direction, relative to main frame 1020 to engage roller cutters 1270 onto the rock face. Cutting heads 1280 are rotated (in
When the maximum forward travel of sledge 1040 is achieved, jacking legs 1060, 1150 are retracted to engage tracks 1030 onto the ground. The tracks 1030 are orientated to be generally declined (at an angle of approximately 10° relative to the floor) such that when ground contact is made, the roller cutters 1270 are raised vertically so as to clear the tunnel floor. The mining machine 1000 may then be advanced forward via tracks 1030. Jacking legs 1060, 1150 may then be actuated again to raise tracks 1030 off the grounds and grippers 1050, 1080 move into contact with the tunnel roof to repeat the cutting cycle. The forwardmost roof gripper 1080 is mounted above slat 1040 to stabilize the mining machine 1000, when sledge 1040 is advanced in the forward direction via linearly actuating cylinders.
After each cutting operation, when the mining machine 1000 is moved forward, it is necessary to place a mesh at the tunnel roof and to fix this mesh via respective bolts. The bolts are implemented by means of the bolting units 900a, 900b after the mesh 100 has been placed by means of the mesh handler 1.
The mesh handler 1, according to this present invention, is preferably arranged between the foremost gripper 1080 and the rearmost grippers 1050 above the bolting units 900a, 900b. However, it should be understood that in other mining machines, which may comprise a different structural design, the mesh handler 1 may be placed at a different position, nevertheless it is preferred to mount the mesh handler over a respective bolting unit.
The mesh handler 1 includes a generally U-shaped frame 2 for receiving and positioning a mesh 100 against a generally U-shaped roof 110 portion of an underground tunnel (see
The U-shaped rails 4, 6 are interconnected by means of rods 10 (in
The mesh handler 1 includes a central body portion 12 housing a drive (see
When a desired axial position is found (see
In
Each rail has a fixed central portion 30a, 30b connected to the body portion 12. The central portions 30a, 30b comprise ring guides 32 (only 2 shown in
Against the central portions 30a, 30b, first and second arms 34a, 34b, 36a, 36b are connected via first hinges 38a, 38b and second hinges 39a, 39b, respectively. In some applications it might be sufficient to only have the first arms 34a, 34b and the second arms 36a, 36b, however as shown in
In this exemplary embodiment, a third arm 40a, 40b is connected to the first arm 34a, 34b via a third hinge 41a, 41b. Respectively, a fourth arm 42a, 42b is connected to the third arm 36a, 36b via a respective fourth hinge 43a, 43b. Moreover, a fifth arm 44a, 44b is connected via a fifth hinge 45a, 45b to the third arm 40a, 40b. Respectively, a sixth arm 46a, 46b is connected to the fourth arm 42a, 42b via a sixth hinge 47a, 47b (see
Each arm 34a, 34b, 36a, 36b, 40a, 40b, 42a, 42b, 44a, 44b, 46a, 46b is connected with its respective counterpart of the first and second rails 4, 6, respectively via a rod 10. Each rod 10 includes at its axial ends respective fixing plates 11 which can be screwed against the respective arm. At the arms, a plurality of screw-threaded bolts 48 (in
Now, turning to
In
Similarly, angle adjustment means 60, 62 are provided between the third and fifth arms 40b, 44b as well as between the fourth and sixth arms 42b, 46b. They are similar to the angle adjustment means 56, 58 or the spindle 52 and cylinder 54.
As can be seen in
At both axial ends of the support bar 72, respective holding fingers 76a, 76b are fixed. These holding fingers 76a, 76b include an engagement section 78a, 78b for engaging the rolled mesh 100 in such a manner that it is turnable about its axis M (see
A free end 101 of the mesh 100 is received clamping bar 80 which itself is pivotally fixed against bar 82. Together the clamping bar 80 and the bar 82 form a carrier 81 which is part of a pull-out mechanism 84.
The guide means 8 include the pull-out mechanism 84. Besides the bar 82, the pull-out mechanism 84 includes traction means 85a, 85b which are formed as chains. The chains 85a, 85b run in respective grooves 86a, 86b, formed along the rails 4, 6. Within the rails 4, 6, a drive sprocket 87a, 87b is provided and a plurality of pulleys 88a, 88b, 88c, 88d (see
Since the chains 85a, 85b are not elastic, however, the curvature of the bars 4, 6 may vary due to the drive 50, the sixth arm 46a, 46b is formed as an extendable arm. This can best be seen in
Moreover, also the fifth arms 44a, 44b may be formed in such a telescopic manner and comprise mechanical tensioning spindle 96 (see
When a mesh 100 shall be applied to a roof portion 110 of the underground tunnel (see
When the bolting operation is finished, the frame 2 can be lowered again, such that it is not in contact with the roof portion 110 of the tunnel. Subsequently, the bar 82 can be moved backwards again to the initial position (see
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/053839 | 2/24/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/144090 | 8/31/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5816750 | Steffenino | Oct 1998 | A |
5870872 | Hinnen | Feb 1999 | A |
8137033 | Hinshaw et al. | Mar 2012 | B1 |
20030230925 | Oishi | Dec 2003 | A1 |
20080279627 | Junker et al. | Nov 2008 | A1 |
20120213598 | Lugg | Aug 2012 | A1 |
20140070599 | Steinberg | Mar 2014 | A1 |
20150086280 | Lugg | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
2704222 | Aug 1978 | DE |
2704222 | Aug 1978 | DE |
2836659 | Mar 1980 | DE |
8021912 | Jan 1981 | DE |
3107876 | Sep 1982 | DE |
202111050143 | Oct 2012 | DE |
1298283 | Sep 2001 | EP |
1244574 | Sep 1971 | GB |
2522325 | Jul 2014 | RU |
02103162 | Dec 2002 | WO |
2010050872 | May 2010 | WO |
2011093777 | Aug 2011 | WO |
2012156841 | Nov 2012 | WO |
2012156842 | Nov 2012 | WO |
2012156884 | Nov 2012 | WO |
2014028924 | Feb 2014 | WO |
2014090589 | Jun 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20190048719 A1 | Feb 2019 | US |