All of the material in this patent document is subject to copyright protection under the copyright laws of the United States and other countries. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in official governmental records but, otherwise, all other copyright rights whatsoever are reserved.
Mesh networks utilize timers to synchronize the nodes participating in the networks. In particular, each node typically utilizes a crystal oscillator to coordinate its operation with that of other nodes in the network. Unfortunately, the use of such timers by mesh networks to control communications causes throughput, synchronization, power consumption, bit error rate (BER), RF “stealth” and RF noise issues. Mesh networks suffer from a geometric loss of throughput because the state in which the nodes wake up is random. Many schemes are employed to mitigate the issues listed above but at the expense of other parameters.
As previously mentioned, mesh networks synchronize their nodes using timers. Timing issues and crystal oscillator tolerances make time alignment and frequency drift a problem that causes the nodes to wake-up outside their designated time slot. Waking up at the wrong time can lead to the total inability of the nodes to communicate with each other. Other disadvantages include that a large number of nodes can cause interference issues because the nodes are able to receive signals of all of the nodes in range. Further, BER is adversely affected because so many nodes are communicating simultaneously. In addition, RF signatures are readily seen and preclude the use of the networks for surveillance applications.
Based on the foregoing, a need exists for improvement in mesh network control in order to avoid problems presently associated with the use of timers.
Broadly described, the present invention includes many aspects and features.
The invention relates to ad hoc wireless mesh networking utilizing a data communication device for each of a plurality of nodes thereof, wherein the data communication device includes both a two-way communications component comprising a first receiver and transmitter, and a second receiver, and wherein the second receiver activates the two-way communications component from a dormant state upon receipt by the second receiver of a wake-up broadcast that includes a wake-up identifier of the data communication device.
In accordance with an aspect of the invention, a method of activating and deactivating a mesh network for mesh network communications includes: transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, activates the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications; and transmitting a second broadcast that includes a second identifier such that the two-way communications component of each data communication device identified by the second identifier, upon receiving the second broadcast, will cease its mesh networking communications and will return to the dormant state
In features of this aspect, the second broadcast is transmitted by the first transmitter of the two-way communications component of a data communication device; the second receiver of a data communication device is part of a wake-up transceiver of in data communication device, and wherein the second broadcast is transmitted by a second transmitter of the wake-up transceiver; the second broadcast is received by the first receiver of the two-way communications component of a data communication device; the second broadcast is received by the second receiver of a data communication device; the second receiver of a data communication device is part of a wake-up transceiver in the data communication device, and wherein the second broadcast is received by the second receiver of the wake-up transceiver; the two-way communications component of each data communication device is off when in the dormant state; the second receiver of a data communication device draws substantially less current while listening for a wake-up broadcast than the two-way communications component would draw while listening for a wake-up broadcast; the second receiver of a data communication device draws less current while listening for a wake-up broadcast than the two-way communications component would draw while listening for a wake-up broadcast, the difference in current draw being at least an order of magnitude (such as milliamps versus microamps); the second receiver of a data communication device utilizes a stepped wake-up sequence based on at least two criteria, and wherein the last criteria before awakening the two-way communications component comprises identifying a wake-up identifier of the data communication device in the wake-up broadcast; and the second receiver of a data communication device is part of a wake-up transceiver, the wake-up transceiver further comprising a second transmitter of the data communication device that is configured to transmit a wake-up broadcast for receipt by another wake-up receiver of another data communication device
In an additional feature, the wake-up identifier represents a node performance characteristic. The performance characteristic may include bit error rate; throughput of the node; strength of the radiofrequency communication link; and range, determined using values such as Received Signal Strength Indication, or “RSSI”
Furthermore, the mesh network that is activated may include only a subset of nodes out of a plurality of nodes that otherwise are available for making a larger mesh network. In this respect, the selection of nodes preferably is determined based on the wake-up identifier included in the wake-up broadcast that is transmitted
Still yet, in a feature of this aspect, a portion of a time interval T of the mesh network, during which interval mesh networking communications are performed, is measured beginning with a time of the wake-up broadcast, whereby all nodes participating in the mesh network are synchronized for mesh communications. The time of the wake-up broadcast may be the time of initial transmission of the wake-up broadcast
In another aspect, a method of activating two mesh networks for independent and separate mesh network communications includes the steps of: transmitting a first wake-up broadcast that includes a first wake-up identifier such that each second receiver of each data communication device identified by the first wake-up identifier, upon receiving the first wake-up broadcast, will activate the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications via a first mesh network; and transmitting a second wake-up broadcast that includes a second wake-up identifier such that each second receiver of each data communication device identified by the second wake-up identifier, upon receiving the second wake-up broadcast, will activate the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications via a second mesh network.
In a feature of this aspect, the second wake-up broadcast is transmitted after transmitting the first wake-up broadcast such that a portion of a first time interval T1 of the first mesh network, during which mesh networking communications are performed, does not overlap with a portion of a second time interval T2 of the second mesh network, during which mesh networking communications are performed.
In further features of this aspect, the method also includes the step of transmitting a third broadcast that includes a third identifier such that the two-way communications component of each data communication device identified by the first wake-up identifier, upon receiving the third broadcast, will cease its mesh networking communications and will return to the dormant state; and the step of transmitting a fourth broadcast that includes a fourth identifier such that the two-way communications component of each data communication device identified by the second wake-up identifier, upon receiving the fourth broadcast, will cease its mesh networking communications and will return to the dormant state.
In another feature, the method further includes the step of transmitting a third broadcast that includes a third identifier such that the two-way communications component of each data communication device identified by either of the first wake-up identifier or the second wake-up identifier, upon receiving the third broadcast, will cease its mesh networking communications and will return to the dormant state.
In yet another aspect of the invention, a method of activating a mesh network for mesh network communications includes the step of transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, activates the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications.
In still another aspect of the invention, an ad hoc mesh networking system includes an ad hoc mesh network utilizing a plurality of data communication devices as nodes of the network; wherein each data communication device includes both a two-way communications component, comprising a first receiver and transmitter, and a second receiver, wherein the second receiver activates the two-way communications component from a dormant state upon receipt by the second receiver of a wake-up broadcast that includes a wake-up identifier of the data communication device; and wherein a mesh network is activated for mesh network communications by transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, will activate the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications.
In yet still another aspect of the invention, a data communication device for utilization as a node in an ad hoc mesh network includes a two-way communications component comprising a first receiver and transmitter; and a second receiver, wherein the second receiver activates the two-way communications component from a dormant state upon receipt by the second receiver of a wake-up broadcast that includes a wake-up identifier of the data communication device; wherein a mesh network is activated for mesh network communications by transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, will activate the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications.
Another aspect of the invention includes computer executable instructions stored in a computer readable medium for performing any of the foregoing aspects and features, including any combinations thereof.
In addition to the aforementioned aspects and features of the invention, it should be noted that the invention further includes the various possible combinations of such aspects and features, including the combinations of such aspects and features with those aspects and features of the incorporated references from which priority is claimed.
One or more preferred embodiments of the present invention now will be described in detail with reference to the accompanying drawings, wherein:
As a preliminary matter, it will readily be understood by one having ordinary skill in the relevant art (“Ordinary Artisan”) that the present invention has broad utility and application. Furthermore, any embodiment discussed and identified as being “preferred” is considered to be part of a best mode contemplated for carrying out the present invention. Other embodiments also may be discussed for additional illustrative purposes in providing a full and enabling disclosure of the present invention. Moreover, many embodiments, such as adaptations, variations, modifications, and equivalent arrangements, will be implicitly disclosed by the embodiments described herein and fall within the scope of the present invention.
Accordingly, while the present invention is described herein in detail in relation to one or more embodiments, it is to be understood that this disclosure is illustrative and exemplary of the present invention, and is made merely for the purposes of providing a full and enabling disclosure of the present invention. The detailed disclosure herein of one or more embodiments is not intended, nor is to be construed, to limit the scope of patent protection afforded the present invention, which scope is to be defined by the claims and the equivalents thereof. It is not intended that the scope of patent protection afforded the present invention be defined by reading into any claim a limitation found herein that does not explicitly appear in the claim itself.
Thus, for example, any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may be carried out in various different sequences and orders while still falling within the scope of the present invention. Accordingly, it is intended that the scope of patent protection afforded the present invention is to be defined by the appended claims rather than the description set forth herein.
Additionally, it is important to note that each term used herein refers to that which the Ordinary Artisan would understand such term to mean based on the contextual use of such term herein. To the extent that the meaning of a term used herein—as understood by the Ordinary Artisan based on the contextual use of such term—differs in any way from any particular dictionary definition of such term, it is intended that the meaning of the term as understood by the Ordinary Artisan should prevail.
Furthermore, it is important to note that, as used herein, “a” and “an” each generally denotes “at least one,” but does not exclude a plurality unless the contextual use dictates otherwise. Thus, reference to “a picnic basket having an apple” describes “a picnic basket having at least one apple” as well as “a picnic basket having apples.” In contrast, reference to “a picnic basket having a single apple” describes “a picnic basket having only one apple.”
When used herein to join a list of items, “or” denotes “at least one of the items,” but does not exclude a plurality of items of the list. Thus, reference to “a picnic basket having cheese or crackers” describes “a picnic basket having cheese without crackers”, “a picnic basket having crackers without cheese”, and “a picnic basket having both cheese and crackers.” Finally, when used herein to join a list of items, “and” denotes “all of the items of the list.” Thus, reference to “a picnic basket having cheese and crackers” describes “a picnic basket having cheese, wherein the picnic basket further has crackers,” as well as describes “a picnic basket having crackers, wherein the picnic basket further has cheese.”
Referring now to the drawings, one or more preferred embodiments of the present invention are next described. The following description of one or more preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its applications, or uses.
In this respect, a “node” refers to a wireless radio frequency data communication device that comprises a two-way communications component in the form of a transceiver that receives and transmits information wirelessly with one or more other nodes. The data communication device preferably includes a low-power radio frequency (“LPRF”) data communication device that communicates via data packets. The transmission of the data packets may utilize, for example, transmission control protocol (“TCP”). The two-way communications component of the data communication device also preferably is standards-based radio (“SBR”) and comprises, for example, a WiFi, WiMAX, CDMA, WCDMA, GSM, Zigbee®, Ultra-Wideband, or Bluetooth radio. Indeed, in connection with the one or more preferred embodiments described below, the SBR preferably comprises a Bluetooth radio.
The data communication device of a node of the wireless network may be mobile or fixed at a particular location, and the data communication device may include an internal power supply source or utilize an external power supply source. The data communication device also may include an interface for communicating with an associated sensor or other data acquisition device, which sensor may or may not form part of the node. The data communication device constituting the node also or alternatively may be attached to an asset that is to be monitored and/or tracked; alternatively, the data communication device constituting the node may be permanently affixed to a structure for monitoring and/or tracking assets that come within proximity thereto.
In accordance with the invention, the nodes utilize common designation networking in combination with wake-up technologies. Common designation networking is perhaps best disclosed in the incorporated U.S. Pat. Nos. 6,745,027 and 7,221,668. When the nodes are associated with assets, common designation identifiers representing attributes or characteristics of the assets are typically used, which common designations often are referred to as “class” designations. Similarly, ad hoc networks formed based thereon are often referred to as “class-based” networks and communications in such networks are often referred to as “class-based” communications. In accordance with common designation networking, a node screens each transmission for a data identifier that represents a common designation of that node. The node does not process, route, or respond to an incoming transmission if the data identifier is not found. As will be appreciated, common designation networking greatly reduces RF noise when many nodes are within broadcast range of each other and greatly increase operating life of mobile nodes that dependent on battery sources, as the nodes do not needlessly respond to all transmissions, filtering out and processing, routing, and/or responding to only those transmission bearing its common designation.
As further disclosed in the incorporated references, it will be appreciated that a node may have more than one common designation at any given time, and that a common designation may represent a subset or a superset of another common designation (sometimes referred to as class and subclass).
The wake-up technologies that are utilized in accordance with the invention are perhaps best disclosed in U.S. Pat. No. 7,209,771 and U.S. Patent Appl. Publication No. 2006/0287008. These two incorporated references disclose alternative approaches for the wake-up technologies that may be used.
Specifically, in incorporated U.S. Pat. No. 7,209,771, each node of the wireless ad hoc network includes—in connection with the SBR—a wake-up receiver that listens for a wake-up broadcast that includes a common designation of that node. Upon receiving such a wake-up broadcast, the wake-up receiver provides an electronic signal that activates the SBR, which resides in a dormant state (either off or in a reduced power standby mode) while the wake-up receiver is listening for an applicable broadcast. The wake-up receiver is a simplified receiver that draws much less current when listening for an applicable broadcast compared to the current that would be drawn by the SBR when listening for an applicable broadcast. Hence, significant power conservation and long battery life is achieved using such a wake-up receiver.
Furthermore, this wake-up receiver may screen only for a predetermined common designation, as disclosed in U.S. Patent Appl. Publication No. 2006/0287008. Alternatively, a more complicated stepped wake up of the SBR may be performed using the wake-up receiver, wherein the wake-up receiver first screens for one or more criteria before screening for the common designation in the wake-up broadcast. Such a stepped wake-up methodology is disclosed, for example, in the incorporated U.S. Patent Appl. Publication No. US 2006/0276161. Screening for criteria that is indicative of an actual wake-up broadcast being received can be beneficial when significant RF noise is present, whereby false indications of the receipt of a wake-up broadcast can be reduced.
In incorporated U.S. Patent Appl. Publication No. 2006/0287008, a wake-up transceiver is disclosed. The wake-up transceiver is similar to the aforementioned wake-up receiver, but further includes a transmitter by which a wake-up broadcast may be transmitted without necessarily having to activate the SBR. In the data communication devices of U.S. Pat. No. 7,209,771, the SBR sends a wake-up broadcast whereas, in U.S. Patent Appl. Publication No. 2006/0287008, the wake-up broadcast may be sent by the wake-up transceiver without having to activate the SBR. Avoiding booting up of the SBR has been found to result in significant power savings, and while the SBR has additional features and functionality not provided by the wake-up transceiver, such features and functionality is not required in transmitting a wake-up broadcast.
As used herein, “wake-up component” is intended to mean either a wake-up receiver or wake-up transceiver, as disclosed in these incorporated references, and each node of
Returning to
The nodes 20 preferably remain in a dormant state, shown in
A communication event 30 is shown as occurring at the node 20 labeled “N1” in
As shown in
Importantly, the wake-up broadcast 32, labeled “W” in
It will be appreciated that longer communication events 30, i.e., those that require multiple periods to complete, may be long enough that individual nodes 20 may enter or leave the mesh network 10 during the event 30. For this reason, it may be useful, during longer events 30, to retransmit the wake-up broadcast 32 (not illustrated) periodically to activate and synchronize any nodes 20 that arrive after the initial start of the event 30 (or that arrive after the last synchronizing wake-up broadcast 32 in the event 30).
As noted previously, once awakened, each node 20 in the network 10 remains prepared to participate in individual node communication 34 pertaining to the respective communication event 30 during a designated portion of each predetermined period following the wake-up broadcast 32 until the event 30 is over. Generally, the event 30 is over when the necessary individual node communication 34 is complete. In at least some embodiments, a message may be sent by the originating node N1, via the final individual node communication 34, once the event 30 is complete, in order to end the transmissions and place all of the nodes back into the dormant state described above to await another common designation wake-up broadcast 32 that signifies the beginning of another event 30. Thus, as will now be appreciated, the periodic communications during interval T in the mesh nodes only occurs during a communication event and, when no communication event is occurring, no transmissions are made in the mesh network, even if such period of inactivity exceeds interval T. Using wake-up broadcasts, the operation of the mesh network in an otherwise conventional manner can be turned off and on as needed.
In addition, however, a wake-up broadcast 36 may be utilized to terminate the event 30, break the event 30 up into multiple sequences or delay the completion of the event 30 given application requirements. Such a wake-up broadcast 36, labeled “E,” is illustrated in
Again, once awakened, each node 20 in the network 10 remains prepared to participate in individual node communication 34 pertaining to the respective communication event 30 during a designated portion of each predetermined period following the wake-up broadcast 32 until the event 30 is over, with the event 30 generally being over when the necessary individual node communication 34 is complete. However, unlike the approach described with regard to
Common designations used as identifiers preferably are used to sort the nodes 20 into a plurality of mesh networks. Moreover, the common designations may be based on various performance factors, including, for example, throughput of the node, strength of the RF link, range (using values in the node such as Received Signal Strength Indication, or “RSSI”), and other characteristics that could affect overall performance. The nodes 20 measure these parameters and activate common designations stored in tables on the nodes 20 thereby allowing network 110 to be selectively formed based on desired network performance metrics.
For instance, nodes 20 with weaker signal strengths can be triggered with the expectation of sending data across a longer distance with a fewer number of hops.
In particular, the nodes 20 may remain in a dormant state until a communication event 30 occurs, shown in
In addition, nodes with higher bit error rates (“BER”) could also be chosen to chose longer hops. This technique would minimize delay and move smaller amounts of data through the network 210 quickly. Alternatively, if higher bandwidth is required, a wake-up could choose strong RF links to minimize retransmissions. Further, direct node links could be established between two points, thus optimizing data throughput.
It will be appreciated that common designations may further configured using a combination of network parameters. For example, four common designations may be established, wherein a first common designation is configured for strong signal strength and high throughput, a second common designation is configured for weak signal strength and high throughput, a third common designation is configured for strong signal strength and low throughput, and a fourth common designation is configured for weak signal strength and low throughput. A wide variety of combinations and approaches may likewise be utilized without departing from the scope of the present invention.
It will also be appreciated that the use of classes configured in correspondence with any of the various network parameters, including for example the signal strength or throughput illustrated herein, or combination thereof, may be used to control the operation of a mesh network 10,110,210 by controlling the triggering and synchronization of communications as described previously.
The method of the present invention has many advantages. It enables the ability to turn parts of the network on and off to optimize throughput. It reduces RF noise so that throughput can be significantly improved. It enables direct connect of nodes and node resources. It enables the use of Class 1 Bluetooth radios (average 300 ft range) as opposed to Class 2 Bluetooth radios (average 100 ft range) since the nodes are in a low power wake-up mode most of the time. It enables tighter control of nodes thereby enabling network formation based on application and/or environment. It also enables the transmission to be offset in time thereby reducing collisions and RF noise. In addition, RF noise is significantly reduced, and RF collisions are minimized thereby enabling lower BER and increasing usable data throughput.
Based on the foregoing description, it will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those specifically described herein, as well as many variations, modifications, and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing descriptions thereof, without departing from the substance or scope of the present invention.
Accordingly, while the present invention has been described herein in detail in relation to one or more preferred embodiments, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for the purpose of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended to be construed to limit the present invention or otherwise exclude any such other embodiments, adaptations, variations, modifications or equivalent arrangements, the present invention being limited only by the claims appended hereto and the equivalents thereof.
The present application is a U.S. continuation patent application of, and claims priority under 35 U.S.C. §120 to, international patent application serial number PCT/US2008/054633 filed on Feb. 21, 2008, and designating the United States, which published as WO2008/103863 on Aug. 28, 2008, and which is a U.S. nonprovisional patent application of, and claims priority under 35 U.S.C. §119(e) to, U.S. provisional patent application Ser. No. 60/890,990, filed Feb. 21, 2007. Each of these patent applications and patent application publication is hereby incorporated herein by reference. The present application incorporates herein by reference each of: U.S. Pat. Nos. 6,745,027; 6,934,540; 7,209,771; and 7,221,668 as well as U.S. patent application publication nos. 2006/0276161; 2006/0287008; 2007/0002792; and 2007/0155327.
Number | Name | Date | Kind |
---|---|---|---|
3805265 | Lester | Apr 1974 | A |
4165024 | Oswalt et al. | Aug 1979 | A |
4613990 | Halpern | Sep 1986 | A |
4680583 | Grover | Jul 1987 | A |
4688244 | Hannon et al. | Aug 1987 | A |
4750197 | Denekamp et al. | Jun 1988 | A |
4817537 | Cripe et al. | Apr 1989 | A |
5040238 | Comroe et al. | Aug 1991 | A |
5054052 | Nonami | Oct 1991 | A |
5117501 | Childress et al. | May 1992 | A |
5129096 | Burns | Jul 1992 | A |
5210540 | Masumoto | May 1993 | A |
5265025 | Hirata | Nov 1993 | A |
5295154 | Meier et al. | Mar 1994 | A |
5331637 | Francis et al. | Jul 1994 | A |
5369784 | Nelson | Nov 1994 | A |
5400254 | Fujita | Mar 1995 | A |
5425051 | Mahany | Jun 1995 | A |
5442758 | Slingwine et al. | Aug 1995 | A |
5511232 | O'Dea et al. | Apr 1996 | A |
5565858 | Guthrie | Oct 1996 | A |
5579306 | Dent | Nov 1996 | A |
5590409 | Sawahashi et al. | Dec 1996 | A |
5596652 | Piatek et al. | Jan 1997 | A |
5604892 | Nuttall et al. | Feb 1997 | A |
5606313 | Allen et al. | Feb 1997 | A |
5640151 | Reis et al. | Jun 1997 | A |
5652751 | Sharony | Jul 1997 | A |
5682379 | Mahany et al. | Oct 1997 | A |
5686902 | Reis et al. | Nov 1997 | A |
5732007 | Grushin et al. | Mar 1998 | A |
5761195 | Lu et al. | Jun 1998 | A |
5790946 | Rotzoll | Aug 1998 | A |
5793882 | Piatek et al. | Aug 1998 | A |
5833910 | Teixido | Nov 1998 | A |
5862803 | Besson | Jan 1999 | A |
5890054 | Logsdon et al. | Mar 1999 | A |
5892441 | Woolley et al. | Apr 1999 | A |
5907491 | Canada et al. | May 1999 | A |
5917423 | Duvall | Jun 1999 | A |
5939982 | Gagnon et al. | Aug 1999 | A |
5943610 | Endo | Aug 1999 | A |
5950124 | Trompower et al. | Sep 1999 | A |
5974236 | Sherman | Oct 1999 | A |
5977913 | Christ | Nov 1999 | A |
6005884 | Cook et al. | Dec 1999 | A |
6006100 | Koenck et al. | Dec 1999 | A |
6072784 | Agrawal et al. | Jun 2000 | A |
6078789 | Bodenmann et al. | Jun 2000 | A |
6091724 | Chandra et al. | Jul 2000 | A |
6097707 | Hodzic et al. | Aug 2000 | A |
6104512 | Batey, Jr. et al. | Aug 2000 | A |
6118988 | Choi | Sep 2000 | A |
6125306 | Shimada et al. | Sep 2000 | A |
6127928 | Issacman | Oct 2000 | A |
6127976 | Boyd et al. | Oct 2000 | A |
6134587 | Okanoue | Oct 2000 | A |
6192400 | Hanson et al. | Feb 2001 | B1 |
6198913 | Sung et al. | Mar 2001 | B1 |
6201974 | Lietsalmi et al. | Mar 2001 | B1 |
6256303 | Drakoulis et al. | Jul 2001 | B1 |
6313745 | Suzuki | Nov 2001 | B1 |
6354493 | Mon | Mar 2002 | B1 |
6360169 | Dudaney | Mar 2002 | B1 |
6381467 | Hill et al. | Apr 2002 | B1 |
6404082 | Rasinski et al. | Jun 2002 | B1 |
6405102 | Swartz et al. | Jun 2002 | B1 |
6409082 | Davis et al. | Jun 2002 | B1 |
6418299 | Ramanathan | Jul 2002 | B1 |
6424260 | Maloney | Jul 2002 | B2 |
6424264 | Giraldin et al. | Jul 2002 | B1 |
6427913 | Maloney | Aug 2002 | B1 |
6437692 | Petite | Aug 2002 | B1 |
6473607 | Shohara et al. | Oct 2002 | B1 |
6476708 | Johnson | Nov 2002 | B1 |
6512478 | Chien | Jan 2003 | B1 |
6529142 | Yeh et al. | Mar 2003 | B2 |
6542114 | Eagleson et al. | Apr 2003 | B1 |
6547137 | Begelfer et al. | Apr 2003 | B1 |
6559620 | Zhou et al. | May 2003 | B2 |
6587755 | Smith et al. | Jul 2003 | B1 |
6600418 | Francis et al. | Jul 2003 | B2 |
6611556 | Koerner et al. | Aug 2003 | B1 |
6614349 | Proctor et al. | Sep 2003 | B1 |
6617962 | Horwitz et al. | Sep 2003 | B1 |
6665585 | Kawase | Dec 2003 | B2 |
6700533 | Werb et al. | Mar 2004 | B1 |
6720888 | Eagleson et al. | Apr 2004 | B2 |
6737974 | Dickinson | May 2004 | B2 |
6747562 | Giraldin et al. | Jun 2004 | B2 |
6753775 | Auerbach et al. | Jun 2004 | B2 |
6760578 | Rotzoll | Jul 2004 | B2 |
6761312 | Piatek et al. | Jul 2004 | B2 |
6765484 | Eagleson et al. | Jul 2004 | B2 |
6816063 | Kubler et al. | Nov 2004 | B2 |
6847892 | Zhou et al. | Jan 2005 | B2 |
6919803 | Breed | Jul 2005 | B2 |
6927688 | Tice | Aug 2005 | B2 |
6940392 | Chan et al. | Sep 2005 | B2 |
6975614 | Kennedy | Dec 2005 | B2 |
7012529 | Sajkowsky | Mar 2006 | B2 |
7027773 | McMillin | Apr 2006 | B1 |
7088229 | Johnson | Aug 2006 | B2 |
7098784 | Easley et al. | Aug 2006 | B2 |
7103344 | Menard | Sep 2006 | B2 |
7126470 | Clift et al. | Oct 2006 | B2 |
7142121 | Chan et al. | Nov 2006 | B2 |
7191934 | Miller et al. | Mar 2007 | B2 |
7196622 | Lambright et al. | Mar 2007 | B2 |
7209468 | Twitchell, Jr. | Apr 2007 | B2 |
7212122 | Gloekler et al. | May 2007 | B2 |
7221668 | Twitchell, Jr. | May 2007 | B2 |
7230933 | Bahl et al. | Jun 2007 | B2 |
7282944 | Gunn et al. | Oct 2007 | B2 |
7348875 | Hughes et al. | Mar 2008 | B2 |
7349803 | Belenkii et al. | Mar 2008 | B2 |
7349804 | Belenkii et al. | Mar 2008 | B2 |
7376507 | Daily et al. | May 2008 | B1 |
7440781 | Beach et al. | Oct 2008 | B2 |
7596152 | Yarvis et al. | Sep 2009 | B2 |
20010000019 | Bowers et al. | Mar 2001 | A1 |
20010050550 | Yoshida et al. | Dec 2001 | A1 |
20020039896 | Brown | Apr 2002 | A1 |
20020050932 | Rhoades et al. | May 2002 | A1 |
20020089434 | Ghazarian | Jul 2002 | A1 |
20020098861 | Doney et al. | Jul 2002 | A1 |
20020146985 | Naden | Oct 2002 | A1 |
20030008692 | Phelan | Jan 2003 | A1 |
20030083064 | Cooper | May 2003 | A1 |
20030141973 | Yeh et al. | Jul 2003 | A1 |
20030144020 | Challa et al. | Jul 2003 | A1 |
20030179073 | Ghazarian | Sep 2003 | A1 |
20030182077 | Emord | Sep 2003 | A1 |
20030209601 | Chung | Nov 2003 | A1 |
20030236077 | Sivard | Dec 2003 | A1 |
20040021572 | Schoen et al. | Feb 2004 | A1 |
20040041731 | Hisano | Mar 2004 | A1 |
20040100394 | Hitt | May 2004 | A1 |
20040100415 | Veitch et al. | May 2004 | A1 |
20040119588 | Marks | Jun 2004 | A1 |
20040121793 | Weigele et al. | Jun 2004 | A1 |
20040135691 | Duron et al. | Jul 2004 | A1 |
20040183673 | Nageli | Sep 2004 | A1 |
20040232924 | Hilleary et al. | Nov 2004 | A1 |
20040233041 | Bohman et al. | Nov 2004 | A1 |
20040233054 | Neff et al. | Nov 2004 | A1 |
20040246463 | Milinusic | Dec 2004 | A1 |
20050043068 | Shohara et al. | Feb 2005 | A1 |
20050073406 | Easley et al. | Apr 2005 | A1 |
20050087235 | Skorpik | Apr 2005 | A1 |
20050088299 | Bandy et al. | Apr 2005 | A1 |
20050090211 | Lilja et al. | Apr 2005 | A1 |
20050128080 | Hall et al. | Jun 2005 | A1 |
20050145018 | Sabata et al. | Jul 2005 | A1 |
20050146445 | Sleboda et al. | Jul 2005 | A1 |
20050190759 | Lee | Sep 2005 | A1 |
20050199716 | Shafer et al. | Sep 2005 | A1 |
20050226201 | McMillin | Oct 2005 | A1 |
20050261037 | Raghunath et al. | Nov 2005 | A1 |
20050270160 | Chan et al. | Dec 2005 | A1 |
20060023678 | Twitchell | Feb 2006 | A1 |
20060109106 | Braun | May 2006 | A1 |
20060114102 | Chang et al. | Jun 2006 | A1 |
20060135145 | Redi | Jun 2006 | A1 |
20060163422 | Krikorian et al. | Jul 2006 | A1 |
20060164232 | Waterhouse et al. | Jul 2006 | A1 |
20060164239 | Loda | Jul 2006 | A1 |
20060270382 | Lappetelainen et al. | Nov 2006 | A1 |
20070008408 | Zehavi | Jan 2007 | A1 |
20070032951 | Tanenhaus et al. | Feb 2007 | A1 |
20070135179 | Hardman et al. | Jun 2007 | A1 |
20090116457 | Haartsen | May 2009 | A1 |
Number | Date | Country |
---|---|---|
0467036 | Jan 1992 | EP |
0748083 | Dec 1996 | EP |
0748085 | Dec 1996 | EP |
0829995 | Mar 1998 | EP |
0944014 | Sep 1999 | EP |
1317733 | Jun 2003 | EP |
1692599 | Aug 2006 | EP |
1692668 | Aug 2006 | EP |
2308947 | Jul 1997 | GB |
2005-0102419 | Oct 2005 | KR |
2007-0005515 | Jan 2007 | KR |
0068907 | Nov 2000 | WO |
0069186 | Nov 2000 | WO |
03098175 | Nov 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20090122737 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60890990 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2008/054633 | Feb 2008 | US |
Child | 12352992 | US |