Electrically conducting polymers have attracted considerable attention for numerous applications as biomedical tools, biosensors, batteries, and microelectronic devices. One such compound, polypyrrole (Ppy), has become prominent in biology and medicine as a potential electrically conductive polymer due to its distinctive non-toxic properties and biocompatibility. The native conductivity of Ppy can be altered from an inherent insulating feature (σdc≦1×10−7 S cm−1) to the level of metallic conductance (σdc≦1×102 S cm−1) during oxidative polymerization which readily involves the entrapment of a variety of anions and cations as a dopant. These facts are important to consider since electrical current is used in modern treatments of central nervous system (CNS). Useful biomolecules such as growth factors and/or anti-inflammatory drugs could theoretically be delivered to damaged tissues by the same electrodes used to direct the electrical therapy. Considerable improvements have been achieved by combining drug delivery systems with electrical stimulation through a Ppy backbone, where biomolecules are incorporated, or doped, into Ppy films. These can subsequently be released as a result of the reduction of the Ppy.
However, there are many issues to resolve in order to fully realize the promises of Ppy delivery systems, including: (i.) low encapsulation and rapid release of a drug associated with the limited surface area, (ii.) the inherent hydrophobic nature of conductive polymers, and iii. the lack of plentiful functional groups for significant surface modification and utilization. To enhance the affinity of biomolecules for Ppy surfaces, direct or indirect surface functionalization with bioactive peptides, proteins, or enzymes is one barrier that must be overcome. Despite the advances in surface modification techniques, this step is complex and time-consuming and remains challenging. In addition, electrochemical deposition using a solution composed of a biological entity and pyrrole monomers restrict homogeneous drug distribution throughout the polypyrrole surface and interfere with electrochemical control of various parameters such as film thickness, loading concentration, and diffusion of the biomolecules of interest. To date, porous Ppy structures have been fabricated through electrochemical deposition of pyrrole in the presence of polymethyl methacrylate, tetraethyylammonium percholate (TEAP), or poly (acrylic acid) and utilized as a biomaterial.
a) displays a schematic illustration for the preparation of carboxylic acid-terminated polypyrrole coating in the presence of MSN/NGF through electrochemical deposition. The electropolymerization was conducted in an aqueous solution of a mixture of 0.1 M pyrrole (Py) monomer and 0.1 M pyrrole-α-carboxylic acid (Py-α-COOH) by applying a steady potential at 0.7 V and changing it to 2.0 V in the subsequent reduction profile to induce a coupling reaction between Py and Py-α-COOH.
b) displays TEM images of MSNs incorporated with NGF. The inset shows the as-synthesized MSNs.
c) displays an SEM image of particle arrays obtained by a convective evaporation where capillary forces are the most dominant factor for confining particles in layered arrays.
d) SEM image of the electropolymerization of carboxylic acid-functionalized polypyrrole in the presence of NGF-loaded MSNs as a template, which is designated as a Ppy/COOH-MSN/NGF.
a) displays a fluorescence image of a Ppy/COOH-MSN/NGF-FITC surface.
b) The cumulative NGF release behavior over a week from Ppy/COOH-MSN/NGF composite in the presence or absence of electrical stimulation.
a) displays a typical SEM image of the resulting macroporous Ppy/COOH film using a template composed of MSNs with a mean diameter of 150 nm.
a) displays a graphical representation of the percentage of cells with neurites that extend from PC 12 cells grown on various types of Ppy/COOH films in the absence or presence of electrical stimulation after 7 days in culture.
b) displays a graphical representation of the percentage of cells neurite length of PC 12 cells grown on various types of Ppy/COOH films in the absence or presence of electrical stimulation after 7 days in culture.
According to at least one embodiment, the deposition of carboxylic acid-terminated conducting polymers in two or three dimensional structures made up of colloidal particles is performed, resulting in a porous polypyrrole surface. By way of nonlimiting example, porous polypyrrole surface is produced, first through the production of ordered arrays of mesoporous silica nanoparticles (“MSNs”) as a template. According to at least one embodiment, thereafter polypyrrole (Ppy) and/or carboxylic acid-terminated polypyrrole (Ppy/COOH) is electrochemically prepared on the MSN template.
According to at least one embodiment, the electropolymerization of a polypyrrole (Ppy) and/or carboxylic acid-terminated polypyrrole (Ppy/COOH) is performed in an aqueous solution of a mixture of a dopant ion, which could optionally be neural growth factors (“NGFs”), a combination of NGFs and MSNs, and/or a combination of PPY/COOH-MSN/NGF. According to at least one embodiment, the ordered arrays of MSNs are optionally selected to remain within the resultant Ppy film or structure, or are optionally treated to remove the MSN template, resulting in a porous conductive two or three dimensional structure. According to at least one embodiment, the resultant Ppy/COOH-MSN/NGF structure is treated through dipping the structure in an acidic treatment to remove the NGF template.
According to at least one embodiment, a mesoporous silica nanopartical according to the present application was produced. All chemicals were purchased from Sigma-Aldrich unless otherwise specified. MCM 41-type mesoporous silica nanoparticles (MSNs) were synthesized according to those procedures set forth in Slowing I, Trewyn B and Lin V 2007 J. Am. Chem. Soc. 129 8845-9. An aqueous solution containing cetyltrimethylammonium bromide (CTAB) and ammonia was stirred at 80° C. for 2 hrs, and then tetraethyl orthosilicate (TEOS) was slowly added to the mixture. Subsequently, mesitylene was added as a pore-expanding agent, and the solutions were stirred at elevated temperature for another 3 hr. The resulting white precipitate collected by repetitive filtration was rinsed with water and dried at 100° C. for 12 hr. Finally, an acidic extraction method (0.75 mL concentrated HCl/100 mL methanol solution) was performed overnight to remove the CTAB template. For NGF immobilization, 5 mL of PBS solutions with 100 μL of NGF 2.5 S (Invitrogen, 100 μg/mL) was stirred for 6 hrs at room temperature in the presence of 20 mg of dried MSN. The suspensions were centrifuged and dried overnight at room temperature under vacuum. Transmission electron microscopy (TEM) confirmed that freshly prepared colloids showed a mean diameter of 150 nm with regularity in shape and size.
According to at least one exemplary embodiment, three dimensional particle arrays were obtained by a self-assembly technique where capillary forces are the most dominant factor for confining particles in layered arrays. A clean ITO surface (Indium tin oxide, available from Delta Technologies) was dipped in a 15 ml of MSNs, MSN/NGF, or MSN/NGF-FITC re-dispersed in ethanol with a density of 5 mg/ml, where FITC-labeled NGF was prepared according to the procedure by Gomez N and Schmidt C E 2006 Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension J Biomed Mater Res A. 81A 135-49. The template with a uniform deposition of silica nanoparticles was achieved at room temperature over ˜5 days by slow ethanol evaporation. The film thickness was adjustable due to precise control of the particle size and the total number of layers. Finally, the template was air-dried for at least 1 day and kept in a vacuum desiccator until use. Polypyrrole (Ppy) was electrochemically prepared on a silica nanoparticle assembled ITO surface using 604 model potentiostat (CH Instruments). A template, platinum gauze, and saturated calomel electrode were employed as a working, a counter, and a reference electrode, respectively. The electropolymerization of carboxylic acid-terminated polypyrrole (Ppy/COOH) was conducted on top of MSN/NGF assembled ITO surfaces in an aqueous solution of a mixture of 0.1 M pyrrole (Py) monomer, 0.1 M pyrrole-α-carboxylic acid (Py-α-COOH), and 0.1 M sodium salt of poly (styrene sulfonate) (PSS) as a dopant ion, which was designated as a Ppy/COOH-MSN/NGF. This was initially achieved by applying a steady potential at 0.7 V and changing it to 2.0 V in the subsequent reduction profile to induce a coupling reaction between Py and Py-α-COOH. These films were immediately rinsed with deionized water and dried under nitrogen to avoid any further deposition.
According to at least one embodiment, NGF is into the pores of MSNs prior to deposition of the MSN template. MSNs synthesized with large-pore diameters have attracted much attention as an inorganic host material to encapsulate large biomolecules, such as enzymes, proteins, and even cells. The adsorption of substances by an inorganic matrix improves their stability by protecting them from the systematic circulation and consequently increases the therapeutic effect. MSNs possess some inherent advantages such as their nontoxic and biocompatible nature, adjustable pore size, large surface-to-volume ratio, and chemical stability with tunable degradation rates. The encapsulation of NGF (MW 13000) into the well-ordered internal structure of an MSN was performed by favorable electrostatic interaction between free silanol groups on the wall of pore and positively charged amine groups of NGF at pH 7.0. The confinement of NGF to the MSN matrix was confirmed by TEM, N2 adsorption, and XPS. As-synthesized CTAB removed MSNs exhibit well-ordered pore structure with uniform mesopores whereas NGF-loaded MSNs demonstrated filling, indicated by the presence of NGF inside the pore channels. The incorporation of NGF is further highlighted by the comparison of the physical properties of as-synthesized MSN and MSN-NGF using a N2 adsorption/desorption isotherm. The BET test revealed 1040 m2 g-1 surface area and 1.93 cm3 g-1 of total pore volume of as-synthesized MSN with 4.71 nm of pore diameter. This indicated that MSNs possess enough space for drug molecules. The marked uptake of NGF lowered the surface area and total pore volume by approximately 60% and 80% respectively. Moreover, the reduction in average pore diameter strongly suggests that the majority of the pore walls were covered with NGF molecules. The particle size of MSN in PBS was measured by dynamic light scattering. Two different diameter distributions were observed: 101 and 125 nm corresponding to before and after NGF uptake respectively with approximately 31.5% of NGF encapsulation efficiency.
For the preparation of porous Ppy/COOH films, the Ppy/COOH-MSN template was dipped in the acidic treatment with 20% HF for 24 hr. The resulting porous conductive film with carboxylic acid derivatives was fabricated and air-dried. The NGF conjugated porous Ppy/COOH-NGF films were achieved through a two-step modification process. In the first step, carboxylic acid-terminated porous Ppy/COOH surfaces were incubated in a 50 mM MES buffer solutions containing 50 mg/ml N-hydroxysuccinimide (NHS) aqueous solution and 0.3 M1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimidi hydrochloride (EDC) for 6 hrs at room temperature. Subsequently, estered Ppy/COOH was re-incubated in a 50 mM MES buffer and 100 μg/mL of NGF 2.5 S (Invitrogen) at room temperature for 3 hrs. The NGF-coated surface was washed with deionized water and dried under nitrogen. The concentration of NGF functionalized on a porous Ppy/COOH surface was determined by measuring the intensity of NGF-FITC with a fluorescence microscope using excitation/barrier wavelengths of 490/520 nm and by interpolating with the standard plot. The standard curve in terms of surface concentration (ng/mm2) was prepared by measuring the fluorescence (minus background) intensity of experimental Ppy surfaces that are prepared by covalently coupling with known amounts of NGF-FITC and was statistically quantified by capturing the FITC labeling using NIH Image™ software.
According to one exemplary embodiment, the release behavior of NGF from Ppy/MSN-MSN/NGF composite was evaluated using a commercially available sandwich ELISA kit (Millipore). The PBS solution containing Ppy/MSN-NGF was kept at 37° C. until an aliquot was taken from the suspension at different times. The aliquots collected were evaluated with ELISA immunoassay in undiluted aqueous samples. The intracellular NGF content was calculated based on the absorbance at 450 nm. Each NGF “release” experiment was performed in triplicate.
According to at least one exemplary embodiment, the efficacy in triggering cell proliferation of a resultant Ppy/MSN-MSN/NGF composite or Ppy/COOH-NGF films was tested. PC 12 cells (density of 1×106 cells/mL) were grown in Dulbecco's modified eagle's medium (DMEM; Invitrogen) supplemented with 12.5% horse serum, 2.5% fetal bovine serum, 50 U/ml penicillin, and 5 mg/ml streptomycin at an incubator setting of 5% CO2 and 37° C. After trypsinization and centrifugation, cell pellets were resuspended in tissue culture dishes containing Ppy films to observe both cell proliferation and neurite extension as a function of time. During these experiments, PC 12 cells grown on bare substrates were supplied with an appropriate amount of NGF solution (50 ng/mL) to the culture medium whereas cells cultured on Ppy/COOH-MSN/NGF and porous Ppy/COOH-NGF films were maintained without the addition of NGF. Finally, cells were observed and photographed using phase-contrast microscopy.
PC 12 cells with a density of 1×104 cells/cm2 were grown on various types of Ppy films and incubated for 24 hr to permit cell adhesion and neurite extension as a result of electrical stimulation of the films. Ppy substrates were placed in borosilicate coverglass chambers containing three electrodes; a reference electrode (Ag/AgCl), a counter electrode (Pt), and a working electrode (Ppy film). A constant voltage of 0.1 V for 6 hr was applied to the Ppy films to induce a burst outgrowth effect from the composite. Neurite length was analyzed after 1 day of stimulation. All experiments were performed in triplicate.
According to at least one embodiment, MCM-41 type mesoporous silica nanoparticles (MSNs) provided extremely high surface areas (>1000 m2/g) and tunable pore diameter in the range of 2˜10 nm. Furthermore, a large surface-to-volume ratio allowed for effective entrapment of biological compounds into the pores of MSNs while retaining their bioactivity. Applicants achieved the synthesis of MCM-41-type MSN materials with large pore diameters (4.3 nm) and subsequent encapsulation of NGF inside the channels by favorable electrostatic interactions.
As shown in
In consideration of the oxidative potentials of Py (+0.8 V) and Py-COOH (+1.38 V), the increase in potential magnitude from +0.7 V to +2.0 V permitted the co-electropolymerization process of Py and Py-COOH in subsequent potential scans as shown in
A uniform fluorescent molecule distribution within a Ppy surface has been attributed to the appearance of MSNs incorporated with FITC-labeled NGF. We also assessed the effect of electrical stimulation on the release of NGF from Ppy composites over one week since the release of chemical substances (e.g., drugs, nerve growth factors, neurotrophic factors, etc) embedded in conducting polymer films can be manipulated in response to electrical potential by inducing a reversible expansion/contraction in conjugated polymers. Our study showed that regardless of electrical stimulation, a gradual increase in NGF release was observed for the next 7 days. However, it should be highlighted that the stimulated surface showed a significant improvement in the release profile resulting from the redox characteristics of the polypyrrole. Next, the chemical composition of carboxylic-acid functionalized Ppy surfaces was analyzed by XPS. Initially we examined: carboxylic acid-terminated Ppy (Ppy/COOH) and carboxylic acid-terminated Ppy incorporated with MSN-NGF (Ppy/COOH-MSN/NGF). In order to understand the composition of the surface, high-resolution spectra were recorded for the main core-level peaks of C 1s and N 1s because they enabled us to evaluate the chemical structure of the species present on the surface.
Turning now to
Turning now to
The conductivity of Ppy/COOH films was 5.81 S/cm, which is slightly lower than that of Ppy film (7.17 S/cm), partly due to the fact that the presence of the carboxylic acid group at the α-position is likely to induce the conformational alteration and consequently lead to disruption of π-conjugation during polymerization. Meanwhile, electrical conductance of porous Ppy/COOH films corresponded to the 3.14 S/cm, where high porosity was responsible for the decrease in electrical transport in the film. Similarly, the conductivity of Ppy films deposited on the arrays of MSN-NGF decreased with increasing insulating behavior associated with the assembly of MSNs. The water contact angle was examined to define the hydrophilicity after each modification. In comparison with the hydrophobicity of Ppy film (a water contact angle of 76°), co-deposition with carboxylic acidic-Py molecules resulted in a decrease below 64°, indicating the exposure of hydrophilic moieties and carboxylic acids to the surface. On the other hand, the coupling with NGF likely enhanced the hydrophilic nature of Ppy films.
The attachment, growth, and extension of neurites from PC 12 cells on surface-modified Ppy films are shown in
Turning now to
Turning now to
Applicants have confirmed the bioactivity of NGF released from Ppy/MSN-NGF composites. In particular, it was apparent that a colloid-based array was associated with the variation in cell adhesion and proliferation, even in the absence of NGF. But when NGF was encapsulated within the composite, direct delivery of NGF to the local area was accomplished and cell growth with enhanced neurite sprouting was encouraged. In this application, NGF-absorbed surfaces combined with a subthreshold electrical potential significantly released this growth factor in response to electrical stimulation. The extensive influence on neural growth by applying steady DC electric fields has been investigated and directed at improving functional recovery in the nervous system. Applicants use an electrical potential to trigger higher levels of NGF release into the extracellular space. In order to examine the effectiveness of electrical stimulation, a solution of NGF (50 ng ml-1) was added to the medium of control Ppy surface and adhered cells were observed 24 h after the treatment. A statistically significant difference between the values of neurite extensions of cell grown on ‘as-prepared’ Ppy surfaces was not achieved.
However, cells grown on electrically stimulated Ppy/MSN-NGF composite showed a statistically significant increase in the amount of neurite extension and growth compared to nerve cells cultured without electrical stimulation. This suggested that subsequent electrical stimulation resulted in elevated release levels of NGF. The effect of electrical stimulation induces an approximately 40% increase in the cell population possessing neurite extensions. The contraction and expansion process of Ppy in response to electrical stimulation enhanced the release of NGF from individual MSN-NGF coated with Ppy. The controlled-release profile of NGF from Ppy/MSN-NGF composites was examined with consideration of the electrical stimulation. NGF release behavior showed linear enhancement as the concentration of MSN-NGF embedded in Ppy film increased.
It will be appreciated that the fabrication of carboxylic acid-functionalized Ppy films using the self-assembly of silica nanoparticles as a template results in electrosensitive delivery devices for NGF, as well as other potential biomedically active chemicals. The incorporation and optional removal of silica particles enables users to selectively engineer the surface properties of the Ppy film. Co-polymerization with carboxylic acid moieties allow resultant two dimensional and/or three dimensional films to possess hydrophilicity which is of importance for various biological applications. Meanwhile, porous Ppy/COOH films further modified with NGF proved that an interactive substrate can also be achieved for the growth and differentiation (perhaps even selected mortality) of cells. Such specially fabricated and electrically stimulated Ppy/COOH films are a significant advancement in the use of biologically active molecules in a medical/biological context.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/221,756, Titled A Mesoporous Silica Nanosphere-Based Drug Delivery System Using An Electrically Conduction Polymer and filed on Jun. 20, 2009, the contents of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/40691 | 6/30/2010 | WO | 00 | 3/23/2012 |
Number | Date | Country | |
---|---|---|---|
61221756 | Jun 2009 | US |