Message-based computation request scheduling

Information

  • Patent Grant
  • 10884802
  • Patent Number
    10,884,802
  • Date Filed
    Friday, August 10, 2018
    5 years ago
  • Date Issued
    Tuesday, January 5, 2021
    3 years ago
Abstract
A system for routing requests to execute user code based on how frequently the user code is executed is provided. The system may be configured to receive a request to execute user code on a virtual compute system, where the virtual compute system comprises multiple fleets of virtual machine instances. The system may be further configured to determine whether the user code associated with the request satisfies one or more usage criteria, and based on the determination, route the request to the appropriate fleet of virtual machine instances.
Description
BACKGROUND

Generally described, computing devices utilize a communication network, or a series of communication networks, to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.


To facilitate increased utilization of data center resources, virtualization technologies may allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.


In some scenarios, virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality. For example, various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently. These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started. The device image is typically stored on the disk used to create or initialize the instance. Thus, a computing device may process the device image in order to implement the desired software configuration.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a block diagram depicting an illustrative environment for managing virtual machine instances;



FIG. 2 is a block diagram depicting an example configuration of a low frequency fleet of virtual machine instances;



FIG. 3 depicts a general architecture of a computing device providing a frontend for processing user requests to execute program codes;



FIG. 4 is a flow diagram illustrating a request scheduling routine implemented by a frontend; and



FIG. 5 illustrates an example table including data accessed by a frontend.





DETAILED DESCRIPTION

Companies and organizations no longer need to acquire and manage their own data centers in order to perform computing operations (e.g., execute code, including threads, programs, software, routines, subroutines, processes, etc.). With the advent of cloud computing, storage space and compute power traditionally provided by hardware computing devices can now be obtained and configured in minutes over the Internet. Thus, developers can quickly purchase a desired amount of computing resources without having to worry about acquiring physical machines. Such computing resources are typically purchased in the form of virtual computing resources, or virtual machine instances. These instances of virtual machines, which are hosted on physical computing devices with their own operating systems and other software components, can be utilized in the same manner as physical computers.


However, even when virtual computing resources are purchased, developers still have to decide how many and what type of virtual machine instances to purchase, and how long to keep them. For example, the costs of using the virtual machine instances may vary depending on the type and the number of hours they are rented. In addition, the minimum time a virtual machine may be rented is typically on the order of hours. Further, developers have to specify the hardware and software resources (e.g., type of operating systems and language runtimes, etc.) to install on the virtual machines. Other concerns that they might have include over-utilization (e.g., acquiring too little computing resources and suffering performance issues), under-utilization (e.g., acquiring more computing resources than necessary to run the code, and thus overpaying), prediction of change in traffic (e.g., so that they know when to scale up or down), and instance and language runtime startup delay, which can take 3-10 minutes, or longer, even though users may desire computing capacity on the order of seconds or even milliseconds. Thus, an improved method of allowing users to take advantage of the virtual machine instances provided by service providers is desired.


According to aspects of the present disclosure, by routing the requests to execute user code on a virtual compute fleet (e.g., a group of virtual machine instances that may be used to service such requests) based on the frequency of execution of the user code, high frequency user codes can achieve high distribution (e.g., which is good for fault tolerance) and low frequency user codes can achieve high consolidation (e.g., which is good for cost reduction).


Generally described, aspects of the present disclosure relate to the management of virtual machine instances and containers created therein. Specifically, systems and methods are disclosed which facilitate the handling of requests to execute user code on a virtual compute fleet by utilizing the containers created on the virtual machine instances as compute capacity. Upon receiving a request to execute user code on the virtual compute fleet, a frontend service associated with the virtual compute fleet routes requests to execute user code to different virtual compute fleets based on the execution frequency of the user code and/or other criteria. Thus, users whose codes are frequently executed can achieve improved fault tolerance, and users whose codes are executed less frequently can achieve lower latency (e.g., due to better caching of those codes). The virtual compute system provider may also receive cost savings through more efficient use of resources (e.g., by allowing increased utilization of existing resources). The virtual compute system provider may then choose to price such a service in a way that passes on the cost savings to the user.


In another aspect, a frontend service may receive a request to execute a program code of a user on a virtual compute fleet, wherein the virtual compute fleet comprises at least one low frequency fleet configured to process low frequency requests and at least one high frequency fleet configured to process high frequency requests. Upon receiving the request, the frontend service may determine, based on user code data associated with the program code of the user, whether the request satisfies one or more usage criteria. In response to determining that the program code does not satisfy the one or more usage criteria, the frontend service route the request to the low frequency fleet of virtual machine instances. In some embodiments, the frontend service may route the request to one of multiple fleets (e.g., low, medium, and high) based on the one or more usage criteria.


Specific embodiments and example applications of the present disclosure will now be described with reference to the drawings. These embodiments and example applications are intended to illustrate, and not limit, the present disclosure.


With reference to FIG. 1, a block diagram illustrating an embodiment of a virtual environment 100 will be described. The example shown in FIG. 1 includes a virtual environment 100 in which users (e.g., developers, etc.) of user computing devices 102 may run various program codes using the virtual computing resources provided by a virtual compute system 110.


By way of illustration, various example user computing devices 102 are shown in communication with the virtual compute system 110, including a desktop computer, laptop, and a mobile phone. In general, the user computing devices 102 can be any computing device such as a desktop, laptop, mobile phone (or smartphone), tablet, kiosk, wireless device, and other electronic devices. In addition, the user computing devices 102 may include web services running on the same or different data centers, where, for example, different web services may programmatically communicate with each other to perform one or more techniques described herein. Further, the user computing devices 102 may include Internet of Things (IoT) devices such as Internet appliances and connected devices. The virtual compute system 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLI), application programming interfaces (API), and/or other programmatic interfaces for generating and uploading user codes, invoking the user codes (e.g., submitting a request to execute the user codes on the virtual compute system 110), scheduling event-based jobs or timed jobs, tracking the user codes, and/or viewing other logging or monitoring information related to their requests and/or user codes. Although one or more embodiments may be described herein as using a user interface, it should be appreciated that such embodiments may, additionally or alternatively, use any CLIs, APIs, or other programmatic interfaces.


The user computing devices 102 access the virtual compute system 110 over a network 104. The network 104 may be any wired network, wireless network, or combination thereof. In addition, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. For example, the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104 may be a private or semi-private network, such as a corporate or university intranet. The network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.


The virtual compute system 110 is depicted in FIG. 1 as operating in a distributed computing environment including several computer systems that are interconnected using one or more computer networks. The virtual compute system 110 could also operate within a computing environment having a fewer or greater number of devices than are illustrated in FIG. 1. Thus, the depiction of the virtual compute system 110 in FIG. 1 should be taken as illustrative and not limiting to the present disclosure. For example, the virtual compute system 110 or various constituents thereof could implement various Web services components, hosted or “cloud” computing environments, and/or peer-to-peer network configurations to implement at least a portion of the processes described herein.


Further, the virtual compute system 110 may be implemented in hardware and/or software and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers.


In the environment illustrated FIG. 1, the virtual environment 100 includes a virtual compute system 110, which includes a load balancer 120, high frequency fleets 160A, 160B, and a low frequency fleet 170. Although in the example of FIG. 1, the virtual compute system 110 includes two high frequency fleets and one low frequency fleet, the embodiments described herein are not limited as such, and the virtual compute system 110 may have any number of high and low frequency fleets.


In the example of FIG. 1, the virtual compute system 110 is illustrated as being connected to the network 104. In some embodiments, any of the components within the virtual compute system 110 can communicate with other components (e.g., the user computing devices 102 and auxiliary services 106, which may include monitoring/logging/billing services 107, storage service 108, an instance provisioning service 109, and/or other services that may communicate with the virtual compute system 110) of the virtual environment 100 via the network 104. In other embodiments, not all components of the virtual compute system 110 are capable of communicating with other components of the virtual environment 100. In one example, only the load balancer 120 and/or the frontends 130 may be connected to the network 104, and other components of the virtual compute system 110 may communicate with other components of the virtual environment 100 via the load balancer 120 and/or the frontends 130.


Users may use the virtual compute system 110 to execute user code thereon. For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed. One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code. Alternatively, the user may send the virtual compute system 110 a code execution request. The virtual compute system 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc., which are described in greater detail below) based on the code execution request, and execute the code using the compute capacity. The virtual compute system 110 may automatically scale up and down based on the volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying).


In the configuration depicted in FIG. 1, the high frequency fleet 160A includes a frontend 130A, a worker manager 140A, and virtual machine instances 150A1, 150A2, 150A3. Similarly, the high frequency fleet 160B includes a frontend 130B, a worker manager 140B, and virtual machine instances 150B1, 150B2, 150B3. The low frequency fleet 170 includes worker managers 140C1, 140C2, 140C3, 140C4, 140C5, and 140C6. The high frequency fleets and the low frequency fleet are not limited to the configuration illustrated in FIG. 1, and the fleets may include fewer or more components. For example, the fleets can include any number of worker managers, and each worker manager can manage any number of virtual machine instances. In some embodiments, the frontend 130A and the worker manager 140A are resident on a single virtual machine instance. Similarly, the front end 130B and the worker manager 140B may be resident on a single virtual machine instance. In other embodiments, the frontends 130A, 130B and the worker managers 140A, 140B reside on different virtual machine instances.


In some embodiments, the load balancer 120 serves as a front door to all the other services provided by the virtual compute system 110. The load balancer 120 processes requests to execute user code on the virtual compute system 110 and handles the first level of load balancing across the frontends 130. For example, the load balancer 120 may distribute the requests among the frontends 130 (e.g., based on the individual capacity of the frontends 130). In one embodiment, the requests are distributed evenly across the frontends 130. In another embodiment, the requests are distributed based on the available capacity on the high frequency fleets 160. For example, the number of requests sent to each frontend 130 (or the rate at which the requests are sent to each frontend 130) may be proportional to the capacity available (or inversely proportional to the current workload) on the corresponding high frequency fleet 160.


The user code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a program language. Such user code may be executed to achieve a specific task, for example, in connection with a particular web application or mobile application developed by the user. For example, the user code may be written in JavaScript (node.js), Java, Python, and/or Ruby. The request may include the user code (or the location thereof) and one or more arguments to be used for executing the user code. For example, the user may provide the user code along with the request to execute the user code. In another example, the request may identify a previously uploaded program code (e.g., using the API for uploading the code) by its name or its unique ID. In yet another example, the code may be included in the request as well as uploaded in a separate location (e.g., the storage service 108 or a storage system internal to the virtual compute system 110) prior to the request is received by the virtual compute system 110. The virtual compute system 110 may vary its code execution strategy based on where the code is available at the time the request is processed.


In some embodiments, the frontend 130 determines that the requests are properly authorized. For example, the frontend 130 may determine whether the user associated with the request is authorized to access the user code specified in the request.


The frontend 130 may receive the request to execute such user code in response to Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing the user code. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing the code execution request to the frontend 130. The frontend 130 may also receive the request to execute such user code when an event is detected, such as an event that the user has registered to trigger automatic request generation. For example, the user may have registered the user code with an auxiliary service 106 and specified that whenever a particular event occurs (e.g., a new file is uploaded), the request to execute the user code is sent to the frontend 130. Alternatively, the user may have registered a timed job (e.g., execute the user code every 24 hours). In such an example, when the scheduled time arrives for the timed job, the request to execute the user code may be sent to the frontend 130. In yet another example, the frontend 130 may have a queue of incoming code execution requests, and when the user's batch job is removed from the virtual compute system's work queue, the frontend 130 may process the user request. In yet another example, the request may originate from another component within the virtual compute system 110 or other servers or services not illustrated in FIG. 1.


A user request may specify one or more third-party libraries (including native libraries) to be used along with the user code. In one embodiment, the user request is a ZIP file containing the user code and any libraries (and/or identifications of storage locations thereof) that are to be used in connection with executing the user code. In some embodiments, the user request includes metadata that indicates the program code to be executed, the language in which the program code is written, the user associated with the request, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the program code. For example, the program code may be provided with the request, previously uploaded by the user, provided by the virtual compute system 110 (e.g., standard routines), and/or provided by third parties. In some embodiments, such resource-level constraints (e.g., how much memory is to be allocated for executing a particular user code) are specified for the particular user code, and may not vary over each execution of the user code. In such cases, the virtual compute system 110 may have access to such resource-level constraints before each individual request is received, and the individual requests may not specify such resource-level constraints. In some embodiments, the user request may specify other constraints such as permission data that indicates what kind of permissions that the request has to execute the user code. Such permission data may be used by the virtual compute system 110 to access private resources (e.g., on a private network).


In some embodiments, the user request may specify the behavior that should be adopted for handling the user request. In such embodiments, the user request may include an indicator for enabling one or more execution modes in which the user code associated with the user request is to be executed. For example, the request may include a flag or a header for indicating whether the user code should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the user code is provided back to the user (e.g., via a console user interface). In such an example, the virtual compute system 110 may inspect the request and look for the flag or the header, and if it is present, the virtual compute system 110 may modify the behavior (e.g., logging facilities) of the container in which the user code is executed, and cause the output data to be provided back to the user. In some embodiments, the behavior/mode indicators are added to the request by the user interface provided to the user by the virtual compute system 110. Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in the request.


The frontend 130 receives requests to execute user code on the virtual compute system 110 that have been processed by the load balancer 120. Upon receiving a request to execute user code on the virtual compute system 110, the frontend 130 determines whether the user code specified by the request is sufficiently frequently executed such that the request should be handled by the high frequency fleet 160 associated with the frontend 130 or not sufficiently frequently executed such that the request should be sent to the low frequency fleet 170. For example, user codes that are sufficiently frequently executed on the virtual compute system 110 may benefit from high distribution (e.g., code execution taking place in multiple instances and multiple containers). For example, if there are a lot of requests from a particular user or a lot of requests to execute a particular code, there may be a lot of instances and containers (e.g., across boundaries of hardware, networking, and/or software) handling those requests. For example, the various instances, and supported containers, may be distributed in various ways, such as across multiple geographically dispersed data centers, sections of a given data center (e.g., such as opposite sides of a building), different racks within a data center, different power grids, and various logical manners, such as network connections and software groupings. User codes that are sufficiently frequently executed on the virtual compute system 110 benefit from such high distribution because by having a lot of instances and containers across hardware/networking/software boundaries (e.g., in different data centers, parts of data centers, racks within a data center, equivalence class for software updates or patches, machines that share a common network connection to the Internet, shared power grids, etc.) will increase fault tolerance. By doing so, even if some of the containers, instances, or groups of instances fail, the remaining compute capacity associated with the user codes can still handle the incoming requests. On the other hand, user codes that are not sufficiently frequently executed on the virtual compute system 110 may benefit from high consolidation (e.g., code execution taking place in an isolated number of containers or instances), because such an approach would increase the likelihood that the user codes are already loaded onto one or more containers at the time the request associated with those user codes are received, thereby achieving lower latency (e.g., due to better caching of those codes). The service provider may receive a cost savings via consolidation of low frequency user codes to increase the utilization of existing hardware and software resources. The service provider may price the service in such a way to pass these cost savings on to the user. In some embodiments, the frontend 130 determines whether the user code is sufficiently frequently executed by determining whether the frequency of execution of the user code exceeds a threshold value. For example, the frontend 130 may determine whether the transactions per second (TPS) associated with the user code exceeds a threshold TPS value. The threshold TPS value may be 10, 100, or 1000. In another example, the frontend 130 may determine whether the user ID associated with the user code is a high-volume user responsible for a sufficiently large number of requests sent to the virtual compute system 110. The determination of whether the frequency of execution of the user code exceeds a threshold value may be based on historical data retrieved from a database, live data calculated on the fly, or a combination thereof. The threshold value may be determined automatically by monitoring the trend of user code execution. Alternatively, the threshold value may be set manually to one of many different configuration policies.


The frontend 130 may make such determinations by accessing a data store that is maintained either by the virtual compute system 110 or by an auxiliary service 106 (e.g., storage service 108). The virtual compute system 110 may store user code, metadata associated with the user code, user code data retrieved or generated based on the incoming requests, and/or configuration data supplied by the user (e.g., included or indicated in the request). For example, the data stored by the virtual compute system 110 (e.g., referred to herein as user code data) may include the user ID of the user associated with the user code, the number of times the user code has been executed, an average TPS associated with the user code, a unique user code ID, an indication of whether the user code is categorized as a high-frequency code or a low-frequency code, etc. The user code data may include an indicator that can be manually activated by the user to indicate the user's preference as to whether size-based instance management should be enabled, or whether the user prefers to have its requests routed to a high- or low-frequency instance manager.


If the frontend 130 determines that the user code is sufficiently frequently executed, the frontend 130 may request the worker manager 140 associated with the frontend 130 to find compute capacity in one of the virtual machine instances 150 managed by the worker manager 140. On the other hand, if the frontend 130 determines that the user code is not sufficiently frequently executed, the request may be sent to the low frequency fleet 170 to be handled by one of the worker managers 140 associated with the low frequency fleet 170.


The frontend 130 may include a usage data manager for determining the usage status (e.g., indicating how frequently the user code is executed) of a particular user code, and a user code execution manager for facilitating the execution of user code on one of the virtual machine instances managed by the worker manager 140. An example configuration of the frontend 130 is described in greater detail below with reference to FIG. 3.


The worker manager 140 manages the virtual machine instances in the virtual compute system 110. After a request has been successfully processed by the load balancer 120 and the frontend 130, the worker manager 140 finds capacity to service the request to execute user code on the virtual compute system 110. For example, if there exists a container on a particular virtual machine instance that has the user code loaded thereon, the worker manager 140 may assign the container to the request and cause the request to be executed in the container. Alternatively, if the user code is available in the local cache of one of the virtual machine instances, the worker manager 140 may create a new container on such an instance, assign the container to the request, and cause the user code to be loaded and executed in the container. Otherwise, the worker manager 140 may assign a new virtual machine instance to the user associated with the request from the pool of pre-initialized and pre-configured virtual machine instances, download the user code onto a container created on the virtual machine instance, and cause the user code to be executed in the container.


In some embodiments, the virtual compute system 110 is adapted to begin execution of the user code shortly after it is received (e.g., by the load balancer 120 or frontend 130). A time period can be determined as the difference in time between initiating execution of the user code (e.g., in a container on a virtual machine instance associated with the user) and receiving a request to execute the user code (e.g., received by a frontend). The virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration. In one embodiment, the predetermined duration is 500 ms. In another embodiment, the predetermined duration is 300 ms. In another embodiment, the predetermined duration is 100 ms. In another embodiment, the predetermined duration is 50 ms. In another embodiment, the predetermined duration is 10 ms. In another embodiment, the predetermined duration may be any value chosen from the range of 10 ms to 500 ms. In some embodiments, the virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration if one or more conditions are satisfied. For example, the one or more conditions may include any one of: (1) the user code is loaded on an existing container at the time the request is received; (2) the user code is stored in the code cache of an existing instance at the time the request is received; (3) there exists an instance currently assigned to the user associated with the request at the time the request is received; or (4) a pool of pre-warmed (e.g., having one or more software components pre-loaded thereon, before a request is received, to service such a request) before a instances not yet assigned to any user (e.g., “warming pool”) has capacity to handle the request at the time the request is received.


The user code may be downloaded from an auxiliary service 106 such as the storage service 108 of FIG. 1. Data 108A illustrated in FIG. 1 may comprise user codes uploaded by one or more users, metadata associated with such user codes, or any other data utilized by the virtual compute system 110 to perform one or more techniques described herein. Although only the storage service 108 is illustrated in the example of FIG. 1, the virtual environment 100 may include other levels of storage systems from which the user code may be downloaded. For example, each instance may have one or more storage systems either physically (e.g., a local storage resident on the physical computing system on which the instance is running) or logically (e.g., a network-attached storage system in network communication with the instance and provided within or outside of the virtual compute system 110) associated with the instance on which the container is created. Alternatively, the code may be downloaded from a web-based data store provided by the storage service 108.


In some embodiments, once the virtual machine instance has been assigned to a particular user, the same virtual machine instance cannot be used to service requests of any other user. This provides security benefits to users by preventing possible co-mingling of user resources. Alternatively, in some embodiments, multiple containers belonging to different users (or assigned to requests associated with different users) may co-exist on a single virtual machine instance. Such an approach may improve utilization of the available compute capacity. Although the virtual machine instances are described here as being assigned to a particular user, in some embodiments, the instances may be assigned to a group of users, such that the instance is tied to the group of users and any member of the group can utilize resources on the instance. For example, the users in the same group may belong to the same security group (e.g., based on their security credentials) such that executing one member's code in a container on a particular instance after another member's code has been executed in another container on the same instance does not pose security risks. Similarly, the worker manager 140 may assign the instances and the containers according to one or more policies that dictate which requests can be executed in which containers and which instances can be assigned to which users. An example policy may specify that instances are assigned to collections of users who share the same account (e.g., account for accessing the services provided by the virtual compute system 110). In some embodiments, the requests associated with the same user group may share the same containers (e.g., if the user codes associated therewith are identical). In some embodiments, a request does not differentiate between the different users of the group and simply indicates the group to which the users associated with the requests belong.


In some embodiments, the virtual compute system 110 may maintain a separate cache in which user codes are stored to serve as an intermediate level of caching system between the local cache of the virtual machine instances and a web-based network storage (e.g., accessible via the network 140).


The worker manager 140 may also manage creation, preparation, and configuration of containers within virtual machine instances. Containers are logical units within a virtual machine instance and utilize resources of the virtual machine instances to execute user code. Based on configuration information associated with a request to execute user code, such a container manager can create containers inside a virtual machine instance. In one embodiment, such containers are implemented as Linux containers.


After the user code has been executed, the worker manager 140 may tear down the container used to execute the user code to free up the resources it occupied to be used for other containers in the instance. Alternatively, the worker manager 140 may keep the container running to use it to service additional requests from the same user. For example, if another request associated with the same user code that has already been loaded in the container, the request can be assigned to the same container, thereby eliminating the delay associated with creating a new container and loading the user code in the container. In some embodiments, the worker manager 140 may tear down the instance in which the container used to execute the user code was created. Alternatively, the worker manager 140 may keep the instance running to use it to service additional requests from the same user. The determination of whether to keep the container and/or the instance running after the user code is done executing may be based on a threshold time, the type of the user, average request volume of the user, and/or other operating conditions. For example, after a threshold time has passed (e.g., 5 minutes, 30 minutes, 1 hour, 24 hours, 30 days, etc.) without any activity (e.g., running of the code), the container and/or the virtual machine instance is shutdown (e.g., deleted, terminated, etc.), and resources allocated thereto are released. In some embodiments, the threshold time passed before a container is torn down is shorter than the threshold time passed before an instance is torn down.


In some embodiments, the virtual compute system 110 may provide data to one or more of the auxiliary services 106 as it services incoming code execution requests. For example, the virtual compute system 110 may communicate with the monitoring/logging/billing services 107. The monitoring/logging/billing services 107 may include: a monitoring service for managing monitoring information received from the virtual compute system 110, such as statuses of containers and instances on the virtual compute system 110; a logging service for managing logging information received from the virtual compute system 110, such as activities performed by containers and instances on the virtual compute system 110; and a billing service for generating billing information associated with executing user code on the virtual compute system 110 (e.g., based on the monitoring information and/or the logging information managed by the monitoring service and the logging service). In addition to the system-level activities that may be performed by the monitoring/logging/billing services 107 (e.g., on behalf of the virtual compute system 110) as described above, the monitoring/logging/billing services 107 may provide application-level services on behalf of the user code executed on the virtual compute system 110. For example, the monitoring/logging/billing services 107 may monitor and/or log various inputs, outputs, or other data and parameters on behalf of the user code being executed on the virtual compute system 110. Although shown as a single block, the monitoring, logging, and billing services 107 may be provided as separate services.


In some embodiments, the worker manager 140 may perform health checks on the instances and containers managed by the worker manager 140 (e.g., an “active pool” of virtual machine instances managed by the worker manager and currently assigned to one or more users). For example, the health checks performed by the worker manager 140 may include determining whether the instances and the containers managed by the worker manager 140 have any issues of (1) misconfigured networking and/or startup configuration, (2) exhausted memory, (3) corrupted file system, (4) incompatible kernel, and/or any other problems that may impair the performance of the instances and the containers. In one embodiment, the worker manager 140 performs the health checks periodically (e.g., every 5 minutes, every 30 minutes, every hour, every 24 hours, etc.). In some embodiments, the frequency of the health checks may be adjusted automatically based on the result of the health checks. In other embodiments, the frequency of the health checks may be adjusted based on user requests. In some embodiments, the worker manager 140 may perform similar health checks on the instances and/or containers in the pool of pre-warmed virtual machine instances that are not yet assigned to any user but ready to service incoming requests. The instances and/or the containers in such a warming pool may be managed either together with those instances and containers in the active pool or separately. In some embodiments, in the case where the health of the instances and/or the containers in the warming pool is managed separately from the active pool, a separate warming pool manager that manages the warming pool may perform the health checks described above on the instances and/or the containers in the warming pool.


The virtual machine instances 150 are logical in nature and can be implemented by a single or multiple physical computing devices. At least some of the virtual machine instances 150 may be provisioned to provide a variety of different desired conditions depending on the needs of the user. Examples of the types of desired conditions, include but are not limited to: particular operating systems, particular language runtimes, and particular libraries that may be utilized by the user code. Additionally, one or more virtual machine instances may be provisioned generically when a desired operating condition is not specified or is otherwise not available. One skilled in the relevant art will appreciate that the virtual compute system 110 is logical in nature and can encompass physical computing devices from various geographic regions.


The frontends 130 routes code-processing requests according to a method that is different than the method used by the load balancer 120 to route requests among the frontends 130. For example, the frontends 130 route the requests to the specific worker manager based on the user code and/or based on the user associated with the user code. In some embodiments, the routing is determined based on a consistent-hashing scheme in which one or more parameters associated with the request (e.g., user ID, user code ID, etc.) are hashed according to a hash function and the request is sent to one of the worker managers 140 in the low frequency fleet 170 that has previously been assigned to the sections of a hash ring (e.g., containing a plurality of hash values) that corresponds to the resulting hash value. For example, the worker managers 140 occupy one or more sections of the hash ring, and the requests are mapped to those same hash values. In some embodiments, the hash values may be integer values, and each worker manager 140 may be associated with one or more integer values. The one or more integer values associated with a particular worker manager 140 may be determined based on one or more parameters associated with the worker manager 140 (e.g., IP address, instance ID, etc.). In some embodiments, the request may be sent to the worker manager 140 whose associated integer values are closest to, but not larger than, the hash value calculated for that request (e.g., using modulo arithmetic).


When the frontends 130 determine that one or more worker managers 140 have become unavailable, the frontends 130 may associate the hash values previously associated with the one or more worker managers 140 that have become unavailable with one or more available worker managers 140 in the low frequency fleet 170. Similarly, when a new worker manager is added to the low frequency fleet 170, the new worker manager may take a share of the hash values associated with the existing worker managers 140. For example, the new worker manager may be assigned one or more sections of the hash ring that were previously assigned to the existing worker managers 140.


Turning now to FIG. 2, an example of the low frequency fleet 170 will be described. As illustrated in FIG. 2, the low frequency fleet 170 includes worker managers 140C1, 140C2, 140C3, 140C4, 140C5, 140C6. The worker manager 140C1 includes VM instances 150C1A, 150C1B, which include containers 150C1A-1, 150C1A-2 and containers 150C1B-1, 150C1B2, respectively. The worker manager 140C2 includes VM instances 150C2A, 150C2B, which include containers 150C2A-1, 150C2A-2 and containers 150C2B-1, 150C2B2, respectively. The worker manager 140C3 includes VM instances 150C3A, 150C3B, which include containers 150C3A-1, 150C3A-2 and containers 150C3B-1, 150C3B2, respectively. The worker manager 140C4 includes VM instances 150C4A, 150C4B, which include containers 150C4A-1, 150C4A-2 and containers 150C4B-1, 150C4B2, respectively. The worker manager 140C5 includes VM instances 150C5A, 150C5B, which include containers 150C5A-1, 150C5A-2 and containers 150C5B-1, 150C5B2, respectively. The worker manager 140C6 includes VM instances 150C6A, 150C6B, which include containers 150C6A-1, 150C6A-2 and containers 150C6B-1, 150C6B2, respectively.


As illustrated in FIG. 2, the worker managers 140 are mapped onto various points on a hash ring 170A. In the example of FIG. 2, each worker manager is associated with 3 points on the hash ring 170A. In one embodiment, when a request is routed to the low frequency fleet 170, a hash value corresponding to a point on the hash ring 170A is calculated for the request, The particular worker manager 140 to which the request is routed may be determined based on the location of the calculated hash value on the hash ring 170A. In some embodiments, the particular worker manager 140 to which the request is routed is the one having a point on the hash ring 170A that is closest to the location of the calculated hash value of the request in the clockwise direction. For example, if the hash value calculated for “Request A” corresponds to Point A illustrated on the hash ring 170A, “Request A” would be routed to the worker manager 140C6. In another example, if the hash value calculated for “Request B” corresponds to Point B illustrated on the hash ring 170A, “Request B” would be routed to the worker manager 140C4. The low frequency fleet 170 of the virtual compute system 110 is not limited to the example illustrated in FIG. 2, and the low frequency fleet 170 may be implemented with any number of worker managers, VM instances, and containers, and each worker manager may have any number of points or locations on the hash ring 170A assigned thereto. Although the hash ring 170A is used in the example of FIG. 2 to route the requests to the various worker managers 140, other request distribution schemes (e.g., rendezvous hashing) may be utilized without departing from the spirit of the present disclosure.


Turning now to FIG. 3, a general architecture of a computing system (referenced as frontend 130) that handles the requests to execute user code on the virtual compute system 110 will be described. The general architecture of the frontend 130 depicted in FIG. 3 includes an arrangement of computer hardware and software modules that may be used to implement aspects of the present disclosure. The frontend 130 may include many more (or fewer) elements than those shown in FIG. 3. It is not necessary, however, that all of these generally conventional elements be shown in order to provide an enabling disclosure. As illustrated, the frontend 130 includes a processing unit 190, a network interface 192, a computer readable medium drive 194, an input/output device interface 196, all of which may communicate with one another by way of a communication bus. The network interface 192 may provide connectivity to one or more networks or computing systems. The processing unit 190 may thus receive information and instructions from other computing systems or services via the network 104. The processing unit 190 may also communicate to and from memory 180 and further provide output information for an optional display (not shown) via the input/output device interface 196. The input/output device interface 196 may also accept input from an optional input device (not shown).


The memory 180 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 190 executes in order to implement one or more aspects of the present disclosure. The memory 180 generally includes RAM, ROM and/or other persistent, auxiliary or non-transitory computer-readable media. The memory 180 may store an operating system 184 that provides computer program instructions for use by the processing unit 190 in the general administration and operation of the frontend 130. The memory 180 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 180 includes a user interface unit 182 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device. In addition, memory 180 may include and/or communicate with one or more data repositories (not shown), for example, to access user program codes, libraries, and/or other user code data.


In addition to and/or in combination with the user interface unit 182, the memory 180 may include a usage data manager 186 and a user code execution manager 188 that may be executed by the processing unit 190. In one embodiment, the user interface unit 182, usage data manager 186, and user code execution manager 188 individually or collectively implement various aspects of the present disclosure, e.g., receiving a request to execute user code, determining whether the user code satisfies one or more usage criteria, and routing the request based on the determination, loading the user code on a virtual machine instance, executing the user code on the virtual machine instance, etc. as described further below.


The usage data manager 186 determines whether the user code satisfies one or more usage criteria. In order to make such a determination, the usage data manager 186 may access one or more user code data repositories (not shown) maintained either by the virtual compute system 110 or by an auxiliary service 106. For example, the usage data manager 186 may retrieve user code data associated the user code associated with the request, and based on the user code data, determine whether the user code is sufficiently frequently executed on the virtual compute system 110 (e.g., in which case the user associated with the request may wish to distribute his or her requests over multiple high frequency fleets 160 and multiple virtual machine instances 150 in order to achieve improved fault tolerance) or whether the user code is not sufficiently frequently executed on the virtual compute system 110 (e.g., in which case the user associated with the request may wish to reduce costs associated with executing the user code by re-using the same virtual machine instance 140 in the low frequency fleet 170). The usage data manager 186 routes the request based on the determination.


The user code execution manager 188 manages the execution of the program code specified by the request of the user once a particular virtual machine instance has been assigned to a user. If the code is pre-loaded on the virtual machine instance assigned to the user, the code is simply executed on the virtual machine instance. If the code is available via a network storage (e.g., storage service 108 of FIG. 1), the user code execution manager 188 downloads the code onto the virtual machine instance and executes the code once it has been downloaded. In some embodiments, the user code execution manager 188 executes the user code using the IP address of the virtual machine instance 150 allocated to the request by acting as an HTTP proxy. After the user code has been executed, the user code execution manager 188 may notify the worker manager 140 associated with the frontend 130 to un-reserve the virtual machine instance 150 used to execute the user code.


While the usage data manager 186 and the user code execution manager 188 are shown in FIG. 3 as part of the frontend 130, in other embodiments, all or a portion of the usage data manager 186 and the user code execution manager 188 may be implemented by other components of the virtual compute system 110 and/or another computing device. For example, in certain embodiments of the present disclosure, another computing device in communication with the virtual compute system 110 may include several modules or components that operate similarly to the modules and components illustrated as part of the frontend 130.


Turning now to FIG. 4, a routine 400 implemented by one or more components of the virtual compute system 110 (e.g., the frontend 130) will be described. Although routine 400 is described with regard to implementation by the frontend 130, one skilled in the relevant art will appreciate that alternative components may implement routine 400 or that one or more of the blocks may be implemented by a different component or in a distributed manner.


At block 402 of the illustrative routine 400, the frontend 130 receives a request to execute user program code on the virtual compute system 110. For example, the request may include one or more parameters related to the user code to be executed, such as the user ID, the user code ID, etc.


Next, at block 404, the frontend 130 determines whether one or more code usage criteria have been satisfied. As discussed herein, the one or more usage criteria may include whether the user code specified by the request is sufficiently frequently executed. The frontend 130 may determine whether the user code is sufficiently frequently executed by determining whether the frequency of execution of the user code exceeds a threshold value. For example, the frontend 130 may determine whether the transactions per second (TPS) associated with the user code exceeds a threshold TPS value. In another example, the frontend 130 may determine whether the user ID associated with the user code is a high-volume user responsible for a sufficiently large number of requests sent to the virtual compute system 110. The determination of whether the frequency of execution of the user code exceeds a threshold value may be based on historical data retrieved from a database, live data calculated on the fly, or a combination thereof. The threshold value may be determined automatically by monitoring the trend of user code execution. Alternatively, the threshold value may be set manually to one of many different configuration policies.


If the frontend 130 determines that the one or more code usage criteria have not been satisfied, the routine 400 proceeds to block 406. At block 406, the request is sent to the low frequency fleet of virtual machine instances. On the other hand, if the frontend 130 determines that the one or more code usage criteria have been satisfied, the routine 400 proceeds to block 408. At block 408, the request is sent to the worker manager associated with the frontend 130.


While the routine 400 of FIG. 4 has been described above with reference to blocks 402-408, the embodiments described herein are not limited as such, and one or more blocks may be omitted, switched, or modified without departing from the spirit of the present disclosure. For example, at block 408, the frontend 130 may handle the request instead of sending the request to the worker manager associated with the frontend 130.


Turning now to FIG. 5, an example table maintained either by the virtual compute system 110 or by an auxiliary service 106 of FIG. 1 will be described. As illustrated in FIG. 5, the table 500 includes user code data associated with “CODE A,” “CODE B,” and “CODE C.” The user code data include customer ID (e.g., user ID) of the user associated with the user code, requests per minute, and a usage status of the user code. In the example of FIG. 4, “CODE B” and “CODE C” have been categorized as having a heavy usage status based on their requests per minute. “CODE A” and “CODE B” are associated with the same user (e.g., customer ID of 121), but they have different usage status values. For example, when the request received by the frontend 130 is associated with “CODE A,” the frontend 130 may determine that the user code is not sufficiently frequently executed and route the request to a low frequency fleet (e.g., which can also be referred to as a low volume fleet configured to handle those requests that are low in volume). On the other hand, if the received request is associated with either “CODE B” or “CODE C,” the frontend 130 may determine that the user code is sufficiently frequently executed, and handle the request in conjunction with a worker manager associated with the frontend 130.


The user code data is not limited to the configuration shown in the example of FIG. 5, and may include any number of parameters that can be used for determining whether the user code is sufficiently frequently executed.


Example Embodiments (EEs)


EE 1. A system for providing low-latency computational capacity from a virtual compute fleet, the system comprising: an electronic data store configured to store at least usage data associated with one or more user codes executed on the virtual compute fleet, wherein the virtual compute fleet comprises a low volume fleet of virtual machine instances configured to process low volume requests and a high volume fleet of virtual machine instances configured to process high volume requests, wherein the low volume fleet contains a group of worker managers, each worker manager configured to manage one or more virtual machine instances of the low volume fleet and has one or more hash values associated therewith; and one or more hardware computing devices executing a frontend service through specific computer-executable instructions, said frontend service in communication with the electronic data store, and configured to at least: receive a request to execute a program code of a user on the virtual compute fleet; determine, based on a specific usage data associated with the program code of the user stored on the electronic data store, that a volume of execution of the program code does not exceed a threshold value; calculate a specific hash value based on at least a portion of information included in the request; determine a first worker manager of the group of worker managers of the low volume fleet corresponding to the calculated specific hash value; and route the request to the first worker manager corresponding to the calculated specific hash value


EE 2. The system of EE 1, wherein the frontend service is further configured to: determine that the frequency of execution of the program code exceeds the threshold value; and route the request to a second worker manager of the high frequency fleet that is associated with the frontend service, wherein the second worker manager is configured to manage the virtual machine instances of the high frequency fleet.


EE 3. The system of EE 1, further comprising a usage data manager configured to record, for each user code executed on the virtual compute fleet, usage data associated with the user code, wherein the usage data at least includes a user ID associated with the user code and a usage status associated with the user code, wherein the usage data manager determines the usage status based an execution frequency of the user code.


EE 4. A system, comprising: a frontend service comprising one or more hardware computing devices executing specific computer-executable instructions and configured to at least: receive a request to execute a program code of a user on a virtual compute system, wherein the virtual compute system comprises at least a first fleet of virtual machine instances configured to process low volume requests and at least a second fleet of virtual machine instances configured to process high volume requests; determine, based on user code data associated with the program code of the user, that the request does not satisfy one or more usage criteria; and route the request to the first fleet of virtual machine instances based on the one or more usage criteria.


EE 5. The system of EE 4, wherein the frontend service is further configured to: determine that the request satisfies the one or more usage criteria; cause the program code to be executed on a virtual machine instance selected from the second fleet of virtual machine instances.


EE 6. The system of EE 4, further comprising a user code manager configured to record, for each user code executed on the virtual compute system, user code data associated with the user code, wherein the user code data at least includes a user ID associated with the user code and a usage status associated with the user code.


EE 7. The system of EE 4, wherein the frontend service is further configured to: receive an instruction to adjust a capacity of the first fleet of virtual machine instances; and adjust a number of worker managers configured to manage the virtual machine instances of the first fleet based on the received instruction.


EE 8. The system of EE 4, wherein the frontend service is configured to determine that the request satisfies one or more usage criteria at least in part by determining whether the user code data associated with the program code of the user indicates that a frequency of execution of the program code exceeds a threshold value.


EE 9. The system of EE 4, wherein the frontend service is further configured to, in response to routing the request to the first fleet, determine a virtual machine instance for executing the program code of the user, at least in part by: calculating a hash value associated with the request; and forwarding the request to a worker manager associated with the calculated hash value, wherein the worker manager is configured to manage at least a portion of the first fleet of virtual machine instances.


EE 10. The system of EE 4, further comprising: one or more additional frontend services each associated with a different fleet of virtual machine instances, wherein the frontend service and said one or more additional frontend services are implemented on separate hardware computing devices located in different logical failure zones implemented at least in different physical data centers, different power grids, different physical racks, different networks, different subnets, different geographic regions, different security boundaries, or different availability zones; and a load balancer configured to distribute requests to execute program codes on the virtual compute system based on an individual capacity of the frontend services.


EE 11. A computer-implemented method comprising: as implemented by one or more computing devices configured with specific executable instructions, receiving a request to execute a program code of a user on a virtual compute system, wherein the virtual compute system comprises at least a first fleet of virtual machine instances configured to process low volume requests and at least a second fleet of virtual machine instances configured to process high volume requests; determining, based on user code data associated with the program code of the user, that the request does not satisfy one or more usage criteria; and routing the request to the first fleet of virtual machine instances based on the one or more usage criteria.


EE 12. The computer-implemented method of EE 11, further comprising: determine that the request satisfies the one or more usage criteria; causing the program code to be executed on a virtual machine instance selected from the second fleet of virtual machine instances.


EE 13. The computer-implemented method of EE 11, further comprising: recording, for each user code executed on the virtual compute system, user code data associated with the user code, wherein the user code data at least includes a user ID associated with the user code and a usage status associated with the user code.


EE 14. The computer-implemented method of EE 11, further comprising: receive an instruction to adjust a capacity of the first fleet of virtual machine instances; and adjust a number of worker managers configured to manage the virtual machine instances of the first fleet based on the received instruction.


EE 15. The computer-implemented method of EE 11, wherein determining that the request satisfies one or more usage criteria at least comprises: determining whether the user code data associated with the program code of the user indicates that a frequency of execution of the program code exceeds a threshold value.


EE 16. A computer-readable, non-transitory storage medium storing computer executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to perform operations comprising: receiving a request to execute a program code of a user on a virtual compute system, wherein the virtual compute system comprises at least a first fleet of virtual machine instances configured to process low volume requests and at least a second fleet of virtual machine instances configured to process high volume requests; determining, based on user code data associated with the program code of the user, that the request does not satisfy one or more usage criteria; and routing the request to the first fleet of virtual machine instances based on the one or more usage criteria.


EE 17. The computer-readable, non-transitory storage medium of EE 16, wherein the operations further comprise: determining that the request satisfies the one or more usage criteria; causing the program code to be executed on a virtual machine instance selected from the second fleet of virtual machine instances.


EE 18. The computer-readable, non-transitory storage medium of EE 16, wherein the operations further comprise recording, for each user code executed on the virtual compute system, user code data associated with the user code, wherein the user code data at least includes a user ID associated with the user code and a usage status associated with the user code.


EE 19. The computer-readable, non-transitory storage medium of EE 16, wherein the operations further comprise: receive an instruction to adjust a capacity of the first fleet of virtual machine instances; and adjust a number of worker managers configured to manage the virtual machine instances of the first fleet based on the received instruction.


EE 20. The computer-readable, non-transitory storage medium of EE 16, wherein determining that the request satisfies one or more usage criteria at least comprises determining whether the user code data associated with the program code of the user indicates that a frequency of execution of the program code exceeds a threshold value.


Other Considerations


It will be appreciated by those skilled in the art and others that all of the functions described in this disclosure may be embodied in software executed by one or more physical processors of the disclosed components and mobile communication devices. The software may be persistently stored in any type of non-volatile storage.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable medium and loaded into memory of the computing device using a drive mechanism associated with a computer readable storage medium storing the computer executable components such as a CD-ROM, DVD-ROM, or network interface. Further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms, and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.

Claims
  • 1. A system, comprising: one or more processors; andone or more memories, the one or more memories having stored thereon instructions, which, when executed by the one or more processors, configure the one or more processors to: receive a request to execute a first program code, the request including a first identifier associated with the first program code;access, based at least on the first identifier included in the request, historical data indicative of a first number of requests to execute the first program code that were received over a period of time;identify, based at least on the first number of requests that were received over the period of time to execute the first program code, a first instance manager from a set of instance managers that are each configured to acquire compute capacity on behalf of a different subset of incoming code execution requests;route the request to the first instance manager; andcause the first program code to be executed on a virtual machine instance acquired by the first instance manager.
  • 2. The system of claim 1, wherein the electronic data store is configured to store the historical data, wherein the historical data indicates the first number of requests that were received over the period of time to execute the first program code, and at least a second number of requests that were received over the period of time to execute a second program code different from the first program code.
  • 3. The system of claim 2, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to: determine that the first number of requests that were received over the period of time satisfies one or more usage criteria; andin response to determining that the first number of requests that were received over the period of time satisfies the one or more usage criteria, identify the first instance manager from the set of instance managers.
  • 4. The system of claim 3, wherein satisfying the one or more usage criteria includes the first number being below a threshold level of execution frequency.
  • 5. The system of claim 1, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to: receive another request to execute a second program code, said another request including a second identifier associated with the second program code;determine, based at least on the second identifier included in said another request, a second number of requests to execute the second program code received over another period of time;based at least on the second number of requests being greater than a threshold number, route said another request to a second instance manager that is not included in the set of instance managers; andcause the second program code to be executed on a virtual machine instance acquired by the second instance manager.
  • 6. The system of claim 1, wherein the first number of requests indicates one of (i) the number of requests to execute the first program code received per minute, or (ii) the number of requests to execute the first program code received per second.
  • 7. The system of claim 1, wherein the set of instance managers are configured to handle low-frequency requests, the instructions, when executed by the one or more processors, further configuring the one or more processors to determine that the first number of requests is less than a threshold number.
  • 8. A computer-implemented method, comprising: receiving a request to execute a first program code, the request including a first identifier associated with the first program code;accessing, based at least on the first identifier included in the request, historical data indicative of a first number of requests that were received over a period of time to execute the first program code;identifying, based at least on the first number of requests that were received over the period of time to execute the first program code, a first instance manager from a set of instance managers that are each configured to acquire compute capacity on behalf of a different subset of incoming code execution requests;routing the request to the first instance manager; andcausing the first program code to be executed on a virtual machine instance acquired by the first instance manager.
  • 9. The method of claim 8, further comprising accessing the historical data from an electronic data store, wherein the historical data indicates the first number of requests that were received over the period of time to execute the first program code, and at least a second number of requests that were received over the period of time to execute a second program code different from the first program code.
  • 10. The method of claim 9, further comprising: determining that the first number of requests that were received over the period of time satisfies one or more usage criteria; andin response to determining that the first number of requests that were received over the period of time satisfies the one or more usage criteria, identifying the first instance manager from the set of instance managers.
  • 11. The method of claim 10, wherein satisfying the one or more usage criteria includes the first number being below a threshold level of execution frequency.
  • 12. The method of claim 8, further comprising: receiving another request to execute a second program code, said another request including a second identifier associated with the second program code;determining, based at least on the second identifier included in said another request, a second number of requests to execute the second program code received over another period of time;based at least on the second number of requests being greater than a threshold number, routing said another request to a second instance manager that is not included in the set of instance managers; andcausing the second program code to be executed on a virtual machine instance acquired by the second instance manager.
  • 13. The method of claim 8, wherein the first number of requests indicates one of (i) the number of requests to execute the first program code received per minute, or (ii) the number of requests to execute the first program code received per second.
  • 14. The method of claim 8, wherein the set of instance managers are configured to handle low-frequency requests, the method further comprising determining that the first number of requests is less than a threshold number.
  • 15. Non-transitory physical computer storage storing instructions, which, when executed by one or more processors, configure the one or more processors to: receive a request to execute a first program code, the request including a first identifier associated with the first program code;access, based at least on the first identifier included in the request, historical data indicative of a first number of requests to execute the first program code that were received over a period of time;identify, based at least on the first number of requests that were received over the period of time to execute the first program code, a first instance manager from a set of instance managers that are each configured to acquire compute capacity on behalf of a different subset of incoming code execution requests;route the request to the first instance manager; andcause the first program code to be executed on a virtual machine instance acquired by the first instance manager.
  • 16. The non-transitory physical computer storage of claim 15, wherein the instance managers in the set are each associated with one or more hash values on a hash ring such that a given hash value is associated with only one of the instance managers in the set.
  • 17. The non-transitory physical computer storage of claim 15, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to: calculate a hash value associated with the request; andidentify the first instance manager based at least on the calculated hash value.
  • 18. The non-transitory physical computer storage of claim 17, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to calculate the hash value by inputting the first identifier associated with the first program code into a hash function.
  • 19. The non-transitory physical computer storage of claim 15, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to add an additional instance manager to the set of instance managers.
  • 20. The non-transitory physical computer storage of claim 19, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to cause the additional instance manager to be associated with one or more hash values previously associated with another instance manager in the set.
CROSS-REFERENCE TO CONCURRENTLY-FILED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/502,589, filed Sep. 30, 2014 and titled “MESSAGE-BASED COMPUTATION REQUEST SCHEDULING,” the disclosure of which is hereby incorporated by reference in its entirety. The present application's Applicant previously filed the following U.S. patent applications on Sep. 30, 2014, the disclosures of which are hereby incorporated by reference in their entireties: U.S.application No.Title14/502,810LOW LATENCY COMPUTATIONAL CAPACITYPROVISIONING14/502,714AUTOMATIC MANAGEMENT OF LOW LATENCYCOMPUTATIONAL CAPACITY14/502,992THREADING AS A SERVICE14/502,648PROGRAMMATIC EVENT DETECTION ANDMESSAGE GENERATION FOR REQUESTS TOEXECUTE PROGRAM CODE14/502,741PROCESSING EVENT MESSAGES FOR USERREQUESTS TO EXECUTE PROGRAM CODE14/502,620DYNAMIC CODE DEPLOYMENT AND VERSIONING

US Referenced Citations (539)
Number Name Date Kind
4949254 Shorter Aug 1990 A
5283888 Dao et al. Feb 1994 A
5970488 Crowe et al. Oct 1999 A
6385636 Suzuki May 2002 B1
6463509 Teoman et al. Oct 2002 B1
6501736 Smolik et al. Dec 2002 B1
6523035 Fleming et al. Feb 2003 B1
6708276 Yarsa et al. Mar 2004 B1
7036121 Casabona et al. Apr 2006 B1
7590806 Harris et al. Sep 2009 B2
7665090 Tormasov et al. Feb 2010 B1
7707579 Rodriguez Apr 2010 B2
7730464 Trowbridge Jun 2010 B2
7774191 Berkowitz et al. Aug 2010 B2
7823186 Pouliot Oct 2010 B2
7886021 Scheifler et al. Feb 2011 B2
8010990 Ferguson et al. Aug 2011 B2
8024564 Bassani et al. Sep 2011 B2
8046765 Cherkasova et al. Oct 2011 B2
8051180 Mazzaferri et al. Nov 2011 B2
8051266 DeVal et al. Nov 2011 B2
8065676 Sahai et al. Nov 2011 B1
8065682 Baryshnikov et al. Nov 2011 B2
8095931 Chen et al. Jan 2012 B1
8127284 Meijer et al. Feb 2012 B2
8146073 Sinha Mar 2012 B2
8166304 Murase et al. Apr 2012 B2
8171473 Lavin May 2012 B2
8209695 Pruyne et al. Jun 2012 B1
8219987 Vlaovic et al. Jul 2012 B1
8321554 Dickinson Nov 2012 B2
8321558 Sirota et al. Nov 2012 B1
8336079 Budko et al. Dec 2012 B2
8352608 Keagy et al. Jan 2013 B1
8387075 McCann et al. Feb 2013 B1
8392558 Ahuja Mar 2013 B1
8429282 Ahuja Apr 2013 B1
8448165 Conover May 2013 B1
8490088 Tang Jul 2013 B2
8555281 Van Dijk et al. Oct 2013 B1
8566835 Wang et al. Oct 2013 B2
8613070 Borzycki et al. Dec 2013 B1
8631130 Jackson Jan 2014 B2
8677359 Cavage et al. Mar 2014 B1
8694996 Cawlfield et al. Apr 2014 B2
8700768 Benari Apr 2014 B2
8719415 Sirota et al. May 2014 B1
8725702 Raman et al. May 2014 B1
8756322 Lynch Jun 2014 B1
8756696 Miller Jun 2014 B1
8769519 Leitman et al. Jul 2014 B2
8799236 Azari et al. Aug 2014 B1
8799879 Wright et al. Aug 2014 B2
8806468 Meijer et al. Aug 2014 B2
8819679 Agarwal et al. Aug 2014 B2
8825863 Hansson et al. Sep 2014 B2
8825964 Sopka et al. Sep 2014 B1
8839035 Dimitrovich et al. Sep 2014 B1
8850432 Mcgrath et al. Sep 2014 B2
8874952 Tameshige et al. Oct 2014 B2
8904008 Calder et al. Dec 2014 B2
8997093 Dimitrov Mar 2015 B2
9027087 Ishaya et al. May 2015 B2
9038068 Engle et al. May 2015 B2
9052935 Rajaa Jun 2015 B1
9086897 Oh et al. Jul 2015 B2
9092837 Bala et al. Jul 2015 B2
9098528 Wang Aug 2015 B2
9110732 Forschmiedt et al. Aug 2015 B1
9110770 Raju et al. Aug 2015 B1
9111037 Nails et al. Aug 2015 B1
9112813 Jackson Aug 2015 B2
9141410 Leafe et al. Sep 2015 B2
9146764 Wagner Sep 2015 B1
9162406 De et al. Oct 2015 B2
9164754 Pohlack Oct 2015 B1
9183019 Kruglick Nov 2015 B2
9208007 Harper et al. Dec 2015 B2
9218190 Anand et al. Dec 2015 B2
9223561 Orveillon et al. Dec 2015 B2
9223966 Satish et al. Dec 2015 B1
9250893 Blahaerath et al. Feb 2016 B2
9268586 Voccio et al. Feb 2016 B2
9298633 Zhao et al. Mar 2016 B1
9317689 Aissi Apr 2016 B2
9323556 Wagner Apr 2016 B2
9361145 Wilson et al. Jun 2016 B1
9413626 Reque et al. Aug 2016 B2
9436555 Dornemann et al. Sep 2016 B2
9461996 Hayton et al. Oct 2016 B2
9471775 Wagner et al. Oct 2016 B1
9483335 Wagner et al. Nov 2016 B1
9489227 Oh et al. Nov 2016 B2
9497136 Ramarao et al. Nov 2016 B1
9501345 Lietz et al. Nov 2016 B1
9514037 Dow et al. Dec 2016 B1
9537788 Reque et al. Jan 2017 B2
9575798 Terayama et al. Feb 2017 B2
9588790 Wagner et al. Mar 2017 B1
9594590 Hsu Mar 2017 B2
9596350 Dymshyts et al. Mar 2017 B1
9600312 Wagner et al. Mar 2017 B2
9628332 Bruno, Jr. et al. Apr 2017 B2
9635132 Lin et al. Apr 2017 B1
9652306 Wagner et al. May 2017 B1
9652617 Evans et al. May 2017 B1
9654508 Barton et al. May 2017 B2
9661011 Van Horenbeeck et al. May 2017 B1
9678773 Wagner et al. Jun 2017 B1
9678778 Youseff Jun 2017 B1
9703681 Taylor et al. Jul 2017 B2
9715402 Wagner et al. Jul 2017 B2
9727725 Wagner et al. Aug 2017 B2
9733967 Wagner et al. Aug 2017 B2
9760387 Wagner et al. Sep 2017 B2
9767271 Ghose Sep 2017 B2
9785476 Wagner et al. Oct 2017 B2
9787779 Frank et al. Oct 2017 B2
9811363 Wagner Nov 2017 B1
9811434 Wagner Nov 2017 B1
9830175 Wagner Nov 2017 B1
9830193 Wagner et al. Nov 2017 B1
9830449 Wagner Nov 2017 B1
9864636 Patel et al. Jan 2018 B1
9910713 Wisniewski et al. Mar 2018 B2
9921864 Singaravelu et al. Mar 2018 B2
9928108 Wagner et al. Mar 2018 B1
9929916 Subramanian et al. Mar 2018 B1
9930103 Thompson Mar 2018 B2
9930133 Susarla et al. Mar 2018 B2
9952896 Wagner et al. Apr 2018 B2
9977691 Marriner et al. May 2018 B2
9979817 Huang et al. May 2018 B2
10002026 Wagner Jun 2018 B1
10013267 Wagner et al. Jul 2018 B1
10042660 Wagner et al. Aug 2018 B2
10048974 Wagner et al. Aug 2018 B1
10061613 Brooker et al. Aug 2018 B1
10067801 Wagner Sep 2018 B1
10102040 Marriner et al. Oct 2018 B2
10108443 Wagner et al. Oct 2018 B2
10139876 Lu et al. Nov 2018 B2
10140137 Wagner Nov 2018 B2
10162672 Wagner et al. Dec 2018 B2
10162688 Wagner Dec 2018 B2
10203990 Wagner et al. Feb 2019 B2
10248467 Wisniewski et al. Apr 2019 B2
10277708 Wagner et al. Apr 2019 B2
10303492 Wagner et al. May 2019 B1
10353678 Wagner Jul 2019 B1
10353746 Reque et al. Jul 2019 B2
10365985 Wagner Jul 2019 B2
10387177 Wagner et al. Aug 2019 B2
10402231 Marriner et al. Sep 2019 B2
10437629 Wagner et al. Oct 2019 B2
10445140 Sagar et al. Oct 2019 B1
10528390 Brooker et al. Jan 2020 B2
10552193 Wagner et al. Feb 2020 B2
10564946 Wagner et al. Feb 2020 B1
10572375 Wagner Feb 2020 B1
10592269 Wagner et al. Mar 2020 B2
10623476 Thompson Apr 2020 B2
10649749 Brooker et al. May 2020 B1
10691498 Wagner Jun 2020 B2
20010044817 Asano et al. Nov 2001 A1
20020120685 Srivastava et al. Aug 2002 A1
20020172273 Baker et al. Nov 2002 A1
20030071842 King et al. Apr 2003 A1
20030084434 Ren May 2003 A1
20030191795 Bernardin et al. Oct 2003 A1
20030229794 James, II et al. Dec 2003 A1
20040003087 Chambliss et al. Jan 2004 A1
20040044721 Song et al. Mar 2004 A1
20040049768 Matsuyama Mar 2004 A1
20040098154 McCarthy May 2004 A1
20040158551 Santosuosso Aug 2004 A1
20040205493 Simpson et al. Oct 2004 A1
20040249947 Novaes et al. Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050027611 Wharton Feb 2005 A1
20050044301 Vasilevsky et al. Feb 2005 A1
20050120160 Plouffe et al. Jun 2005 A1
20050132167 Longobardi Jun 2005 A1
20050132368 Sexton et al. Jun 2005 A1
20050149535 Frey et al. Jul 2005 A1
20050193113 Kokusho et al. Sep 2005 A1
20050193283 Reinhardt et al. Sep 2005 A1
20050237948 Wan Oct 2005 A1
20050257051 Richard Nov 2005 A1
20060080678 Bailey et al. Apr 2006 A1
20060123066 Jacobs et al. Jun 2006 A1
20060129684 Datta Jun 2006 A1
20060168174 Gebhart Jul 2006 A1
20060184669 Vaidyanathan et al. Aug 2006 A1
20060200668 Hybre et al. Sep 2006 A1
20060212332 Jackson Sep 2006 A1
20060242647 Kimbrel et al. Oct 2006 A1
20060248195 Toumura Nov 2006 A1
20070033085 Johnson Feb 2007 A1
20070094396 Takano et al. Apr 2007 A1
20070130341 Ma Jun 2007 A1
20070174419 O'Connell et al. Jul 2007 A1
20070192082 Gaos et al. Aug 2007 A1
20070199000 Shekhel et al. Aug 2007 A1
20070220009 Morris et al. Sep 2007 A1
20070240160 Paterson-Jones Oct 2007 A1
20070255604 Seelig Nov 2007 A1
20080028409 Cherkasova et al. Jan 2008 A1
20080052401 Bugenhagen et al. Feb 2008 A1
20080052725 Stoodley et al. Feb 2008 A1
20080082977 Araujo et al. Apr 2008 A1
20080104247 Venkatakrishnan et al. May 2008 A1
20080104608 Hyser et al. May 2008 A1
20080115143 Shimizu et al. May 2008 A1
20080126110 Haeberle et al. May 2008 A1
20080126486 Heist May 2008 A1
20080127125 Anckaert et al. May 2008 A1
20080147893 Marripudi et al. Jun 2008 A1
20080189468 Schmidt et al. Aug 2008 A1
20080195369 Duyanovich et al. Aug 2008 A1
20080201568 Quinn et al. Aug 2008 A1
20080201711 Amir Husain Aug 2008 A1
20080209423 Hirai Aug 2008 A1
20090006897 Sarsfield Jan 2009 A1
20090013153 Hilton Jan 2009 A1
20090025009 Brunswig et al. Jan 2009 A1
20090055810 Kondur Feb 2009 A1
20090055829 Gibson Feb 2009 A1
20090070355 Cadarette et al. Mar 2009 A1
20090077569 Appleton et al. Mar 2009 A1
20090125902 Ghosh et al. May 2009 A1
20090158275 Wang et al. Jun 2009 A1
20090177860 Zhu Jul 2009 A1
20090183162 Kindel et al. Jul 2009 A1
20090193410 Arthursson et al. Jul 2009 A1
20090198769 Keller et al. Aug 2009 A1
20090204960 Ben-yehuda et al. Aug 2009 A1
20090204964 Foley et al. Aug 2009 A1
20090222922 Sidiroglou et al. Sep 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090288084 Astete et al. Nov 2009 A1
20090300599 Piotrowski Dec 2009 A1
20100023940 Iwamatsu et al. Jan 2010 A1
20100031274 Sim-Tang Feb 2010 A1
20100031325 Maigne et al. Feb 2010 A1
20100036925 Haffner Feb 2010 A1
20100058342 Machida Mar 2010 A1
20100058351 Yahagi Mar 2010 A1
20100064299 Kacin et al. Mar 2010 A1
20100070678 Zhang et al. Mar 2010 A1
20100070725 Prahlad et al. Mar 2010 A1
20100094816 Groves, Jr. et al. Apr 2010 A1
20100106926 Kandasamy et al. Apr 2010 A1
20100114825 Siddegowda May 2010 A1
20100115098 De Baer et al. May 2010 A1
20100122343 Ghosh May 2010 A1
20100131936 Cheriton May 2010 A1
20100131959 Spiers et al. May 2010 A1
20100186011 Magenheimer Jul 2010 A1
20100198972 Umbehocker Aug 2010 A1
20100199285 Medovich Aug 2010 A1
20100257116 Mehta et al. Oct 2010 A1
20100269109 Cartales Oct 2010 A1
20100312871 Desantis et al. Dec 2010 A1
20100325727 Neystadt et al. Dec 2010 A1
20110010722 Matsuyama Jan 2011 A1
20110029970 Arasaratnam Feb 2011 A1
20110029984 Norman et al. Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110055378 Ferris et al. Mar 2011 A1
20110055396 DeHaan Mar 2011 A1
20110055683 Jiang Mar 2011 A1
20110078679 Bozek et al. Mar 2011 A1
20110099204 Thaler Apr 2011 A1
20110099551 Fahrig et al. Apr 2011 A1
20110131572 Elyashev et al. Jun 2011 A1
20110134761 Smith Jun 2011 A1
20110141124 Halls et al. Jun 2011 A1
20110153727 Li Jun 2011 A1
20110153838 Belkine et al. Jun 2011 A1
20110154353 Theroux et al. Jun 2011 A1
20110179162 Mayo et al. Jul 2011 A1
20110184993 Chawla et al. Jul 2011 A1
20110225277 Freimuth et al. Sep 2011 A1
20110231680 Padmanabhan et al. Sep 2011 A1
20110247005 Benedetti et al. Oct 2011 A1
20110265164 Lucovsky Oct 2011 A1
20110271276 Ashok et al. Nov 2011 A1
20110276945 Chasman et al. Nov 2011 A1
20110314465 Smith et al. Dec 2011 A1
20110321033 Kelkar et al. Dec 2011 A1
20110321051 Rastogi Dec 2011 A1
20120011496 Shimamura Jan 2012 A1
20120011511 Horvitz et al. Jan 2012 A1
20120016721 Weinman Jan 2012 A1
20120041970 Ghosh et al. Feb 2012 A1
20120054744 Singh et al. Mar 2012 A1
20120072762 Atchison et al. Mar 2012 A1
20120072914 Ota Mar 2012 A1
20120079004 Herman Mar 2012 A1
20120096271 Ramarathinam et al. Apr 2012 A1
20120096468 Chakravorty et al. Apr 2012 A1
20120102307 Wong Apr 2012 A1
20120102333 Wong Apr 2012 A1
20120102481 Mani et al. Apr 2012 A1
20120102493 Allen et al. Apr 2012 A1
20120110155 Adlung et al. May 2012 A1
20120110164 Frey et al. May 2012 A1
20120110570 Jacobson et al. May 2012 A1
20120110588 Bieswanger et al. May 2012 A1
20120131379 Tameshige et al. May 2012 A1
20120144290 Goldman et al. Jun 2012 A1
20120166624 Suit Jun 2012 A1
20120192184 Burckart et al. Jul 2012 A1
20120197795 Campbell et al. Aug 2012 A1
20120197958 Nightingale et al. Aug 2012 A1
20120198442 Kashyap et al. Aug 2012 A1
20120222038 Katragadda Aug 2012 A1
20120233464 Miller et al. Sep 2012 A1
20120331113 Jain et al. Dec 2012 A1
20130014101 Ballani et al. Jan 2013 A1
20130042234 DeLuca et al. Feb 2013 A1
20130054804 Jana et al. Feb 2013 A1
20130054927 Raj et al. Feb 2013 A1
20130055262 Lubsey et al. Feb 2013 A1
20130061208 Tsao et al. Mar 2013 A1
20130061220 Gnanasambandam et al. Mar 2013 A1
20130067494 Srour et al. Mar 2013 A1
20130080641 Lui et al. Mar 2013 A1
20130097601 Podvratnik et al. Apr 2013 A1
20130111032 Alapati et al. May 2013 A1
20130111469 B et al. May 2013 A1
20130124807 Nielsen et al. May 2013 A1
20130132942 Wang May 2013 A1
20130139152 Chang et al. May 2013 A1
20130139166 Zhang et al. May 2013 A1
20130151648 Luna Jun 2013 A1
20130152047 Moorthi et al. Jun 2013 A1
20130179574 Calder et al. Jul 2013 A1
20130179881 Calder et al. Jul 2013 A1
20130179894 Calder et al. Jul 2013 A1
20130179895 Calder et al. Jul 2013 A1
20130185719 Kar et al. Jul 2013 A1
20130185729 Vasic et al. Jul 2013 A1
20130191924 Tedesco Jul 2013 A1
20130198319 Shen et al. Aug 2013 A1
20130198743 Kruglick Aug 2013 A1
20130198748 Sharp et al. Aug 2013 A1
20130198763 Kunze et al. Aug 2013 A1
20130205092 Roy et al. Aug 2013 A1
20130219390 Lee et al. Aug 2013 A1
20130227097 Yasuda et al. Aug 2013 A1
20130227534 Ike et al. Aug 2013 A1
20130227563 Mcgrath Aug 2013 A1
20130227641 White et al. Aug 2013 A1
20130227710 Barak et al. Aug 2013 A1
20130232480 Winterfeldt et al. Sep 2013 A1
20130239125 Iorio Sep 2013 A1
20130262556 Xu et al. Oct 2013 A1
20130263117 Konik et al. Oct 2013 A1
20130275376 Hudlow et al. Oct 2013 A1
20130275958 Ivanov et al. Oct 2013 A1
20130275969 Dimitrov Oct 2013 A1
20130275975 Masuda et al. Oct 2013 A1
20130283176 Hoole et al. Oct 2013 A1
20130290538 Gmach et al. Oct 2013 A1
20130291087 Kailash et al. Oct 2013 A1
20130297964 Hegdal et al. Nov 2013 A1
20130311650 Brandwine et al. Nov 2013 A1
20130326506 McGrath et al. Dec 2013 A1
20130339950 Ramarathinam et al. Dec 2013 A1
20130346470 Obstfeld et al. Dec 2013 A1
20130346946 Pinnix Dec 2013 A1
20130346964 Nobuoka et al. Dec 2013 A1
20130346987 Raney et al. Dec 2013 A1
20130346994 Chen et al. Dec 2013 A1
20130347095 Barjatiya et al. Dec 2013 A1
20140007097 Chin et al. Jan 2014 A1
20140019523 Heymann et al. Jan 2014 A1
20140019735 Menon et al. Jan 2014 A1
20140019965 Neuse et al. Jan 2014 A1
20140019966 Neuse et al. Jan 2014 A1
20140040343 Nickolov et al. Feb 2014 A1
20140040857 Trinchini et al. Feb 2014 A1
20140040880 Brownlow et al. Feb 2014 A1
20140059209 Alnoor Feb 2014 A1
20140059226 Messerli et al. Feb 2014 A1
20140059552 Cunningham et al. Feb 2014 A1
20140068568 Wisnovsky Mar 2014 A1
20140068611 McGrath et al. Mar 2014 A1
20140081984 Sitsky et al. Mar 2014 A1
20140082165 Marr et al. Mar 2014 A1
20140082201 Shankari et al. Mar 2014 A1
20140101649 Kamble et al. Apr 2014 A1
20140108722 Lipchuk et al. Apr 2014 A1
20140109087 Jujare et al. Apr 2014 A1
20140109088 Dournov et al. Apr 2014 A1
20140129667 Ozawa May 2014 A1
20140130040 Lemanski May 2014 A1
20140137110 Engle et al. May 2014 A1
20140173614 Konik et al. Jun 2014 A1
20140173616 Bird et al. Jun 2014 A1
20140180862 Certain et al. Jun 2014 A1
20140189677 Curzi et al. Jul 2014 A1
20140207912 Thibeault et al. Jul 2014 A1
20140215073 Dow et al. Jul 2014 A1
20140261735 Kannan et al. Jul 2014 A1
20140229221 Shih et al. Aug 2014 A1
20140245297 Hackett Aug 2014 A1
20140279581 Devereaux Sep 2014 A1
20140280325 Krishnamurthy et al. Sep 2014 A1
20140282559 Verduzco et al. Sep 2014 A1
20140282615 Cavage et al. Sep 2014 A1
20140282629 Gupta et al. Sep 2014 A1
20140283045 Brandwine et al. Sep 2014 A1
20140289286 Gusak Sep 2014 A1
20140298295 Overbeck Oct 2014 A1
20140304698 Chigurapati et al. Oct 2014 A1
20140304815 Maeda Oct 2014 A1
20140317617 O'Donnell Oct 2014 A1
20140344457 Bruno, Jr. et al. Nov 2014 A1
20140344736 Ryman et al. Nov 2014 A1
20140380085 Rash et al. Dec 2014 A1
20150033241 Jackson et al. Jan 2015 A1
20150039891 Ignatchenko et al. Feb 2015 A1
20150040229 Chan et al. Feb 2015 A1
20150046926 Kenchammana-Hosekote et al. Feb 2015 A1
20150052258 Johnson et al. Feb 2015 A1
20150058914 Yadav Feb 2015 A1
20150067830 Johansson et al. Mar 2015 A1
20150074659 Madsen et al. Mar 2015 A1
20150081885 Thomas et al. Mar 2015 A1
20150106805 Melander et al. Apr 2015 A1
20150120928 Gummaraju et al. Apr 2015 A1
20150134626 Theimer et al. May 2015 A1
20150135287 Medeiros et al. May 2015 A1
20150142952 Bragstad et al. May 2015 A1
20150143381 Chin et al. May 2015 A1
20150178110 Li et al. Jun 2015 A1
20150186129 Apte et al. Jul 2015 A1
20150188775 Van Der Walt et al. Jul 2015 A1
20150199218 Wilson et al. Jul 2015 A1
20150205596 Hiltegen et al. Jul 2015 A1
20150227598 Hahn et al. Aug 2015 A1
20150235144 Gusev et al. Aug 2015 A1
20150242225 Muller et al. Aug 2015 A1
20150254248 Burns Sep 2015 A1
20150256621 Node et al. Sep 2015 A1
20150261578 Greden et al. Sep 2015 A1
20150289220 Kim et al. Oct 2015 A1
20150309923 Iwata et al. Oct 2015 A1
20150319160 Ferguson et al. Nov 2015 A1
20150324229 Valine Nov 2015 A1
20150332048 Mooring et al. Nov 2015 A1
20150332195 Jue Nov 2015 A1
20150350701 Lemus et al. Dec 2015 A1
20150356294 Tan et al. Dec 2015 A1
20150363181 Alberti et al. Dec 2015 A1
20150370560 Tan et al. Dec 2015 A1
20150371244 Neuse et al. Dec 2015 A1
20150378762 Saladi et al. Dec 2015 A1
20150378764 Sivasubramanian et al. Dec 2015 A1
20150378765 Singh et al. Dec 2015 A1
20150379167 Griffith et al. Dec 2015 A1
20160011901 Hurwitz et al. Jan 2016 A1
20160012099 Tuatini et al. Jan 2016 A1
20160019536 Ortiz et al. Jan 2016 A1
20160026486 Abdallah Jan 2016 A1
20160048606 Rubinstein et al. Feb 2016 A1
20160072727 Leafe et al. Mar 2016 A1
20160077901 Roth et al. Mar 2016 A1
20160098285 Davis et al. Apr 2016 A1
20160100036 Lo et al. Apr 2016 A1
20160117254 Susarla et al. Apr 2016 A1
20160124665 Jain et al. May 2016 A1
20160140180 Park et al. May 2016 A1
20160191420 Nagarajan et al. Jun 2016 A1
20160212007 Alatorre et al. Jul 2016 A1
20160285906 Fine et al. Sep 2016 A1
20160292016 Bussard et al. Oct 2016 A1
20160294614 Searle et al. Oct 2016 A1
20160306613 Busi et al. Oct 2016 A1
20160350099 Suparna et al. Dec 2016 A1
20160357536 Firlik et al. Dec 2016 A1
20160364265 Cao et al. Dec 2016 A1
20160371127 Antony et al. Dec 2016 A1
20160371156 Merriman Dec 2016 A1
20160378449 Khazanchi et al. Dec 2016 A1
20160378554 Gummaraju et al. Dec 2016 A1
20170041309 Ekambaram et al. Feb 2017 A1
20170060615 Thakkar et al. Mar 2017 A1
20170060621 Whipple et al. Mar 2017 A1
20170068574 Cherkasova et al. Mar 2017 A1
20170075749 Ambichl et al. Mar 2017 A1
20170083381 Cong et al. Mar 2017 A1
20170085447 Chen et al. Mar 2017 A1
20170085591 Ganda et al. Mar 2017 A1
20170093684 Jayaraman et al. Mar 2017 A1
20170093920 Ducatel et al. Mar 2017 A1
20170116051 Wagner et al. Apr 2017 A1
20170177391 Wagner et al. Jun 2017 A1
20170206116 Reque et al. Jul 2017 A1
20170230499 Mumick et al. Aug 2017 A1
20170272462 Kraemer et al. Sep 2017 A1
20170286143 Wagner et al. Oct 2017 A1
20170286156 Wagner et al. Oct 2017 A1
20170371703 Wagner et al. Dec 2017 A1
20170371724 Wagner et al. Dec 2017 A1
20180004553 Wagner et al. Jan 2018 A1
20180004572 Wagner et al. Jan 2018 A1
20180039506 Wagner et al. Feb 2018 A1
20180046453 Nair et al. Feb 2018 A1
20180046482 Karve et al. Feb 2018 A1
20180060221 Yim et al. Mar 2018 A1
20180067841 Mahimkar Mar 2018 A1
20180121245 Wagner et al. May 2018 A1
20180143865 Wagner et al. May 2018 A1
20180157568 Wagner Jun 2018 A1
20180203717 Wagner et al. Jul 2018 A1
20180210760 Wisniewski et al. Jul 2018 A1
20180239636 Arora et al. Aug 2018 A1
20180253333 Gupta Sep 2018 A1
20180275987 Vandeputte Sep 2018 A1
20180309819 Thompson Oct 2018 A1
20190072529 Andrawes et al. Mar 2019 A1
20190073234 Wagner et al. Mar 2019 A1
20190102231 Wagner Apr 2019 A1
20190155629 Wagner et al. May 2019 A1
20190171470 Wagner Jun 2019 A1
20190196884 Wagner Jun 2019 A1
20190205171 Brooker et al. Jul 2019 A1
20190227849 Wisniewski et al. Jul 2019 A1
20190384647 Reque et al. Dec 2019 A1
20190391834 Mullen et al. Dec 2019 A1
20190391841 Mullen et al. Dec 2019 A1
20200057680 Marriner et al. Feb 2020 A1
20200104198 Hussels et al. Apr 2020 A1
20200104378 Wagner et al. Apr 2020 A1
20200192707 Brooker et al. Jun 2020 A1
Foreign Referenced Citations (33)
Number Date Country
2663052 Nov 2013 EP
2002287974 Oct 2002 JP
2006-107599 Apr 2006 JP
2007-538323 Dec 2007 JP
2010-026562 Feb 2010 JP
2011-233146 Nov 2011 JP
2011257847 Dec 2011 JP
2013-156996 Aug 2013 JP
2014-525624 Sep 2014 JP
2017-534107 Nov 2017 JP
2017-534967 Nov 2017 JP
2018-503896 Feb 2018 JP
2018-512087 May 2018 JP
2018-536213 Dec 2018 JP
WO 2008114454 Sep 2008 WO
WO 2009137567 Nov 2009 WO
WO 2012039834 Mar 2012 WO
WO 2012050772 Apr 2012 WO
WO 2013106257 Jul 2013 WO
WO 2015078394 Jun 2015 WO
WO 2015108539 Jul 2015 WO
WO 2016053950 Apr 2016 WO
WO 2016053968 Apr 2016 WO
WO 2016053973 Apr 2016 WO
WO 2016090292 Jun 2016 WO
WO 2016126731 Aug 2016 WO
WO 2016164633 Oct 2016 WO
WO 2016164638 Oct 2016 WO
WO 2017059248 Apr 2017 WO
WO 2017112526 Jun 2017 WO
WO 2017172440 Oct 2017 WO
WO 2020005764 Jan 2020 WO
WO 2020069104 Apr 2020 WO
Non-Patent Literature Citations (76)
Entry
Anonymous: “Docker run reference”, Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017].
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title=Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages.
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, Jun. 26, 2016, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf.
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: 2007, 12 pages.
Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot Instance Pricing”, ACM Transactions on Economics and Computation 1.3, 2013, 15 pages.
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages.
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM Sigplan Notices—Supplemental Issue, Apr. 2012.
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, 2014, 13 pages.
Deis, Container, 2014, 1 page.
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9-11, 2013, pp. 30-37.
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013.
Han et al., Lightweight Resource Scaling for Cloud Applications, 2012, 8 pages.
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages.
Kamga et al., Extended scheduler for efficient frequency scaling in virtualized systems, Jul. 2012, 8 pages.
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, Jul. 2010, 12 pages.
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages.
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Supercomputing, 2004. Proceedings of the ACM/IEEESC 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages.
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages.
Merkel, “Docker: Lightweight Linux Containers for Consistent Development and Deployment”, Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages.
Monteil, Coupling profile and historical methods to predict execution time of parallel applications. Parallel and Cloud Computing, 2013, <hal-01228236, pp. 81-89.
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578.
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321.
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages.
Stack Overflow, Creating a database connection pool, 2009, 4 pages.
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages.
Vaghani, S.B., Virtual Machine File System, ACM Sigops Operating Systems Review 44(4):57-70, Dec. 2010.
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM Sigcomm Computer Communication Review 41(1):45-52, Jan. 2011.
Yamasaki et al. “Model-based resource selection for efficient virtual cluster deployment”, Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7.
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education 2012.
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38.
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015.
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15846932.0 dated May 3, 2018.
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015.
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018.
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016.
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018.
International Search Report and Written Opinion in PCT/US2015/064071dated Mar. 16, 2016.
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017.
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016.
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017.
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016.
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017.
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016.
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017.
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016.
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018.
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017.
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018.
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017.
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018.
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017.
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017.
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, 2019, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 521 pages.
CodeChef Admin discussion web page, retrieved from https://discuss.codechef.com/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159, 2019.
CodeChef IDE web page, Code, Compile & Run, retrieved from https://www.codechef.com/ide, 2019.
Dynamic HTML, Wikipedia page from date Mar. 27, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML, 2015, 6 pages.
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051/http://discuss.codechef.com/questions/2881 /why-are-simple-java-programs-using-up-so-much-space, 2012.
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/ERROR,va123, 2014.
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide, 2015.
Kato, et al. “Web Service Conversion Architecture of the Web Application and Evaluation”; Research Report from Information Processing Society, Apr. 3, 2006 with Machine Translation.
Sakamoto, et al. “Platform for Web Services using Proxy Server”; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31.
Wang et al., “Improving utilization through dynamic VM resource allocation in hybrid cloud environment”, Parallel and Distributed V Systems (ICPADS), IEEE, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7097814, 8 pages.
Wikipedia List_of_HTTP status_codes web page, retrieved from https://en.wikipedia.org/wiki/List_of_HTTP status_codes, 2019.
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en .wikipedia.org/wiki/Recursion_(computer_science), 2015.
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine, 2019.
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulation in Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages.
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019.
International Preliminary Report on Patentability in PCT/US2017/039514 dated Jan. 1, 2019.
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019.
Tange, “GNU Parallel: The Command-Line Power Tool”, vol. 36, No. 1, Jan. 1, 1942, pp. 42-47.
Wikipedia “API” pages from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/20150407191158/https://en .wikipedia.org/wiki/Application_programming_interface.
Extended Search Report in European Application No. 19199402.9 dated Mar. 6, 2020.
Office Action in European Application No. 17743108.7 dated Jan. 14, 2020.
Related Publications (1)
Number Date Country
20190108058 A1 Apr 2019 US
Continuations (1)
Number Date Country
Parent 14502589 Sep 2014 US
Child 16101144 US