A portion of the disclosure of this patent document contains material which is subject to copyright protection. This patent document may show and/or describe matter which is or may become trade dress of the owner. The copyright and trade dress owner has no objection to the facsimile reproduction by anyone of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright and trade dress rights whatsoever.
1. Field of the Invention
The present application is directed to a switching network for receiving and transmitting data packets having both frames and messages which utilizes a ring for messages and an associated crossbar switch for frames.
2. Description of the Related Art
In a switching network, all receiving channels (or ports) route data to a switching fabric. The switching fabric sends the data to a specific destination port. The data is normally in the form of data packets either of uniform or variable length. A data packet may include both frames which consist of relatively long strings of data bytes for example 40 to 64 bytes and larger, and messages which consist of small entities of, for example 4, 8, or 12 bytes. Such small entity messages might include formats of broadcast flow control, back pressure/feed forward messages, linked table configuration, write or read formats and other similar formats. Input ports are connected to output ports by a well known crossbar connection matrix. Such crossbar matrices typically reside on a die where there may be 64 ports and each port has a data bus of 16 signal lines. Thus, with a total of 2,048 signal lines, the crossbar switches are silicon resource intensive. In other words, to efficiently utilize this silicon resource (that is the silicon die on which the crossbar switch is integrated), it is very inefficient to transmit small entity messages (that is 4, 8, or 12 bytes, for example, as discussed above) through the crossbar switch. It is more efficient, rather, to transmit frame size packet portions which range from 40 to 64 bytes and greater.
Ring networks have also been suggested for data transfer. See IEEE 802.5 standard. However, this is used in a computer network where a computer must first catch a token and then attach a “message” to it.
Referring in general to the operation of the switching apparatus of
Again, as on the input side, each output port of a switch element has a direct serial link to one of the CP/TMs or egress port units. Then the egress ports 12 are coupled into, for example, a high speed channel network (e.g., fiber optic) to transmit data at a 10 Gbps rate in a manner similar to the incoming data, but with the data having been rerouted to a selected destination port. Finally, as indicated in
Referring briefly to
If a frame is being routed to a desired destination port, the crossbar switch 510 operates in a normal manner where, for example, data would be input into the node 500h directly switched to the crossbar switch 510 and then immediately switched to the desired destination port. As discussed above, to perform this switching with a small entity message would be both inefficient and unduly congest the crossbar switch. Thus, if a message that is in place or queued up in message FIFO 24 as illustrated in
In order to avoid conflict with the crossbar switch, however, each port 500a-500h includes, as illustrated in
Then in step 210, if it is a frame, it is routed in the conventional manner through the crossbar switch as discussed above. If a message is placed in a message-in queue in step 220 (as also illustrated in
In step 230 the message is inserted into one of the ports or nodes of the message ring, that is 500a-500h, and is also given a message ring destination identifier in step 240. It is passed from port to port in step 250 under the control of the clock 560 and the gate unit of
In step 260 the question is asked if the message is at its destination port. If no, it is passed to the next port in step 270 but if yes as indicated in
Thus, messages do not pass through the crossbar 510 as illustrated in
In summary, a switching network for receiving and transmitting data packets having both frames and messages is provided by the use of a message ring.
Closing Comments
The foregoing is merely illustrative and not limiting, having been presented by way of example only. Although exemplary embodiments of the invention have been shown and described, it will be apparent to those having ordinary skill in the art that changes, modifications, and/or alterations may be made, none of which depart from the spirit of the present invention. All such changes, modifications and alterations should therefore be seen as within the scope of the present invention.
Although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. With regard to flowcharts, additional and fewer steps may be taken, and the steps as shown may be combined or further refined to achieve the methods described herein. Acts, elements and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.
For any means-plus-function limitations recited in the claims, the means are not intended to be limited to the means disclosed herein for performing the recited function, but are intended to cover in scope any means, known now or later developed, for performing the recited function.
As used herein, “plurality” means two or more.
As used herein, a “set” of items may include one or more of such items.
As used herein, whether in the written description or the claims, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of”, respectively, are closed or semi-closed transitional phrases with respect to claims.
Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
As used herein, “and/or” means that the listed items are alternatives, but the alternatives also include any combination of the listed items.
This patent is related to application Ser. No. 09/971,097 entitled “Switching Apparatus For High Speed Channels Using Multiple Parallel Lower Speed Channels While Maintaining Data Rates” and filed Oct. 3, 2001. This application is a continuation of U.S. application Ser. No. 11/627,034 filed Jan. 25, 2007, now U.S. Pat. No. 7,751,419 issued Jul. 6, 2010, entitled “Message Ring in a Switching Network”, which is a continuation of U.S. application Ser. No. 10/006,072, now U.S. Pat. No. 7,203,203 issued Apr. 10, 2007 entitled “Message Ring In A Switching Network” and filed Dec. 5, 2001, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4704606 | Hasley | Nov 1987 | A |
4754451 | Eng et al. | Jun 1988 | A |
5404461 | Olnowich et al. | Apr 1995 | A |
5550823 | Irie et al. | Aug 1996 | A |
5555543 | Grohoski et al. | Sep 1996 | A |
5606370 | Moon | Feb 1997 | A |
5784003 | Dahlgren | Jul 1998 | A |
5841874 | Kempke et al. | Nov 1998 | A |
5856977 | Yang et al. | Jan 1999 | A |
5859975 | Brewer et al. | Jan 1999 | A |
5898689 | Kumar et al. | Apr 1999 | A |
5909440 | Ferguson et al. | Jun 1999 | A |
6067408 | Runaldue et al. | May 2000 | A |
6172927 | Taylor | Jan 2001 | B1 |
6389489 | Stone et al. | May 2002 | B1 |
6442674 | Lee et al. | Aug 2002 | B1 |
6460120 | Bass et al. | Oct 2002 | B1 |
6487171 | Honig et al. | Nov 2002 | B1 |
6493347 | Sindhu et al. | Dec 2002 | B2 |
6510138 | Pannell | Jan 2003 | B1 |
6570876 | Aimoto | May 2003 | B1 |
6574194 | Sun et al. | Jun 2003 | B1 |
6587470 | Elliot et al. | Jul 2003 | B1 |
6611527 | Moriwaki et al. | Aug 2003 | B1 |
6621818 | Szczepanek et al. | Sep 2003 | B1 |
6658016 | Dai et al. | Dec 2003 | B1 |
6728206 | Carlson | Apr 2004 | B1 |
6735219 | Clauberg | May 2004 | B1 |
6754741 | Alexander et al. | Jun 2004 | B2 |
6836479 | Sakamoto et al. | Dec 2004 | B1 |
6842443 | Allen, Jr. et al. | Jan 2005 | B2 |
7046660 | Wallner et al. | May 2006 | B2 |
7096305 | Moll | Aug 2006 | B2 |
7203203 | Clem et al. | Apr 2007 | B2 |
7751419 | Clem et al. | Jul 2010 | B2 |
20010037435 | Van Doren | Nov 2001 | A1 |
Entry |
---|
Cisco Systems Inc., Token Ring IEEE 802.5, Chapter 9, Internetworking Technologies Handbook, www.cisco.com/univercd/cc/ td/doc/cisintwk/ito—doc/tokenrng.htm. |
Fahmy, A Survey of ATM Switching Techniques, Aug. 14, 2001, Department of Computer and Information Science, The Ohio State University. |
Gupta, Scheduling in Input Queued Switches: A Survey, Jun. 1996, Department of Computer Science, Stanford University, California. |
Petaswitch Solutions, Inc., Company Overview, 2001, http://wwvv.peta-switch.com/markets/overview.htm. |
Petaswitch Solutions, Inc., PetaSwitch Solutions Announces Raising $4 Million in First Round Financing, Press Release, 2001, http://peta-switch.com/newsroom/press—releases.htm. |
Petaswitch Solutions, Inc., The Pisces Chipset, Product Brief, 2001, http://www.peta-switch.com/products/product—brief.htm. |
Schoenen, et al., Distributed Cell Scheduling Algorithms for Virtual-Output-Queued Switches, Dec. 1999, pp. 1211-1215, vol. 1, Globecom, IEEE Global Telecommunications Conference. |
Stiliadis, et al., Rate-Proportional Servers: a Design Methodology for Fair Queueing Algorithms, Dec. 1995, Computer Engineering & Information Sciences, University of California, Santa Cruz. |
Stoica, et al., Earliest Eligible Virtual Deadline First: A Flexible and Accurate Mechanism for Proportional Share Resource Allocation, Department of Computer Science, Old Dominion University, Norfolk, VA. |
Webopedia, What Is a Token Ring Network?, Webopedia Definition and Links, http://www.webopedia.com/TERM/T/token—ring—network.html. |
Number | Date | Country | |
---|---|---|---|
20110026540 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11627034 | Jan 2007 | US |
Child | 12831171 | US | |
Parent | 10006072 | Dec 2001 | US |
Child | 11627034 | US |