The present disclosure generally relates to the field of metabolic biomarkers for cancer, preferably ovarian cancer and methods of their use.
Epithelial ovarian cancer (EOC) is the eighth most common cancer and the fifth leading cause of cancer deaths in women in the United States. Despite decades of research and an annual investment in the U.S. of more than $2.2 billion (in 2004 dollars) on treatment, ovarian cancer remains the leading cause of deaths from gynecological malignancies (Brown, et al., Med. Care, 40(8 supplement)IV:104-117 (2002)). It is estimated that 21,650 new cases of ovarian cancer were diagnosed in 2008 and 15,520 women died from the disease (http://seer.cancer.gov/statfacts/html/ovary.html).
Most cancer blood tests in current clinical practice monitor changes in levels of a single molecule that has been demonstrated to be elevated (or lowered) in a significant number of diseased patients. While these tests are often not definitive per se, they can be of significant predictive value when combined with clinical symptoms and other diagnostic procedures. The challenge with ovarian cancer is that the disease typically arises and progresses initially without well-defined clinical symptoms (Jacobs and Menon, Mol. Cell Proteomics, 3:355-66 (2004)). Due to the asymptomatic nature of the disease, women are frequently undiagnosed until the disease is late in its progression (stage III/IV) when the 5-year survival rate is only 15-20% (Odunsi, et al., Int. J. Cancer, 113(5):782-8 (2005)).
This lack of early clinical symptoms places an elevated burden of accuracy on any potential blood test for ovarian cancer. So far, attempts to identify a single molecule with significant diagnostic potential for ovarian cancer have been uniformly unsuccessful. The assay for CA125 is currently the only FDA-approved test for ovarian cancer detection but the overall predictive value of CA125 has been reported to be less than 10% (Petricoin, et al., The Lancet, 359(9306):572-7 (2002)).
For this reason, current interest has focused on the development of tests using panels of biomarkers. For example, a recently developed test having a panel of six serum proteins has been shown to be of significant diagnostic value in high ovarian cancer risk groups (e.g., BRAC 1 positive patients) (Visintin, Clin. Cancer Res., 14:1065-72 (2008)) but not sufficiently accurate for diagnostic screening in the general population (Green, et al., Clin. Cancer Res., 14:7574-75 (2008)).
Efforts to discover potentially more accurate biomarkers of ovarian cancer using mass spectrometry have focused on large biopolymers, such as proteins (Williams, et al., J. Proteome Res., 6:2936-62 (2007)). However, finding and validating biomarkers of this kind is hampered by the fact that the serum proteome is extremely complex, comprising ˜2×106 protein species with a dynamic range spanning 10 orders of magnitude (Anderson and Anderson, Mol. Cell. Proteomics, 1:845-68 (2002)). This inherent complexity combined with current limitations in the proteomic analytical arsenal can result in the convolution of biomarker variability with non-biological sources of variance.
Thus, there is a need for panels of biomarkers that are less complex than proteins and enable detection of cancer at an early stage of the disease or that identify individuals who are at high risk of developing cancer.
Therefore, it is an object of the invention to provide panels of small molecule biomarkers indicative of cancer, and methods for using the biomarkers for the diagnosis of subjects that have cancer, or that have an increased risk for developing cancer.
It is still another object of the invention to provide methods for detecting changes in serum metabolites that are predictive of ovarian cancer.
Methods and compositions for detecting changes in serum metabolites that correlate with cancer are provided. Panels of serum metabolites have been identified that can be used to diagnose cancer or assess the risk of developing cancer. A preferred cancer is ovarian cancer. The metabolic biomarkers include serum metabolites that are differentially present in the serum of subjects with or at risk of developing cancer as compared to the serum of control subjects that do not have cancer. The serum metabolic biomarkers preferably include serum metabolites that are differentially present in the serum of patients with gynecologic cancers, as compared to the serum of control subjects.
In certain embodiments, profiles of serum metabolites are obtained from subjects with cancer and subjects without cancer. Profiles of statistically significant serum metabolites indicative or predicative of cancer are obtained by comparing the serum metabolite profiles of the two populations. Once the profile of serum metabolites indicative of cancer is obtained, a serum metabolite profile from a sample from a subject can be obtained and compared to the predetermined profile of serum metabolites indicative of cancer. If the profile obtained test sample correlates with the profile indicative of cancer, the subject is diagnosed with cancer.
The disclosed panels of serum metabolic biomarkers include at least 2 or more serum metabolites. In some embodiments, the metabolic biomarker panels include 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100, 150, or more metabolites. In preferred embodiments, the metabolic biomarker panels include 10 or more metabolites. Serum metabolic biomarkers may be characterized by their molecular weight, their chemical formula, their mass-to-charge ratio (m/z), for example as determined by mass spectrometry, or their chemical name.
Methods for using the metabolic biomarker panels to identify a subject for treatment of cancer are provided. The methods generally include the steps of detecting two or more metabolic biomarkers in the serum of a test subject, comparing the levels of the two or more metabolic biomarkers with the levels of the metabolic biomarkers detected in a group of subjects without cancer and to the levels of the metabolic markers detected in a group of cancer patients, and determining whether the levels of the metabolic biomarkers in the test subject are indicative of the presence of cancer.
Metabolic biomarkers can be detected by any suitable method, including, but not limited to, mass spectrometry methods such as liquid chromatography time-of-flight mass spectrometry (LC-TOF MS) and direct analysis in real time time-of-flight mass spectrometry (DART-TOF MS). Serum metabolites can also be detected using specific binding assays, such as an ELISA assay.
In some embodiments, the methods for using the metabolic biomarker panels to identify a subject for treatment of cancer are computer-implemented methods. Supervised classification methods are preferably used to determine whether the levels of metabolic biomarkers in the test subject are indicative or predictive of cancer. Supervised classification methods include, but are not limited to, partial least squares-discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), artificial neural networks (ANNs), classification and regression trees (CART), and machine learning classifiers, such as the single layer perceptron (SLP), the multi-layer perceptron (MLP), decision trees and support vector machines (SVMs). Preferably the classifier is a SVM.
Machine learning classifiers can be trained to discriminate between the expression data of patients with cancer and the expression data of control subjects without cancer by inputting expression data from these two groups. Trained machine learning classifiers can then be used to classify a sample as a cancer sample or a non-cancer sample by classifying expression data from the sample. Trained classifier may optionally be tested using expression data from subjects that are known to have cancer and from subjects that do not have cancer to determine the sensitivity, specificity, and/or accuracy of the trained machine learning classifier. Trained machine learning classifiers preferably allow a diagnosis of cancer with an accuracy, a specificity, and/or a sensitivity of at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99%.
In some embodiments, the number of variables (or features) in the expression dataset can be reduced to improve classification by machine learning classifiers. Suitable feature selection methods include, but are not limited to, recursive genetic algorithm (GA), recursive feature elimination (RFE), ANOVA feature selection, and simple sub-sampling. Additionally, SVMs such as L1SVM and SVMRW, which are described below, can simultaneously perform classification as well as feature selection.
Systems for selecting subjects for treatment of cancer are also provided. In one embodiment, the system includes (i) a means for receiving expression data of two or more serum metabolic biomarkers in a sample from a subject, and; (ii) a module for determining whether the data is indicative of cancer or an increased risk for developing cancer. The module can be a trained machine learning classifier capable of distinguishing data from a cancer patient and data from a control subject. The module for determining whether the data is indicative of the presence of cancer can include a machine learning classifier which has been trained to distinguish expression data characteristic of a cancer patient from expression data characteristic of a control subject.
Kits for use in the diagnosis of cancer are also provided. The kit can include means for detecting two or more of the disclosed metabolic biomarkers. The means of detection can include a capture surface, such as an array of specific binding reagents such as antibodies or antibody fragments. The kit can include one or more samples of one or more of the disclosed metabolic biomarkers in a container. The metabolic biomarkers provided in the kit can be used as a control or for calibration.
Panels or profiles of metabolic biomarkers for cancer are provided. Metabolites are the end products of cellular regulatory processes, and can be regarded as the ultimate response of biological systems to genetic, pathophysiological or environmental stressors. As used herein, the term “metabolic biomarker” refers to a metabolite that is less than 1,000 Da, and is differentially present in a biological sample from a subject with or at risk of developing cancer as compared to a control subject that does not have cancer or does not have that same type of cancer. The terms “individual”, “host”, “subject”, and “patient” are used interchangeably herein, and refer to a mammal, including, but not limited to, humans, rodents such as mice and rats, and other laboratory animals.
The disclosed metabolic markers can be detected in any biological fluid from a subject, including, but not limited to, serum, blood, plasma, saliva, lymph, cerebrospinal fluid, synovial fluid, urine, or sputum. In preferred embodiments, the disclosed panels of metabolic markers include serum metabolites that are detected in the serum of a subject.
Efforts to discover serum protein biomarkers has been hampered by the fact that the serum proteome is extremely complex, comprising ˜2×106 protein species with a dynamic range spanning 10 orders of magnitude (Anderson and Anderson, Mol. Cell. Proteomics, 1:845-68 (2002)). In comparison, the serum metabolome is relatively less complex, including about 2,500 molecules. As used herein, the term “metabolome”, refers to the complete set of small-molecule metabolites (such as metabolic intermediates, hormones and other signaling molecules, and secondary metabolites) that are found within a biological sample, such as a single organism or tissue. The term “serum metabolome” is used herein to refer to the complete set of small-molecule metabolites that are found within the serum of an organism.
The disclosed panels of serum metabolic biomarkers include metabolites that are differentially present in the serum of subjects with or at risk of developing cancer as compared to the serum of control subjects that do not have cancer. A metabolic biomarker is present differentially in samples taken from cancer patients and samples taken from control subjects if it is present at an increased level or a decreased level in serum samples from subjects with cancer as compared to serum samples from control subjects that do not have cancer. Preferably, the increase or decrease in the amount of a metabolic biomarker is a statistically significant difference.
In some embodiments, the metabolic biomarker panels include serum metabolites that are differentially present in subjects with or at risk of developing a gynecologic cancer as compared to control subjects that do not have a gynecologic cancer. In a preferred embodiment, the gynecologic cancer is ovarian cancer.
The disclosed panels of serum metabolic biomarkers include at least 2 or more serum metabolites. In some embodiments, the metabolic biomarker panels include 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100, 150, or more metabolites. In preferred embodiments, the metabolic biomarker panels include 10 or more metabolites. Serum metabolic biomarkers may be characterized by their molecular weight, their chemical formula, their mass-to-charge ratio (m/z), for example as determined by mass spectrometry, or their chemical name.
There may be some variation in m/z value or molecular weight. For example, there may be variation that is dependent on the resolution of the machine used to determine m/z value or molecular weight, or on chemical modification of the metabolic biomarker. Accordingly, the metabolic biomarkers listed disclosed herein may have the specified m/z value or molecular weight plus or minus about 10%, about 5%, about 1%, about 0.5% or about 0.2%.
In one embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 of the serum metabolites with molecular weights (in Daltons) of about: 187.0614, 256.2398, 278.1434, 278.1615, 306.3145, 308.1377, 308.2881, 322.1534, 354.1682, 368.1588, 369.2999, 428.3340, 453.2861, 453.2867, 456.2856, 467.2955, 470.2904, 481.2914, 484.3061, 485.3773, 490.3327, 495.3206, 495.3380, 495.3394, 499.9355, 505.2842, 507.3592, 517.3238, 519.3070, 521.3220, 523.3690, 525.2924, 530.3115, 553.3424, 304.2407, 304.2512, 632.2342, 635.4104, 640.4429, 654.4586, 700.4640, 743.5473, 757.5572, and 759.5895. In another embodiment, the panel of serum metabolic biomarkers includes all of the above-listed serum metabolites.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 of the serum metabolites with the following chemical names: Phe-Ile, PE(16:0/0:0), PC(14:0/0:0), PC(16:0/0:0), PC(18:3(9Z,12Z,15Z)/0:0[U]), 3-sialyllactosamine, PE-NMe(18:1(9E)/18:1(9E)), palmitic acid, arachidonic acid, Gln-His-Ala, 4a-Carboxy-4b-methyl-5a-cholesta-8,24-dien-3b-olercalcitriol, PE(16:0/0:0), PC(O-16:012:0) platelet activating factor, and PE(18:1(9E)/18:1(9E)). The term “PE” refers to phosphatidylethanolamine. The term “PC” refers to phosphatidylcholine. In another embodiment, the panel of serum metabolic biomarkers includes all of the above-listed serum metabolites.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40, or all of the serum metabolites with the properties indicated in Tables 6 and 7.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30 or 35 of the serum metabolites with molecular weights (in Daltons) of about: 148.0129, 204.0695, 256.2398, 274.1710, 278.1434, 280.2446, 280.2460, 282.2154, 284.2701, 340.2489, 354.1676, 368.1652, 384.2831, 398.2982, 433.3256, 444.3037, 479.3310, 481.2835, 481.3047, 495.3210, 499.9613, 505.2842, 505.3308, 507.3131, 509.3156, 519.3330, 519.3459, 529.2699, 563.3363, 683.5089, 697.5246, 743.5300, 757.5457, 757.5678, 759.5775, 781.5595, 787.6000, and 932.6173. In another embodiment, the panel of serum metabolic biomarkers includes all of the above-listed serum metabolites.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 of the serum metabolites with the following chemical names: LysoPC(18:2(9Z,12Z) or isomers thereof, PE-NMe(18:1(19E)/18:1(9E)) or isomers thereof, PC(14:0/20:1(11Z)) or isomers thereof, PC(14:0/22:4(7Z,10Z,13Z,16Z)) or isomers thereof, PC(14:0/22:1(13Z)) or isomers thereof, palmitic acid or isomers thereof, 12-hydroxy-8E,10E heptadecadienoic acid, stearic acid or isomers thereof, Gln-His-Ala or isomers thereof, DHEA Sulfate or isomers thereof; Lithocholic acid glycine conjugate, PC(P-16:0/0:0) or isomers thereof, PC(10:0/4:0) or isomers thereof, PE(9:0/10:0) or isomers thereof, and glycoursodeoxycholic acid 3-sulfate or isomers thereof. In another embodiment, the panel of serum metabolic biomarkers includes all of the above-listed serum metabolites.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30 or 35, or all of the serum metabolites with the properties indicated in Tables 18 and 19.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100, 150, 200 or 250 of the serum metabolites with m/z values of about: 108.1764, 109.1530, 110.1295, 111.1061, 112.0826, 113.0592, 114.0357, 115.0123, 116.3143, 119.2440, 123.1502, 124.1267, 125.1033, 126.0798, 127.0564, 128.0329, 132.2646, 133.2412, 139.1005, 140.0770, 141.0536, 142.0301, 144.3087, 146.2618, 147.2384, 150.1680, 151.1446, 152.1211, 156.0273, 158.3059, 161.2356, 162.2121, 167.0949, 168.0714, 170.0245, 172.3031, 174.2562, 175.2328, 176.2093, 178.1624, 180.1155, 181.0921, 183.0452, 184.0217, 185.3238, 186.3003, 187.2769, 188.2534, 193.1362, 194.1127, 198.0189, 200.2975, 202.2506, 204.2037, 208.1099, 209.0865, 210.0630, 211.0396, 212.0161, 214.2947, 216.2478, 222.1071, 225.0368, 228.2919, 229.2685, 230.2450, 232.1981, 235.1278, 238.0574, 241.3126, 242.2891, 243.2657, 244.2422, 246.1953, 248.1484, 250.1015, 252.0546, 254.0077, 257.2629, 258.2394, 259.2160, 260.1925, 263.1222, 264.0987, 266.0518, 268.0284, 268.0049, 269.3070, 270.2835, 271.2601, 272.2366, 274.1897, 278.0959, 279.0725, 280.0490, 281.0256, 282.0021, 283.3042, 284.2807, 285.2573, 288.1869, 292.0931, 293.0697, 294.0462, 295.0228, 296.3248, 298.2779, 299.2545, 300.2310, 301.2076, 302.1841, 303.1607, 304.1372, 306.0903, 308.0434, 309.0200, 313.2517, 315.2048, 318.1344, 320.0875, 323.0172, 324.3192, 325.2958, 326.2723, 327.2489, 329.2020, 331.1551, 332.1316, 336.0378, 338.3164, 344.1757, 341.2461, 345.1523, 346.1288, 347.1054, 352.3136, 353.2902, 355.2433, 357.1964, 359.1495, 360.1260, 361.1026, 364.0322, 366.3108, 369.2405, 371.1936, 374.1232, 376.0763, 378.0294, 379.0060, 383.2377, 385.1908, 387.1439, 388.1204, 390.0735, 391.0501, 392.0266, 394.3052, 396.2583, 397.2349, 399.1880, 400.1645, 401.1411, 402.1176, 403.0942, 404.0707, 406.0238, 408.3024, 410.2555, 413.1852, 416.1148, 418.0679, 419.0445, 422.2996, 423.2762, 424.2527, 425.2293, 428.1589, 429.1355, 431.0886, 435.3203, 437.2734, 439.5520, 443.1327, 445.0858, 447.0389, 448.0154, 450.2940, 451.2706, 460.0595, 464.2912, 468.1974, 471.1271, 473.0802, 475.0333, 478.2884, 482.1946, 485.1243, 487.0774, 490.0070, 492.2856, 494.2387, 496.1918, 500.0980, 502.0511, 503.0277, 507.2594, 508.2359, 510.1890, 516.0483, 517.0249, 518.0014, 520.2800, 522.2331, 526.1393, 530.0455, 531.0221, 532.3241, 534.2772, 540.1365, 548.2744, 5502275, 559.0165, 566.1778, 568.1309, 576.2688, 578.2219, 582.1281, 586.0343, 592.2191, 598.0784, 602.3101, 603.2867, 604.2632, 610.1225, 612.0756, 619.237, 620.2135, 628.0259, 630.3045, 632.2576, 636.1638, 638.1169, 640.07, 648.2079, 650.161, 654.0672, 660.252, 664.1582, 670.0175, 674.2492, 686.2933, 688.2464, 691.1761, 699.314, 700.2905, 702.2436 and 714.2877. In another embodiment, the panel of serum metabolic biomarkers includes all of the above-listed serum metabolites.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100, 150 or 200 of the serum metabolites: Histamine, D-Proline, Ethanol, Guanidine, Urea, beta-Aminopropionitrile, 3-aminopropanal, Pyridine, L-Alanine, 2-Piperidinone, L-a-aminobutyric, acid, L-Serine, p-Cresol, Imidazole-4-acetaldehyde, trans-Hex-2-enoic acid, L-Proline, Benzamide, 1-Methylhistamine, D-1-Piperidine-2-carboxylic acid, Pyroglutamic acid, L-Isoleucine, 2-Phenylacetamide, Tetrahydropteridine, Tyramine, L-Histidinol, Proline betaine, 6-Methyladenine, D-Arabitol, 2-Methyl-butyrylglycine, 7-Methylguanine, Pyridoxamine, 1-Methylhistidine, N-butanoyl-l homoserine lactone, Hexanoyl glycine, Citrulline, 5-Hydroxytryptophol, 2(N)-Methyl-norsalsolinol, 6-methyl-tetrahydropterin, 11-dodecen-1-ol, Ala Pro, Proline, (R)—N-Methylsalsolinol, 1-Methylhistamine, Thymine, Pyroglutamic acid, Deoxyribose, 2-Phenylacetamide, Histidinal, 2-amino-8-oxo-9,10-epoxy-decanoic acid, Glycine, Mevalonic acid, 10-pentadecenal, Dopamine, 5-Tetradecenoic acid, L-Histidine, L-isoleucyl-L-proline, 3-Methyl-crotonylglycine, 2-Methyl-butyrylglycine, Beta-Alanine, L-Methionine, 3-Methyldioxyindole, S-aminomethyl-dihydrolipoamide 9-hexadecen-1-ol, D-Glyceraldehyde 3-phosphate, Hexanoylglycine, Citrulline, Deoxyadenosine, 5-Hydroxy-kynurenamine, L-Tyrosine, Hypogaeic acid, Palmitic acid, 2-hydroxy-pentadecanoic acid, Ser-Pro-Gly, Estradiol, Gly Pro Thr, Dimethyl-L-arginine, Bovinic acid, Vaccenic acid, Stearic acid, C17 Sphinganine, S-(3-Methylbutanoyl)-dihydrolipoamide-E, 11Z-eicosen-1-ol, Sphinganine, Gamma-Aminobutyryl-lysine, Aminoadipic acid, L-beta-aspartyl-L-threonine, 14Z-eicosenoic acid, 10-oxo-nonadecanoic acid, 5-HEPE, Argininic acid, 5-Hydroxytryptophol, Fructosamine, D-Glucose, 19-oxo-eicosanoic acid, 2-hydroxy-eicosanoic acid, MG(0:0/16:0/0:0), Ser-Pro-Gly, Ser-Gly-Val, Kyotorphin, 2-oxo-heneicosanoic acid, 2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine, N-propyl arachidonoyl amine, Dimethyl-L-arginine, Queuine, 8-iso-15-keto-PGE2, Dihydrolipoamide, MG(0:0/18:3(6Z,9Z,12Z)/0:0), N-(2-hydroxyethyl)icosanamide, 2-hydroxy behenic, MG(18:0/0:0/0:0), 5beta-Cholane-3alpha,24-diol, 3b,17b-Dihydroxyetioeholane, Pro-His-Asn, Val-Arg-Pro, Prolylhydroxyproline, MG(0:0/14:0/0:0), Dihydroxycoprostanoic acid, 5-Methoxytryptophan, 25-Azacholesterol, Lys-Thr, Deoxyadenosine, 4a-Methylzymosterol, 7-Ketocholesterol, MG(0:0/16:0/0:0), Ser-Gly-Val, Kyotorphin, Lys-Met-His, Val-Glu-Val, Epsilon-(gamma-Glutamyl)-lysine, Queuine, Val-Tyr-Ala, N-(2-hydroxyethyl) icosanamide, 1α-hydroxy-25-methoxyvitamin D3, Ala-Thr-Thr, Ser-Phe-Ile, Pro-Ser-Val, Gln-Arg-Phe, Tyr-Gly-Ala, 3′-O-Aminopropyl-25-hydroxyvitamin D3,3-Sulfodeoxycholic acid, Arg-Arg-Glu, Tyr-Ala-Ala, Trp-Asp-Arg, Asp-Val-Thr, Lys-Met-His, Glu-Thr-Thr, Trp-Lys-Tyr, 2-hexacosanamido-ethanesulfonic acid, Ser-Phe-Ile, Sulfolithocholylglycine, Phe-Ser-Glu, N-[(3a,5b,7b)-7-hydroxy-24-oxo-3-(sulfooxy)cholan-24-yl]-Glycine, Arg-Phe-His, Arg-Arg-Glu, Ile-Val-Tyr, Thr-Glu-Phe, Arg-Trp-Trp, Asn-Arg-Asp, Leucine Enkephalin, Ile-Arg-Gln, Trp-Ser-Lys, Gln-Phe-Gln, Tyr-Ile-Glu, Gln-Glu-Arg, Arg-Cys-Arg, Tyr-Lys-Gln, Taurocholic Acid, N-[(3a,5b,7b)-7-hydroxy-24-oxo-3-(sulfooxy)cholan-24-yl]-Glycine, Lys-His-Trp, His-Tyr-Arg, 11-beta-hydroxy-androsterone-3-glucuronide, and Arg-His-Trp. In another embodiment, the panel of serum metabolic biomarkers includes all of the above-listed serum metabolites.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100, 150, 200 or 250, or all of the serum metabolites with the properties indicated in Table 24.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 of the serum metabolites with In/z values of about: 199.9720, 208.6214, 317.8554, 452.3401, 500.6095, 509.8635, 553.4827, 621.8411, 683.5962, 691.0366, 726.5643, 787.2499, 787.2964 and 787.3429. In another embodiment, the panel of serum metabolic biomarkers includes all of the above-listed serum metabolites.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 of the serum metabolites with the following chemical names: D-1-Piperidine-2-carboxylic acid, 2-Phenylacetamide, D-Glyceraldehyde 3-phosphate, 5-Methoxytryptophan, N-(2-hydroxyethyl)icosanamide, Isopentenyladenine-9-N-glucoside, Asp-Val-Thr, LysoSM(d18:0) and His-Tyr-Arg. In another embodiment, the panel of serum metabolic biomarkers includes all of the above-listed serum metabolites.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10, or all of the serum metabolites with the properties indicated in Table 25.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 of the serum metabolites with m/z values of about: 317.8554, 452.3401, 509.8635, 553.4827, 553.5292, 636.0243, 636.0708, 667.6924, 691.0366, 787.2499, 787.2964 and 787.3429. In another embodiment, the panel of serum metabolic biomarkers includes all of the above-listed serum metabolites.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 of the serum metabolites with the following chemical names: D-Glyceraldehyde 3-phosphate, 5-Methoxytryptophan, Isopentenyladenine-9-N-glucoside, Asp-Val-Thr, Asn-Met-Arg, Ceramide, (d18:1/9Z-18:1) and His-Tyr-Arg. In another embodiment, the panel of serum metabolic biomarkers includes all of the above-listed serum metabolites.
In another embodiment, the panel of serum metabolic biomarkers includes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10, or all of the serum metabolites with the properties indicated in Table 26.
A. Selecting Subjects for Cancer Treatment
Methods for using the disclosed metabolic biomarker panels and methods to identify, or assist in the identification of, subjects for treatment of cancer are provided. The subjects selected for treatment of cancer may have cancer, or may have an increased risk for developing cancer relative to the general population. The methods include the steps of obtaining a serum sample containing metabolites from the subject, detecting the amounts of two or more metabolic biomarkers selected from one of the disclosed metabolic biomarker panels in the serum sample, and determining whether or not the amounts of the metabolic markers in the sample are indicative of cancer or the propensity to develop cancer. The detected amount of one or more metabolites in a sample is referred to herein as “expression data”. Determining whether or not the metabolic biomarker expression data is indicative of cancer or the propensity to develop cancer includes the step of comparing the metabolic biomarker expression data from the test subject to the expression data of the metabolic biomarkers from a group of control subjects that do not have cancer and a group of subjects that do have cancer.
The examples below demonstrate that, when used with the disclosed diagnostic methods, these metabolic biomarker panels can diagnose ovarian cancer in subjects with a high degree of accuracy, sensitivity and specificity. The performance of the disclosed diagnostic methods may be assessed by considering the number of subjects correctly diagnosed (true positives (TP) and true negatives (TN)) and incorrectly diagnosed (false positives (FP) and false negatives (FN)). The term “accuracy” is used herein to refer to the proportion of correct classifications (accuracy=(TP+TN)/(TP+FP+TN+FN)). The term “sensitivity” is used herein to refer to the conditional probability of true positive (sensitivity=TP/(TP+FN)). The term “specificity” is used herein to refer to the conditional probability of true negative (specificity=TN/(TN+FP)).
Use of expression data from two or more metabolic biomarkers enhances the accuracy of the diagnosis. Using combinations of more than two metabolic biomarkers, such as three or more metabolic biomarkers, may further enhance the accuracy of diagnosis. Accordingly, expression data from two or more markers, preferably three or more markers, for example four or more markers, such as five, six, seven, eight, nine, ten, fifteen, twenty or more markers, are used in the disclosed diagnostic methods.
In preferred embodiments, the disclosed methods allow a diagnosis of cancer with an accuracy, a specificity, and/or a sensitivity of at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99%. Serum metabolic biomarkers may be selected from the disclosed biomarker panels to provide the desired diagnostic accuracy, specificity, and/or sensitivity.
One embodiment provides a method for selecting a subject for treatment of cancer by detecting in vitro the levels of two or more metabolic biomarkers in a serum sample obtained from the subject, wherein the metabolic biomarkers are selected from the group consisting of serum metabolites with m/z values of about: 199.9720, 208.6214, 317.8554, 452.3401, 500.6095, 509.8635, 553.4827, 621.8411, 683.5962, 691.0366, 726.5643, 787.2499, 787.2964 and 787.3429. The method further includes comparing the levels of the two or more metabolic biomarkers detected in the serum sample to predetermined levels of the metabolic biomarkers detected in a group of subjects without cancer and to the predetermined levels of the biomarkers detected in a group of subjects with cancer, and selecting the subject for treatment wherein the levels of the two or more metabolic biomarkers in the serum sample obtained from the subject correlate with the predetermined levels of the metabolic biomarkers in the group of subjects with cancer. The method has greater than 80% predictability, preferably greater than 95% predictability.
1. Cancers to be Diagnosed
The metabolic biomarker panels disclosed herein can be used to diagnose any cancer, including, but not limited to, the following: bladder, brain, breast, cola-rectal, esophageal, kidney, liver, lung, nasopharyngeal, pancreatic, prostate, skin and stomach. In some embodiments, the metabolic biomarker panels are used to diagnose gynecologic cancers, including ovarian, cervical, uterine, vulvar and vaginal cancer. In a preferred embodiment, the metabolic biomarker panels are used to diagnose a subject as having ovarian cancer or as having an increased risk for developing ovarian cancer as compared to a control.
2. Secondary Indicators
The metabolic biomarkers can be used in combination with one or more other symptoms or diagnostic markers of cancer. Additional methods for diagnosing cancer include, but are not limited to, physical examination, imaging methods such as X-rays, CT scanning, PET scanning and MRI imaging, and detection of additional biomarkers, such as alpha-fetoprotein (AFP), beta human chorionic gonadotropin (β-HCG), calcitonin, carcinoembryonic antigen (CEA) and prostate-specific antigen (PSA). For example, diagnosis of ovarian cancer can include performing ovarian palpation, transvaginal ultrasound, or screening for additional markers, such as CA-125.
B. Monitoring Efficacy of Cancer Treatment
Methods for using the disclosed metabolic biomarker panels and methods to monitor the efficacy of a cancer treatment are provided. The methods include the steps of obtaining a serum sample containing metabolites from a subject prior to administration of a cancer therapy, obtaining one or more serum samples from the same subject at one or more time points during and/or following the cancer therapy, detecting the amounts of two or more metabolic biomarkers selected from one of the disclosed metabolic biomarker panels in the serum samples, and determining whether or not the levels of the biomarkers changed in the serum samples during and/or following administration of the cancer therapy. In one embodiment, the metabolic biomarker expression data from each serum sample is compared to expression data of the metabolic biomarkers from a group of control subjects that do not have cancer and a group of subjects that do have cancer. Differences in metabolic biomarker expression data during and/or following cancer treatment as compared to metabolic biomarker expression data prior to treatment, such that the expression data during and/or following cancer treatment is less closely correlated with expression data from the group of subjects that have cancer is indicative of an efficacious treatment. No change in metabolic biomarker expression data during and/or following treatment, or a change in metabolic biomarker expression data, such that the expression data during and/or following cancer treatment is more closely correlated with expression data from the group of subjects that have cancer is indicative of the treatment having a low or no efficacy.
C. Methods for Detecting Levels of Metabolic Biomarkers
The disclosed metabolic biomarkers can be detected in serum samples using any suitable method. Exemplary methods include mass spectrometry and specific binding assays. Prior to detection using one of these methods, the serum is treated to remove polypeptides, proteins, and other large biomolecules. For example, the serum sample can be treated with acetonitrile or a 2:1 (v/v) acetone:isopropanol mixture to precipitate proteins which can then be removed from the serum sample by centrifugation. The samples can also be treated to derivatize the serum metabolites for improved detection. For example, the serum sample can be treated with N-trimethylsilyl-N-methyltrifluoroacetamide (MSTFA) to result in TMS derivatization of amide, amine and hydroxyl groups for improved detection by mass spectrometry.
1. Mass Spectrometry Methods
Gas phase ion spectrometry requires a gas phase ion spectrometer to detect gas phase ions. Gas phase ion spectrometers include an ion source that supplies gas phase ions and include mass spectrometers, ion mobility spectrometers and total ion current measuring devices. Since metabolites have vastly-differing chemical properties, and occur in a wide range of concentrations, mass spectrometry (MS) is a preferred method for obtaining metabolic expression data. In preferred embodiments, the disclosed metabolic biomarkers are detected using mass spectrometry methods.
A mass spectrometer is a gas phase ion spectrometer that measures a parameter which can be translated into mass-to-charge ratios (m/z) of gas phase ions. Mass spectrometers typically include an ion source and a mass analyser. Examples of mass spectrometers are time-of-flight (ToF), magnetic sector, quadrupole filter, ion trap, ion cyclotron resonance, electrostatic sector analyser and hybrids of these. A laser desorption mass spectrometer is a mass spectrometer which uses laser as a means to desorb, volatilize and ionize an analyte. A tandem mass spectrometer is mass spectrometer that is capable of performing two successive stages of m/z-based discrimination or separation of ions, including ions in an ion mixture. Methods for performing mass spectrometry on a sample are generally known in the art.
a. Liquid Chromatography-Mass Spectrometry (LC-MS)
Mass spectrometry can be combined with chromagraphic separation techniques to detect metabolites in complex mixtures such as serum. In one embodiment, metabolites are detected using liquid chromatography-mass spectrometry (LC-MS) which combines the physical separation capabilities of liquid chromatography with the mass analysis capabilities of mass spectrometry. Suitable mass analyzers for use in LC-MS include single quadrupole, triple quadrupole, ion trap, time-of-flight (TOF) and quadrupole-time-of-flight (Q-TOF). The TOF analyzer uses an electric field to give all ions the same kinetic energy, and then measures the time they take to reach the detector. If the particles all have the same charge, the kinetic energies are identical, and their velocities depend only on their masses with lighter ions reaching the detector first. In one embodiment, the metabolites are detected using LC-TOF mass spectrometry.
b. Direct Analysis in Real Time Mass Spectrometry (DART MS)
In some embodiments, the mass spectrometry method used to detect serum metabolites does not include an initial chromatographic separation step. In a preferred embodiment, direct analysis in real time (DART) mass spectrometry is used. DART MS is a technique where a stream of excited metastables is used to desorb and chemically ionize a dried drop of solution containing analytes, such as a mixture of metabolites extracted from serum. A mass spectrometer is then used to evaluate the relative abundances of these metabolites. The method displays no memory effects, as it is performed in a non-contact fashion. This increases the reproducibility of the metabolic fingerprints, enabling the detection of differences between disease states. Moreover, DART is able to ionize a broad range of metabolites with varying polarities, enabling the simultaneous interrogation of multiple species.
2. Specific Binding Assays
In some embodiments, specific binding assays can be used for detecting the presence and/or measuring a level of metabolic biomarker in a serum sample, using binding reagents that specifically bind to the metabolites to be detected. A binding reagent “specifically binds” to a metabolite when it binds with preferential or high affinity to the metabolite for which it is specific, but does not bind, does not substantially bind or binds with only low affinity to other substances.
The specific binding agent may be an antibody or antibody fragment specific for the metabolic biomarker. The antibody may be a monoclonal or polyclonal antibody. Monoclonal antibodies are preferred. Antibodies also include antibody fragments, such as Fv, F(ab′) and F(ab′)2 fragments as well as single chain antibodies. Suitable antibodies are available in the art. Antibodies and antibody fragments may also be generated using standard procedures known in the art. Aptamers and interacting fusion proteins may also be used as specific binding agents. Specific binding agents also include molecularly imprinted polymers (MIPs). MIPs, or “plastic antibodies”, are polymers that are formed in the presence of a molecule that is extracted afterwards, thus leaving complementary cavities behind. The specific binding agent may recognize one or more form of the metabolic biomarker of interest.
Methods for using specific binding agents to detect metabolites generally include the steps of:
a) contacting the sample with binding agents specific for a metabolite to be detected; and
b) detecting binding between the binding agents and molecules of the sample.
Detection of specific binding of the antibody, when compared to a suitable control, is an indication that the metabolite being tested is present in the sample. Suitable controls include a sample known not to contain the metabolite, and a sample contacted with a binding agent (i.e., an antibody) not specific for the metabolite, e.g., an anti-idiotype antibody. A variety of methods to detect specific molecular interactions are known in the art and can be used in the method, including, but not limited to, immunoprecipitation, an enzyme immunoassay (i.e. an ELISA assay), and a radioimmunoassay. In general, the specific binding agent will be detectably labeled, either directly or indirectly. Direct labels include radioisotopes; enzymes whose products are detectable (e.g., luciferase, β-galactosidase, and the like); fluorescent labels (e.g., fluorescein isothiocyanate, rhodamine, phycoerythrin, and the like); fluorescence emitting metals, e.g., 152Eu, or others of the lanthanide series, attached to the antibody through metal chelating groups such as EDTA; chemiluminescent compounds, e.g., luminol, isoluminol, acridinium salts, and the like; bioluminescent compounds, e.g., luciferin, aequorin (green fluorescent protein), and the like. The specific binding agent may be attached (coupled) to an insoluble support, such as a polystyrene plate or a bead. Indirect labels include secondary antibodies specific for metabolite-specific antibodies, wherein the secondary antibody is labeled as described above; and optionally contain members of specific binding pairs, e.g., biotin-avidin, etc. The biological sample may be brought into contact with and immobilized on a solid support or carrier. The support may then be washed with suitable buffers, followed by contacting with a detectably-labeled metabolite-specific binding agent.
D. Methods for Determining if Levels of Detected Metabolic Biomarkers are Indicative of Cancer or the Propensity to Develop Cancer
The expression pattern of the metabolic biomarkers of interest is examined to determine whether expression of the metabolic biomarkers is indicative of the patient having cancer. Any suitable method of analysis may be used. Typically, the analysis method used includes comparing the expression data obtained from a subject to be diagnosed with expression data obtained from patients known to have cancer and control subjects who do not have cancer. It can then be determined whether or not the expression of the markers in the subject is more similar to the expression pattern observed in known cancer patients or to the expression pattern observed in control subjects. The method of analysis typically measures the likelihood of a subject having cancer.
a. Classifiers
Supervised classification methods can be used to determine whether or not the expression patter of metabolic biomarkers in a subject is more similar to the expression pattern observed in known cancer patients or to the expression pattern observed in control subjects. Suitable supervised classification methods include, but are not limited to, partial least squares-discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), artificial neural networks (ANNs), or classification and regression trees (CART). These approaches allow the identification of robust spectral features that may be obscured by biological variability not related to disease.
The method by which it is determined whether the expression data is indicative of cancer, or not, is typically implemented using a computer. The computer may be physically separate from or may be coupled to the reader used to generate expression data, for example to the mass spectrometer.
1. Machine Learning Classifiers
Supervised machine learning classification methods may be used to discriminate the expression data of patients with cancer from expression data of control subjects. The machine learning classifier is first trained using training expression data from cancer patients and training control data from the control subjects.
Methods of training a machine learning classifier to distinguish expression data from a cancer patient from expression data from a subject who does not have cancer include the steps of inputting training data from cancer patients and control subjects where the training data is expression data relating to two or more of the disclosed metabolic biomarkers. The computer maps these input variables (such as m/z values) to feature space using a kernel and the classifier learns to discriminate between cancer data and control data thus producing a training classifier to discriminate between cancer data and control data.
The trained classifier may then optionally be tested using expression data from further cancer patients and further control subjects to determine the sensitivity, specificity, and/or accuracy of the trained machine learning classifier. Independent training and testing sets may be used, with similar numbers of cancer cases and controls and similar representation of age and sex in each set. The testing data from cancer patients and/or control subjects is mapped by the computer to feature space using a kernel and the trained classifier is used to assign the class of the input variables as being cancer data or non-cancer data. It can then be determined whether the test data has been classified correctly or mis-classified.
A trained machine learning classifier may be used to determine whether expression data from a subject whom it is wished to diagnose as having, or not having, cancer is indicative of the patient having, or not having, cancer. The trained machine learning classifier used in such a method of diagnosis may have been tested as described above, but this testing step is not essential. The diagnostic steps include imputing expression data for two or more of the disclosed metabolic biomarkers into the trained machine learning classifier, which the computer maps to feature space using a kernel. The trained machine learning classifier then classifies the sample as being a cancer sample or non-cancer sample. Hence, the test subject is diagnosed as having or not having cancer and can be selected or nor for treatment of cancer.
Suitable machine learning classifiers include the single layer perceptron (SLP), the multi-layer perceptron (MLP), decision trees and support vector machines (SVMs). Preferably the classifier is an SVM. In machine learning, SVMs are widely considered to represent the state of the art in classification accuracy. SVMs have been successfully applied to various scientific problems as they generally achieve classification performance superior to that of many older methods, particularly in high-dimensional settings (L1, et al., Artificial Intelligence Med., 32(2):71-83 (2004); Rajapakse, et al., Am. J., Pharmacogenomics, 5(5):281 (2005); Yu, et al., Bioinformatics, 21(10):2200-2209 (2005); Shen, et al., Cancer Informatics, 3:339-349 (2007); Wu, et al., Bioinformatics, 19(13):1636-43 (2003); Pham, et al., Stat. Appl. Genetics. Mol. Biol., 7(2):11 (2008)).
Given a dataset S={xi,yi}i=1M (xiεRN is the feature vector of ith instance and yi is the corresponding label), for two-class classification problems, the standard linear SVM solves the following convex optimization:
minw,ξ½∥w∥2+CΣi=1Mξi
s.t. yi(w·xi+b)+ξi≧1, ξi≧0, i=1, . . . , M
In the case of nonlinear SVMs, the feature vectors xiεRN are mapped into high dimensional Euclidean space, H, through a mapping function Φ(.):RN→H. The optimization problem becomes:
minw,ξ½∥w∥2+CΣi=1Mξi
s.t. yi(w·Φ(xi)+b)+ξi≧1, ξi≧0, i=1, . . . , M
The kernel function is defined as K(xi,xj)=Φ(xi)·Φ(xj)—for example, for a polynomial kernel of degree 2, K(xi,xj)=(gxi·xj+r)2, where g, r are kernel parameters. The linear kernel function is defined as:
K(xi,xj)=xi·xj.
Tools such as libSVM (http://www.csie.ntu.edu.tw/cjlin/libsvm) can efficiently solve the dual formation of the following problem:
minα½Σi=1MyiyjαiαjK(xi,xj)−Σi=1Mαi
s.t. Σi=1Myiαi=0, 0≦αi≦C, i=1, . . . , M
where αi is the Lagrange multiplier corresponding to the ith inequality in the primal form. The solution is w=Σi=1MαiyiΦ(xi) (in the case of linear SVM, w=Σi=1Mαiyixi). The optimal decision function for an input vector x is f(x)=w·Φ(x)+b, that is, f(x)=Σi=1MαiyiK(xi,x), where the predicted class is +1 if f(x)>0 and −1 otherwise.
In functional classification problems, the input data instances Xi are random variables that take values in an infinite dimensional Hilbert space H, the space of functions. The goal of classification (Biau, et al., IEEE Transactions on Information Theory, 51:2163-2172 (2005)) is to predict the label y of an observation X given training data (S={Xi,yi}i=1M, XiεH).
In practice, the functions that describe the input data instances X1, . . . , XM are never perfectly known. Often, n discretization points have been chosen in t1, . . . , tNεR, and each functional data instance Xi is described by a vector in RN, (Xi(t1), . . . , Xi(tN)). Sometimes, the functional data instances are badly sampled and the number and the location of discretization points are different between different functional data instances. A usual solution under this context is to construct an approximation (such as B-spline interpolation) for each input functional data instance Xi based on its observation values, and then apply sampling uniformly to the reconstructed functional data (Visintin, et al., Clin. Cancer Res., 14:1065-1072 (2008); Greene, et al., Clin. Cancer Res., 14: 7574-7575 (2008)). Therefore, a simple solution would be to apply the standard SVM to the vector representation of the functional data.
However, in some application domains such as chemometrics, it is well known that the shape of a spectrum is sometimes more important than its actual mean value. Therefore, it is beneficial to design SVMs specifically for functional classification, by introducing functional transformations and function kernels (Williams, et al., J. Proteome Res., 6:2936-2962 (2007); Anderson, and Anderson, Mol. Cell. Proteomics, 1:845-867 (2002).
This procedure is equivalent to working with a functional kernel, KN(xi,xj) defined as K(PV
Good candidates for the basis functions include the Fourier basis and wavelet bases. If the functional data are known to be nonstationary, a wavelet basis might yield better results than the Fourier basis. Other good choices include B-spline bases, which generally perform well in practice (Rossi and Villa, Neurocomputing, 69:730-742 (2006).
b. Feature Selection
In preferred embodiments, feature selection is applied to the dataset used for classification. It has been shown that reducing the number of variables used for supervised multivariate model building is beneficial for eliminating non-informative data, reducing prediction errors, and simplifying the interpretability of the data analysis results. For example, PLSDA has been successfully combined with variable selection tools such as genetic algorithms (GA) to improve classification results in 1H-NMR-based metabolomic studies.
Suitable feature selection methods include, but are not limited to, recursive genetic algorithm (GA), recursive feature elimination (RFE), ANOVA feature selection, and simple sub-sampling. Additionally, SVMs such as L1SVM and SVMRW, which are described below, can simultaneously perform classification as well as feature selection.
t2-statistics (Baldi and Long, Bioinformatics, 17(6):509-19 (2001)) is a widely used filter-based feature selection method in bioinformatics,
with degree of freedom
Where μ+, μ− are the mean of the feature values of cancer patients and controls, respectively. δ+, δ− are the corresponding standard deviations and n+, n− are the corresponding patient numbers. Though computationally efficient, filter-based feature selection methods generally achieve inferior prediction performance compared to the wrapper based feature selection methods. Therefore, several feature selection methods based on SVMs, such as the commonly used recursive feature elimination (RFE) method (Guyon, et al., Machine Learning, 46:389-422 (2002)), were applied.
At each RFE iteration, first, an SVM is trained with the currently selected feature set; next, the importance of a feature is measured according to the sensitivity of the cost function
J=½Σi,j=1MyiyjαiαjK(xi,xj)−Σi=1Mαi
with respect to the feature; then, less important features are dropped successively from the remaining feature set. Typically the bottom 10% features are removed at each iteration for efficiency, but empirical experiments suggest removing the bottom feature one at a time for highest accuracy. This procedure is repeated iteratively to study the prediction accuracy as a function of the number of remaining features and the smallest feature set that achieved the highest training accuracy is selected as the final output.
The cost function can be rewritten as
J=½αTHα−αT1n
and the sensitivity of the cost function to a feature is
dJ(k)=½αTHα−½αTH(−k)α
where H and H(−k) are M×M matrices with
H
ij
=y
i
y
j
K(xi,xj) and H(−k)ij=yiyjK(xi(−k),xj(−k))
where x(−k) means the kth feature has been removed from the input vectors. In the case of linear SVM,
dJ(k)=½Σi,j=1Mαiαjxikxjk=½wk2
The feature whose removal leads to a smaller increase to the cost function, dJ(i), is marked as less important.
Bradley et al. (Bradley, et al., Machine Learning Proc. Of the 15th International Conference (ICML98), 82-90 (1998)) proposed L1SVM, which minimizes the L1-norm:
∥w∥L1=Σk=1N|wk|
rather than minimizing the L2-norm of the weight vector (or normal of the separating hyperplane)
∥w∥L2=Σk=1Nwk2.
Thus, the optimization problem becomes:
minw,b,ξ½Σk=1N|wk|+CΣi=1Mξi
s.t. yi(w·xi+b)+ξi≧1, ξi≧0 i=1, . . . , M.
Since the L1-norm is used, the optimal weight vector w is often very sparse, thus L1SVM can simultaneously perform classification as well as feature selection. However, this is only applicable in the case of the linear kernel. Although L1SVM performs well in feature selection, its classification results can be improved by applying the standard L2-norm SVM classifier on the selected feature subset (Weston, et al., J. Machine Learning Res., 3:1439-61 (2003)). Fast algorithms for solving the L1SVM optimization problem were proposed by Fung & Mangasarian in 2004 (Fung and Mangasarian, Comp. Opt. Appl., 28(2):185-202 (2004)) and Mangasarian in 2007 (Mangasarian, et al., J. Machine Learning Res., 7(2):1517-30 (2007)).
Weston et al. (Weston, et al., Adv. Neural Info. Proc. Sys., (NIPS01), 668-74 (2001)) proposed another SVM related feature selection method that minimizes a generalization error bound, namely the radius to margin distance ratio R2W2. R2 is the radius of the smallest sphere, centered at the origin that contains all
Φ(xi), i=1, . . . , M;
W2 is the L2 norm of the normal vector to the optimal separating hyperplane. R2 and W2 can be formulated as follows with the introduction of kernel
K
δ(xi,xj)=K(δxi,δxj)
where matrix
δ=diag(δ1, . . . , δn), δkε{0,1}, k=1, . . . , n:
R
2(β,δ)=maxβΣiβiKδ(xi,xi)−Σi,jβiβjKδ(xi,xj)
s.t. Σiβi=1, βi≧0, i=1, . . . , M
W
2(α,δ)=maxαΣiαi½Σi,j=1MαiαjyiyjKδ(xi,xj)
s.t. Σiαiyi=0, αi≧0, i=1, . . . , M
The above optimization problem is approximated using gradient descent. At search iteration, the algorithm firstly optimizes R2(β,δ) with respect to β, W2(α,δ) with respect to α (denoting the optimal solution as α0 and β0, respectively); next, it minimizes R2(α,δ)W2(β,δ) with α fixed to α0 and β fixed to β0 using steepest descent; then, it sets the smallest δk to zero, i.e. removes the corresponding kth feature from the feature set. The algorithm repeats the above procedure until only d nonzero elements, δ1, . . . , δd are left.
c. Cross Validation
Cross validation (CV) may be applied to test the efficacy of the classifier. Suitable cross validation methods are known in the art and include, but are not limited to, venetian blinds CV, leave-one-out CV (LOOCV), k-fold CV and 52-20 split validation. In k-fold CV the training set is randomly split in k groups of equally distributed positive and negative cases. A classifier is trained on k−1 of the groups and its generalization performance is validated on the remaining group. This process is repeated k times, each time holding out a different validation subset and the average represents the overall generalization. In the second scheme, k-fold cross-validation with test, the data is first randomly split into training and testing sets. A k-fold cross-validation is performed on the training set and the generalization is obtained on the unseen testing set.
d. Metabolite Identification
Metabolites represented by selected features used by the classifier to discriminate between cancer and non-cancer samples can be identified using any known technique. For example, when mass spectrometry data is used as the expression data input into the classifier, metabolites can be identified by finding the closest mass spectral peak matching the selected model feature and the mass can be matched against known metabolites in computer databases, such as the HMDB database. Alternative strategies include the use of accurate mass measurements and accurate tandem mass spectrometry experiments coupled to isotope profile matching.
Another embodiment provides a system arranged to determine if levels of detected metabolic biomarkers are indicative of cancer or an increased risk of developing cancer. In one embodiment, the system includes (i) a means for receiving expression data of two or more serum metabolic biomarkers in a sample from a subject, and; (ii) a module for determining whether the data is indicative of cancer or an increased risk for developing cancer. The module can be a trained machine learning classifier capable of distinguishing data from a cancer patient and data from a control subject. The apparatus can also include a means for indicating the results of the determination.
The means for receiving expression data may be a keyboard into which data may be entered manually. Alternatively, the expression data may be received directly from the computer analyzing the expression data, such as the mass spectrometry data miner. The expression data may be received by a wire, or by a wireless connection. The expression data may also be recorded on a storage medium in a form readable by the apparatus. The storage medium can be placed in a suitable reader comprised within the apparatus.
The training, testing and/or expression data from a subject being tested for cancer may be raw data or may be processed prior to being inputted into the computer system. The computer system may comprise a means for converting raw data into a form suitable for further analysis.
The module for determining whether the data is indicative of the presence of cancer can include a machine learning classifier which has been trained by a method disclosed herein such that it is able to distinguish expression data characteristic of a cancer patient from expression data characteristic of a control subject.
The means for indicating the results of the determination may be a visual screen, audio output or printout. The results typically indicate the classification of the expression data and may optionally indicate a degree of certainty that the classification is correct.
The system can include a personal computer. The personal computer can be a laptop or a hand held computer, for example a specifically designed hand held computer, which has the advantage of being readily transportable in the field.
The system includes a computer program. The computer program is capable, on execution by the computer system, of causing the system to perform a method of diagnosis as disclosed herein. The computer program generally includes a machine learning classifier, preferably a support vector machine, which has been trained as disclosed herein, such that it is able to distinguish expression data characteristic of a cancer patient from expression data characteristic of a control subject.
Another embodiment provides a storage medium storing in a form readable by a computer system a computer program disclosed herein. Any suitable storage medium may be used such as a CD-ROM or floppy disk.
Kits for use in the diagnosis of cancer are also provided. The kit can include means for detecting two or more of the disclosed metabolic biomarkers. The means of detection can include a capture surface, such as an array of specific binding reagents such as antibodies or antibody fragments. The kit can include one or more samples of one or more of the disclosed metabolic biomarkers in a container. The metabolic biomarkers provided in the kit can be used as a control or for calibration.
The kit can include instructions for operation in the form of a label or separate insert. For example, the instructions may inform a consumer how to collect a serum sample and how to incubate the sample with the capture surface, or how to prepare the sample for mass spectrometry. The kit may include instructions for inputting expression data of the markers into an apparatus, as disclosed above. The kit can include a storage medium.
Cancers detected in a subject using the disclosed methods and systems can be treated using any appropriate known method. Exemplary methods for treating cancer include, but are not limited to, surgery, chemotherapy, hormone therapy, radiotherapy and immunotherapy. Standard treatments for ovarian cancer include, but not limited to, surgery, administration of paclitaxel, cisplatin and carboplatin, and radiation treatment.
Materials and Methods:
Materials
Serum samples for LC/TOF MS metabolomics analysis were obtained from 37 patients with ovarian cancer (mean age 60 years, range 43-79 with different cancer stages I-IV) and 35 normal within limit (NWL) controls (mean age 54 years, range 32-84). The patients' information is detailed in Table 1.
All serum samples were obtained from the Ovarian Cancer Institute (OCI, Atlanta, Ga.) after approval by the Institutional Review Board (IRB). All donors were required to fast and to avoid medicine and alcohol for 12 hours prior to sampling, except for certain allowable medications, for instance, diabetics were allowed insulin. Following informed consent by donors, 5 mL of whole blood were collected at Northside Hospital (Atlanta, Ga.) by venipuncture from each donor into evacuated blood collection tubes that contained no anticoagulant. Serum was obtained by centrifugation at 5000 rpm for 5 minutes at 4° C. Two hundred and fifty μL aliquots of serum samples were frozen with dry ice immediately after centrifugation, and stored at −80° C. for further use. The sample collection and storage procedures for both ovarian cancer patients and healthy individuals were identical. All chemicals were obtained from Sigma-Aldrich (St. Louis, Mo.) and used without further purification. All aqueous solutions were prepared with nanopure water (dH2O) from a Nanopure Diamond laboratory water system (Barnstead International, Dubuque, Iowa).
Serum Sample Pretreatment for LC/TOF MS Analysis
The metabolomic investigation strategy followed in this study is depicted in
Liquid Chromatography Electrospray Ionization Time-of-Flight Mass Spectrometric Analysis
LC/TOF MS analyses were performed on a JEOL AccuTOF (Tokyo, Japan) mass spectrometer coupled via a single-sprayer ESI ion source to an Agilent 1100 Series LC system (Santa Clara, Calif.). The TOF resolving power measured at FWHM was 6000, and the observed mass accuracies ranged from 5-15 ppm, depending on signal-to-noise ratios (S/N) of the particular ion investigated. The LC system was equipped with a solvent degasser, a binary pump, a thermostatic column compartment (held at 25° C.), and an autosampler. The injection volume was 15 μL in all cases. Reverse phase separation of preoperative serum samples was performed using a Symmetry® C18 column (3.5 μm, 2.1×150 mm, pore size 100 Å; Waters, Milford, Mass.) at a flow rate of 150 μL min−1, the analytical column was preceded by a Zorbax® RX-C18 guard column (5.0 μm, 4.6×12.5 mm, pore size 2 μm; Agilent). The LC solvent mixtures used were: A=0.1% formic acid in water and B=0.1% formic acid in acetonitrile. After a pre-run equilibration with 5% B for 5 minutes, data acquisition was started and the solvent composition was varied according to the solvent program described in Table 2.
After analysis of a given serum specimen, a 0.20 mM sodium trifluoroacetate standard (NaTFA) (Moini, et al., J. Am. Soc. Mass Spectrom., 9:977-980 (1998)) was run for mass drift compensation purposes. For NaTFA analysis, 100% B at a flow rate of 300 μL min−1 was used as the LC solvent, and data was acquired for only 10 minutes, sufficient for collecting a reference spectrum. After injection of the drift correction standard, the column was washed with 100% B for 30 minutes. To ensure maximum reproducibility in metabolomic experiments, all serum specimens were run consecutively within a 2.5 month period.
Spectral data was collected in the 100-1750 m/z range, with a spectral recording interval of 1.5 s, and a data sampling interval of 0.5 ns for both positive and negative ion ESI modes. The settings for the TOF mass spectrometer for positive or negative ion mode were as follows: needle voltage: +/−2000 V, ring lens: +8 V or −9 V, orifice 1: +30 V or −69 V, orifice 2: +6 V or −8 V, desolvation chamber temperature: 250° C., orifice 1 temperature: 80° C., nebulizing gas flow rate: 1.0 L min−1, desolvation gas flow rate 2.5 L min−1, and detector voltage +/−2800 V. eTOF analyzer pressure was ˜4.8×10−6 Pa during analysis. The RF ion guide voltage amplitude was swept to ensure adequate transmission of analytes in a wide range of m/z values. The sweep parameters were as follows: initial peaks voltage: 700 V, initial time: 20%, sweep time: 50%, final peaks voltage: 2500V. After LC/TOF MS data was collected, it was centroided, mass drift corrected using the NaTFA reference spectrum, and exported in NetCDF format for further mining.
LC/TOF MS Data Mining
All data were mined identically and simultaneously. Data mining was performed by loading NetCDF files into mzMine (v0.60, http://mzming.sourceforge.net). Data were smoothed by chromatographic median filtering with a tolerance in m/z of 0.1, and one-sided scan window length of 3 s. Peaks were picked with a m/z bin size of 0.15, chromatographic threshold level of 0%, absolute noise level of 200, absolute minimum peak height of 250, minimum peak duration of 5 s, tolerance for m/z variation of 0.06, and tolerance for intensity variation of 50%. The method for de-isotoping was to assume +1 charge states, and monotonic isotopic patterns. The retention time tolerance (RT) for de-isotoping was 65 s and the m/z tolerance 0.07. The chromatographic peak alignment m/z tolerance was 0.2, and the RT tolerance was 12%, with a balance coefficient between m/z and RT of 30. The minimum number of detections for rare peak filtering in the alignment results was set to 41. Spectral features not initially detected by the peak detection algorithm were subsequently added by a gap filling method using an intensity tolerance of 30%, m/z tolerance size of 0.2, and RT tolerance size of 12%. Systematic drift in intensity levels between different data files was corrected for by linear intensity normalization using the total raw signal. After the normalized alignment file containing all peak intensities was created, peak areas were exported to Excel and peaks of contaminants, dimers, redundant adducts, and isotopes not adequately detected were removed. Approximately 37% of the peaks from positive mode and 18% of the peaks from negative mode were eliminated after this filtering. Peak areas from duplicate runs were then averaged, and positive and negative mode ESI data were exported as ASCII files into Matlab (R2007a, The Mathworks, Natick, Mass.).
Genetic Algorithm Variable Selection and Partial Least Squares Discriminant Analysis
GA variable selection and PLSDA analysis were performed with the PLS Toolbox for Matlab (v4.1, Eigenvector Technologies, Wenatchee, Wash.). GA-PLSDA multivariate models using combined positive and negative ion mode data were created by appending the respective data matrices. This appended dataset is referred to as “multimode ionization data”. Genetic algorithms were run using the “genalg” function with the following parameter settings: window width: 1, mutation rate 0.005, and PLS regression with a maximum number of 8 latent variables. Random-type cross-validation was used with 7 splits (10 samples in each split) and 4 iterations. PLSDA was performed using the “analysis” graphical user interface from the PLS Toolbox for Matlab, with autoscaled data, and venetian blinds cross-validation (8 splits, 9 samples per split).
Metabolite Identification
Due to the biological complexity of serum samples, adduct ion analysis was first performed to ensure the unambiguous assignment of the signal of interest in the mass spectrum. Adducts formed in positive ion mode ESI usually includes [M+H]+, [M+NH4]+, [M+Na]+, [M+K]+, [M−H2O+H]+ and [2M+H]+, while adduct and dimer formation in negative ion mode ESI includes [M−H]−, [M+CH3COO]−, [M+Cl]−, [M+HCOO]− and [2M−H]−. First, each centroided spectrum of interest was fully calibrated using the NaTFA standard run acquired immediately after the sample. Adducts in centroided mass spectra corresponding to GA-selected variables were identified by manually calculating the differences between the exact m/z values of peaks within the spectrum and comparing these differences to those between the common adduct species mentioned above. For spectra in which multiple adducts were not present, the accurate mass of the candidate neutral molecule was calculated based on the assumption that the peak of interest corresponded to either [M+H]+, [M+Na]+, or [M+NH4]+ in positive ion mode and [M−H]−, [M+CH3COO]−, [M+HCOO]−, or [M-CH3]− (for glycerophosphocholines) in negative ion mode yielding multiple possible neutral molecular masses for each m/z value.
Elemental formulae were estimated from the accurate mass spectra using a system of macros developed and freely distributed by Fiehn, et. al. (Kind and Fiehn, BMC Bioinformatics, 8:105-125 (2007)) which relies on a series of heuristic rules to identify possible formulae based on the mass accuracy of the peak of interest, as well as the corresponding isotopic ratios, while excluding unlikely formulae. The mass of the neutral molecule and relative isotopic abundances were imported directly into the “seven golden rules” Excel spreadsheet (http://fiehnlab.ucdavis.edu/projects/Seven_Golden_Rules/). The mass accuracy was set to 15 ppm, and the threshold for error in the relative isotopic abundances was set to 10%. The list of elements to include in the search was constrained to include C, H, N, O, P, S, Cl, and Br. The limits set for these elements were m/z dependent, and were automatically determined in a heuristic manner using formulas derived from examination of the Dictionary of Natural Products (DNP) and Wiley mass spectral databases (Kind and Fiehn, BMC Bioinformatics, 8:105-125 (2007)). The probability of a given formulae being the “correct” one is provided as a score calculated from the error rates in satisfying the aforementioned rules. In addition, each formula is automatically compared to the PubChem (http://pubchem.ncbi.nlm.nih.gov/), DNP (http://ccd.chemnetbase.com/) and Metabolome.jp databases (www.metabolome.jp/), and the top hits found in each of these databases is highlighted by the software. The top hits in the list of filtered elemental formulae and all accurate mass values obtained were searched in the following databases: METLIN (http://metlin.scripps.edu/), KEGG (www.genome.jp), HMDB (www.hmdb.ca/), MMCD (http://mmcd.nmrfam.wisc.edu/) and Lipid Maps (http://www.lipidmaps.org/) in order to determine the greatest possible number of candidate molecules. The criteria used for the assignment of a tentative chemical structure were: a mass difference with the simulated formula lower than 15 ppm, isotope abundance errors less than 10%, and that the candidate found in the database corresponded to an endogenous metabolite (i.e. a small molecule that participates in cellular metabolism as an intermediate or product).
Results:
LC/TOF MS-Based Metabolomic Analysis of Human Serum Samples
Metabolomic investigation of sera from patients with ovarian cancer and healthy women using LC/TOF MS revealed a total of 576 features extracted by mzMine in positive ion mode, and 280 in negative ion mode. The data was found to be highly complex, with numerous features across both analytical dimensions. Decreasing the absolute noise level and minimum peak height from 400 and 500 to 200 and 250 increased the number of detected features to 4439 and 329 for positive and negative ion modes respectively. While this allowed a “deeper dig” into the serum metabolome, the number of features consistently detected across samples decreased to 3.6% and 15%, respectively. A 3-D serum metabolic profile for a typical stage III ovarian cancer serum sample is displayed in
In contrast to gas chromatography-mass spectrometry (GC-MS), where unsupervised compound identification is possible by direct comparison of each electron ionization spectrum with existing databases (e.g. the US National Institute of Standards and Technology database), compound identification in LC-MS experiments is more complex for two reasons: (a) the formation of various adducts and dimers with varying abundances (a function of the LC solvents and the desolvation conditions used), and (b) the extent to which different ESI sources impart varying degrees of internal energy to the observed ions, producing fragmentation of labile species, most commonly dehydration. For these reasons, compound identification was attempted a posteriori, only for spectral features observed to be significant in multivariate classification models.
Exploratory PCA Analysis and Variable Selection by Genetic Algorithms
Following LC/TOF MS analysis and data mining (
A GA-based evolutionary variable selection strategy was employed next to investigate if removal of uninformative spectral features from the X block followed by supervised clustering would lead to better discrimination between object classes. The biological complexity of ovarian cancer suggests that individual biomarkers may have limited diagnostic sensitivities and specificities. Instead, evolutionary selection of several biomarkers in the form of a panel could offer enhanced classification power. The GA was first applied to data obtained in each ionization mode separately and, in a second stage of analysis, to the dataset formed by appending the spectral features observed in both ionization modes. This was done under full crossvalidation conditions to prevent overfitting, and avoid local fitness maxima. The fitness criterion was the minimization of the root mean square error in crossvalidation (RMSECV) for PLSDA classification of samples in the “ovarian cancer” and “control” classes. Ten replicate runs of a recursive GA were conducted starting with an average of 15% initial terms for negative ion data and 10% for positive and multimode ionization data. In all cases, the GA was initialized with an initial population of 256 spectral features or “chromosomes” and run for a maximum of 150 generations, or until the percentage of identical variables in the population reached 90%. The crossvalidation conditions chosen resulted in a single chromosome being evaluated 28 times. For a typical GA run (
The resulting fitness of the chromosome pool after 10 GA iterations (150 generations each) on the multimode ionization data is shown in
Examination of PLSDA Classification Models
PLSDA is a partial least squares regression aimed at predicting several binary responses Y from a set X of descriptors (Rousseau, et al., Chemom. Intell. Lab. Syst., 91:54-66 (2008)). Examples of X descriptors include bucketed 1H-NMR spectral regions, and GC-MS or LC-MS spectral features identified by (retention time (RT), m/z) pairs. PLSDA lies midway between the traditional discriminant analysis on the original variables and a discriminant analysis on the significant principal components of the X descriptors. Compared with PCA, PLSDA attempts to capture “among-group” and “within-group” differences of the investigated data rather than seeking to capture the maximum variance in the X block independently of the Y block. Unlike PCA, which uses the total spectral variance to discriminate between groups, PLSDA relies on the use of classes, or Y binary responses, which maximizes the ability of the model to discriminate between disease and control objects (Massart, et al., Handbook of chemometrics and qualimetrics, Elsevier: Amsterdam (1997)).
Supervised classification models were created using the best subset of GA-selected features for positive, negative and multimode electrospray datasets.
During the PLSDA model building stage (training), the Y value of each object (i.e. serum sample) is assigned as either 0 (controls) or 1 (ovarian cancers), depending on its class membership. A plot of the PLSDA model predictions of class membership for serum samples of all cancer stages under calibration conditions using multimode ionization data is shown in
The multimode ionization PLSDA model with 6 LVs outperformed other models, with 100% sensitivity (probability that a subject with ovarian cancer will have a positive test result) and selectivity (probability that a subject without cancer will show a negative test result) under crossvalidation conditions, minimum root mean square error of calibration (RMSEC) and maximum Y block explained variance. The two single ionization mode PLSDA models performed quite differently (Tables 3 and 4). The positive ion mode model showed the lowest sensitivity of the two (97.2%). As a final test of the performance of the multimode ionization PLSDA model, 33% of the samples of each class (n=24) were randomly chosen regardless of cancer stage, and completely excluded from the model building process, thus effectively treated as unknowns. The prediction results of this external test set are shown in
Following PLSDA classification, the metabolite peak areas were individually tested to investigate if statistical differences between these species were detected. The robust non-parametric Wilcoxon rank sum test was applied to the metabolites selected by GA. Tables 6 and 7 show the p-values for each individual metabolite. A non-parametric test was chosen in order to avoid the assumption of normally-distributed data. Interestingly, only 27% of the multimode variables were statistically significant when considered in a univariate fashion. This suggests that the PLSDA model is capturing a pattern or “metabolic fingerprint” rather than the univariate change in a single metabolite.
Metabolite Identification
The calculated neutral masses, species investigated, and retention times of the positive and negative ion mode ESI variables used by the multimode PLSDA model, as well as their corresponding chemical formulae, mass differences (Δm), and matching scores, are reported in Tables 6 and 7, respectively.
1Possible adduct species for ion with m/z 508.3362.
aThree other isomers found for this candidate including: MID 23831, MID 24033, MID 24020.
bMultiple isomers found for this candidate in Lipid Maps including LMGP 01050001, and 01050011.
cMultiple isomers found for this candidate in Lipid Maps including LMGP 01020009, 01050013, 01050073, and 01020010.
dMultiple isomers found for this candidate in Lipid Maps including LMGP 01020019, 01020020, 01050019, 01050020, 01050074, 01050075, 01050113, 01050118, and 01050119.
eMultiple isomers found for this candidate in Lipid Maps including LMGP 01050037, and 01050038.
fAn additional isomer (MMCD cq_12636) was found for this candidate.
gThirty one additional records for isomeric structures found in Lipid Maps.
1Possible adduct species of ion with m/z 367.1934.
2Possible adduct species of ion with m/z 429.3038.
3Possible adduct species of ion with m/z 699.5266.
aMultiple isomers found for this candidate including HMDB 06036 and HMDB 02177.
bMultiple isomers found for this candidate in Lipid Maps including LMGP 01050001, and 01050011.
cMultiple isomers found for this candidate in Lipid Maps including LMGP 01020019, 01020020, 01050019, 01050020, 01050074, 01050075, 01050113, 01050118, and 01050119.
dMultiple isomers found for this candidate in Lipid Maps including LMGP 01020026, 01020047, 01020048, 01020049, 01020050, 01020135, 01050027, 01050028, 01050076, 01050077, 01050078, and 01050120.
eMultiple isomers found for this candidate in Lipid Maps including LMGP 01010543, 01010544, 02010011, 02010028, 02010034, 02010043, 02010044, 02010052, 02010109, 02010110.
Adduct analysis of the 17 and 20 variables selected from positive and negative ESI mode, respectively, provided a total of 44 neutral masses to search against the databases as 1 variable was found to be redundant while 4 variables had multiple possible neutral masses due to ambiguity in the adduct assignment of the signal of interest. Seven of the positive ion mode ESI variables were preliminarily identified as the following metabolites: Phe-Ile, phosphatidylethanolamine PE(16:0/0:0), phosphatidylcholine PC(14:010:0), PC(16:0/0:0), PC(18:3/0:0), 2-sialyllactosamine, and PE-NMe(18:1/18:1) with mass accuracies ranging from 2.6-13.4 ppm and “seven-golden-rules” scores from 82.8-96.6. Eight metabolites were preliminarily identified from the negative ion mode subset of variables: palmitic acid, arachidonic acid, Gln-His-Ala, 4a-carboxy-4b-methyl-5a-cholesta-8,24-dien-3b-ol (also possibly identified as ercalcitriol), PE(16:0/0:0), PC(16:0/0:0), PC(0-16:0/2:0) (also referred to as platelet activating factor), and PE(18:1(9E)/18:1(9E)) with mass accuracies ranging from 1.1-13.9 and scores between 74.8 and 96.3. It must be noted that, in the case of phospholipids, assignment of the GA-selected variables to a given isomer is arbitrary, as single-stage MS cannot differentiate among these species. In this case, all possible m/z matches are noted.
The variation in mass accuracies and identification scores observed in Tables 6 and 7 can be attributed to two major factors: 1) ambient temperature variations during the lengthy LC analysis time affecting both the output of the TOF mass spectrometer power supplies and the length of the flight tube, and 2) low signal intensity of some of the variables selected by GA. The software provided by the mass spectrometer manufacturer provides two methods to perform post-analysis correction of the m/z values obtained-mass drift compensation and mass calibration. Mass drift compensation, which is typically used to correct for temporal drift during long analysis times, was found to be insufficient to accurately calibrate the entire run. Instead, a full recalibration of the sample run using a calibration curve generated from the NaTFA standard run immediately after the sample was performed and provided a marked improvement in mass accuracy. It was further observed that inclusion of the isotope matching rule had a positive impact on decreasing the number of false-positive or negative entries on the hit lists.
Materials and Methods:
Cohort Description
Serum samples were obtained from 37 patients with papillary serous ovarian cancer (mean age 60 years, range 43-79, stages I-IV) and 35 controls (mean age 54 years, range 32-84). The control population consisted of patients with histology considered within normal limits (WNL) and women with non-cancerous ovarian conditions. The patients' information is detailed in Table 8.
All serum samples were obtained from the Ovarian Cancer Institute (OCI, Atlanta, Ga.) after approval by the Institutional Review Board (IRB). All donors were required to fast and to avoid medicine and alcohol for 12 hours prior to sampling, except for certain allowable medications, for instance, diabetics were allowed insulin. Following informed consent by donors, 5 mL of whole blood were collected at Northside Hospital (Atlanta, Ga.) by venipuncture from each donor into evacuated blood collection tubes that contained no anticoagulant. Serum was obtained by centrifugation at 5000 rpm for 5 minutes at 4° C. Immediately after centrifugation, two hundred and fifty μL aliquots of serum were frozen and stored at −80° C. for further use. The sample collection and storage procedures for both ovarian cancer patients and control individuals were identical.
Serum Sample Pretreatment and LC/TOF MS Analysis
A stock sample of human serum purchased from Sigma (S7023, St. Louis, Mo.) was used during the development of the serum sample pretreatment and LC/TOF MS analysis protocols. Upon arrival, the frozen stock sample was thawed and separated into 250 μL aliquots which were stored at −80° C. for further use.
Serum samples were thawed, and proteins precipitated by addition of acetonitrile to the serum sample in a 5:1 ratio (1000 μL acetonitrile+200 μL serum). The mixture was vortexed for 1 minute and incubated at room temperature for 40 minutes, then the sample was centrifuged at 13,000 g for 15 minutes and the supernatant retained. The supernatant was vacuum evaporated and the residue reconstituted in 80% acetonitrile/0.1% TFA.
LC/TOF MS analyses were performed on a JEOL AccuTOF (Tokyo, Japan) mass spectrometer coupled to an Agilent 1100 Series LC system (Santa Clara, Calif.) via an ESI source. The TOF resolving power measured at full width half maximum (FWHM) was 6000 and the observed mass accuracies ranged from 5-15 ppm, depending on the signal-to-noise ratio (S/N) of the particular ion investigated. The LC system was equipped with a solvent degasser, a binary pump, an autosampler, and a thermostatic column compartment (held at 25° C.). The injection volume was 15 μL in all cases. Reverse phase separation of serum samples was performed using a Symmetry® C18 column (3.5 μm, 2.1 mm×150 mm, pore size 100 Å; Waters, Milford, Mass.) at a flow rate of 150 μL min−1. The analytical column was preceded by a Zorbax® RX-C18 guard column (5.0 μm, 4.6 mm×12.5 mm, pore size 2 □m; Agilent). The LC solvent mixtures used were: A=0.1% formic acid in water and B=0.1% formic acid in acetonitrile. After a pre-run equilibration with 5% B for 5 minutes, data acquisition was started and the solvent composition was varied according to the solvent program described in Table 9.
After analysis of a given serum specimen, a 0.20 mM sodium trifluoroacetate standard (NaTFA) was run for mass drift compensation purposes. For NaTFA analysis, 100% B at a flow rate of 300 μL min−1 was used and data was acquired for 10 minutes. After injection of the drift correction standard, the column was washed with 100% B for 30 minutes.
Spectral data was collected in the 100-1750 m/z range with a spectral recording interval of 1.5 s and a data sampling interval of 0.5 ns for both positive and negative ion ESI modes. The settings for the TOF mass spectrometer for positive or negative ion mode were as follows: needle voltage: +/−2000 V, ring lens: +8 V or −9V, orifice 1: +30V or −69V, orifice 2: +6V or −8 V, desolvation chamber temperature: 250° C., orifice 1 temperature: 80° C., nebulizing gas flow rate: 1.0 Lmin−1, desolvation gas flow rate 2.5 Lmin−1, and detector voltage +/−2800 V. The TOF analyzer pressure was 4.8E-6 Pa during analysis. The RF ion guide voltage amplitude was swept to ensure adequate transmission of analytes in a wide range of m/z values. The sweep parameters were as follows: initial peaks voltage: 700V, initial time: 20%, sweep time: 50%, final peaks voltage: 2500V. After LC/TOF MS data was collected, it was centroided, mass drift corrected using the NaTFA reference spectrum, and exported in NetCDF format for further mining.
To ensure maximum reproducibility in metabolomic experiments, all serum specimens were run consecutively within a 2.5 month period. Every cancer sample was randomly paired with a normal sample and run on the same day to ensure that no temporal bias was introduced in the way samples were analyzed. Sample pairs were run in random order and in duplicate.
LC/TOF MS Data Preprocessing
All data were preprocessed identically and simultaneously. Preprocessing was performed by loading NetCDF files into mzMine (v0.60) (Katajamaa, et al., Bioinformatics, 22(5):634-6 (2006)). Data were smoothed by chromatographic median filtering with a tolerance in m/z of 0.1, and one-sided scan window length of 3 s. Peaks were picked with a m/z bin size of 0.15, chromatographic threshold level of 0%, absolute noise level of 200, absolute minimum peak height of 250, minimum peak duration of 5 s, tolerance for m/z variation of 0.06, and tolerance for intensity variation of 50%. The method for de-isotoping was to assume +1 charge states, and monotonic isotopic patterns. The retention time tolerance (RT) for de-isotoping was 65 s and the m=z tolerance 0.07. The chromatographic peak alignment m/z tolerance was 0.2, and the RT tolerance was 12%, with a balance coefficient between m/z and RT of 30. The minimum number of detections for rare peak filtering in the alignment results was set to 41. Spectral features not initially detected by the peak detection algorithm were subsequently added by a gap filling method using an intensity tolerance of 30%, m/z tolerance size of 0.2, and RT tolerance size of 12%. Correction for systematic drift in intensity levels between different data files was performed by using linear intensity normalization of the total raw signal. After the normalized alignment file containing all peak intensities was created, peak areas were exported to Excel and peaks of contaminants, dimers, redundant adducts, and isotopes not adequately detected were removed. Approximately 37% of the peaks from positive mode and 18% of the peaks from negative mode were eliminated after this filtering step. Peak areas from duplicate runs were then averaged, and positive and negative mode ESI data were exported as ASCII files into Matlab for subsequent machine learning analysis.
SVMs and Related Feature Selection Methods
SVMs (Vapnik, The Nature of Statistical Learning Theory, Springer (2000)) have been successfully applied to various scientific problems as they generally achieve classification performance superior to that of many older methods, particularly in high-dimensional settings (L1, et al., Artificial Intelligence Med, 32(2):71-83 (2004); Rajapakse, et al., Am. J., Pharmacogenomics, 5(5):281 (2005); Yu, et al., Bioinformatics, 21(10):2200-2209 (2005); Shen, et al., Cancer Informatics, 3:339-349 (2007); Wu, et al., Bioinformatics, 19(13):1636-43 (2003); Pham, et al., Stat. Appl. Genetics. Mol. Biol., 7(2):11 (2008)). Though computationally intensive, SVMs are efficient enough to handle problems of the size we consider here. Given a dataset
S={x
j
,y
j}j=1M
(xj is the feature vector of jth instance and yj is the corresponding label), for a two-class classification problem, the standard linear SVM solves the following convex optimization:
minw,b,ξ½∥w∥2+CΣi=1Mξi
s.t. yi(w·xi+b)+ξi≧1, ξi≧0 i=1, . . . , M
In the case of nonlinear SVMs, the feature vectors xεRd are mapped into high dimensional Euclidean space, H, through a mapping function Φ(.): Rd→H. The optimization problem becomes:
minw,b,ξ½∥w∥2+CΣi=1Mξi
s.t. yi(w·Φ(xi)+b)+ξi≧1, ξi≧0 i=1, . . . , M
The kernel function is defined as K(xi,xj)=Φ(xi)Φ(xj), for example, a polynomial kernel of degree 2 is defined as K(xi,xj)=(gxi·xj+r)2, where g, r are kernel parameters. The linear kernel function is defined as K(xi,xj)=xi·xj. Tools such as libSVM (http://www.csie.ntu.edu.tw/˜cjlin/libsvm) can efficiently solve the dual formation of the above problem:
minα½Σi,j=1MyiyjαiαjK(xi,xj)−Σi=1Mαi
s.t. Σi=1Myiαi=0, 0≦αi≦C i=1, . . . , M
where αi is the Lagrange multiplier corresponding to the ith inequality in the primal form. The solution is
w=Σ
i=1
MαiyiΦ(xi)
for linear SVM,
w=Σ
i=1
Mαiyixi
The optimal decision function for an input vector x is
f(x)=w·x+b=Σi=1MyiαiK(xi,x)
where the predicted class is +1 if f(x)>0 and −1 otherwise.
Bagging strategies (Breiman, Machine Learning, 24(2):123-140 (1996))] are often used to boost the prediction performance of a classifier (Zhang, et al., Lecture Notes in Computer Science, 4830:820 (2007)). This approach involves generating multiple versions of a classifier and using these to obtain an aggregated predictor. A bagging process repeats the following procedure T times: i) bootstrap (sample from the dataset with replacement) from the training data to build a classifier and ii) obtain the prediction results on the test data. The process then uses the majority voting results as the final prediction results and their accuracy as the final test accuracy.
t2-statistics (Balli and Long, Bioinformatics, 17(6):509-19 (2001)) is a widely used filter-based feature selection method in bioinformatics,
with degree of freedom
Where μ+, μ− are the mean of the feature values of cancer patients and controls, respectively. δ+, δ− are the corresponding standard deviations and n+, n− are the corresponding patient numbers. Though computationally efficient, filter-based feature selection methods generally achieve inferior prediction performance compared to the wrapper based feature selection methods. Therefore, several feature selection methods based on SVMs, such as the commonly used recursive feature elimination (RFE) method (Guyon, et al., Machine Learning, 46:389-422 (2002)), were applied.
At each RFE iteration, first, an SVM is trained with the currently selected feature set; next, the importance of a feature is measured according to the sensitivity of the cost function
J=½Σi,j=1MyiyjαiαjK(xi,xj)−Σi=1Mαi
with respect to the feature; then, less important features are dropped successively from the remaining feature set. Typically the bottom 10% features are removed at each iteration for efficiency, but empirical experiments suggest removing the bottom feature one at a time for highest accuracy. This procedure is repeated iteratively to study the prediction accuracy as a function of the number of remaining features and the smallest feature set that achieved the highest training accuracy is selected as the final output.
The cost function can be rewritten as
J=½αTHα−αT1n
and the sensitivity of the cost function to a feature is
dJ(k)=½αTHα−½αTH(−k)α
where H and H(−k) are M×M matrices with
H
ij
=y
i
y
j
K(xi,xj) and H(−k)ijyiyjK(xi(−k),xj(−k))
where x(−k) means the kth feature has been removed from the input vectors. In the case of linear SVM,
dJ(k)=½Σi,j=1Mαiαjxikxjk=½wk2.
The feature whose removal leads to a smaller increase to the cost function, dJ(i), is marked as less important.
Bradley et al. (Bradley, et al., Machine Learning Proc. Of the 15th International Conference (ICML98), 82-90 (1998)) proposed L1SVM, which minimizes the L1-norm:
∥w∥L1=Σk=1N|wk|
rather than minimizing the L2-norm of the weight vector (or normal of the separating hyperplane)
∥w∥L2=Σk=1Nwk2.
Thus, the optimization problem becomes:
minw,b,ξ½Σk=1N|wk|+CΣi=1Mξi
s.t. yi(w·xi+b)+ξi≧1, ξi≧0 i=1, . . . , M.
Since the L1-norm is used, the optimal weight vector w is often very sparse, thus L1SVM can simultaneously perform classification as well as feature selection. However, this is only applicable in the case of the linear kernel. Although L1SVM performs well in feature selection, its classification results can be improved by applying the standard L2-norm SVM classifier on the selected feature subset (Weston, et al., J Machine Learning Res., 3:1439-61 (2003)). Fast algorithms for solving the L1SVM optimization problem were proposed by Fung & Mangasarian in 2004 (Fung and Mangasarian, Comp. Opt. Appl., 28(2):185-202 (2004)) and Mangasarian in 2007 (Mangasarian, et al., J. Machine Learning Res., 7(2):1517-30 (2007)).
Weston et al. (Weston, et al., Adv. Neural Info. Proc. Sys., (NIPS01), 668-74 (2001)) proposed another SVM related feature selection method that minimizes a generalization error bound, namely the radius to margin distance ratio R2W2. R2 is the radius of the smallest sphere, centered at the origin that contains all
Φ(xi),i=1, . . . , M;
W2 is the L2 norm of the normal vector to the optimal separating hyperplane.
R2 and W2 can be formulated as follows with the introduction of kernel
K
δ(xi,xj)=K(δxi,δxj)
where matrix
δ=diag(δ1, . . . , δn), δkε{0,1}, k=1, . . . , n:
R
2(β,δ)=maxβΣiβiKδ(xi,xi)−Σi,jβiβjKδ(xi,xj)
s.t. Σiβi=1, βi≧0, i=1, . . . , M
W
2(α,δ)=maxαΣiαi−½Σi,j=1MαiαjyiyjKδ(xi,xj)
s.t. Σiαiyi=0, αi≧0, i=1, . . . , M
The above optimization problem is approximated using gradient descent. At each iteration, the algorithm firstly optimizes R2(β,δ) with respect to β, W2(α,δ) with respect to α (denoting the optimal solution as α0 and β0, respectively); next, it minimizes R2(α,δ)W2(β,δ) with α fixed to α0 and β fixed to β0 using steepest descent; then, it sets the smallest δk to zero, i.e. removes the corresponding kth feature from the feature set. The algorithm repeats the above procedure until only d nonzero elements, δ1, . . . , δd are left.
Statistical Significance Estimation
In addition to estimating the classification/feature selection performance using various cross-validation approaches, the statistical significance of these observations was further assessed through hypothesis testing. One possible non-parametric approach to hypothesis testing is permutation test, where no assumptions are made regarding the data distribution and the p-value is computed as the cumulative sum using the empirical distribution. The permutation test works by comparing the statistic of interest with the distribution of the statistic obtained under the null (random) condition, and can be defined as follows (Mukherjee, et al., J. Comp. Biol., 10(2):119-42 (2003)):
1. Repeat T times (where t is an index from 1, . . . , T):
Σt=1TI(st≧s0):
the cumulative probability of st being greater than or equal to the observed statistics s0.
4. If the p-value<α (usually α=0.05 or 0.1), reject the null hypothesis H0; otherwise, the observed result is not statistically significant.
Metabolite Identification Procedure
Compound identification was attempted only for those spectral features remaining after the feature selection processes. Due to the biological complexity of serum samples, adduct ion analysis was first performed to ensure the unambiguous assignment of the signal of interest in each mass spectrum. Adducts formed in positive ion mode ESI usually include [M+H]+, [M+NH4]+, [M+Na]+, [M+K]+, [M−H2O+H]+ and [2M+H]+ species; in negative ion mode ESI [M−H]−, [M+CH3COO]−, [M+Cl]−, [M+HCOO]− and [2M−H]− are generally observed. Adducts in centroided mass spectra corresponding to SVM-selected variables were identified by manually calculating the differences between the exact m/z values of peaks within the spectrum and comparing these differences to those between the common adduct species mentioned above. For spectra in which multiple adducts were not present, the accurate mass of the candidate neutral molecule was calculated based on the assumption that the peak of interest corresponded to either [M+H]+, [M+Na]+, or [M+NH4]+ in positive ion mode and [M−H]−, [M+CH3COO]−, [M+HCOO]−, or [M−CH3]− (for glycerophosphocholines) in negative ion mode, yielding multiple candidate masses for each m/z value.
Elemental formulae were estimated from the accurate mass spectra using a freely distributed system of macros (Kind and Fiehn, BMC Informatics, 8:105 (2007)) that relies on a series of heuristic rules to identify possible formulae based on the mass accuracy of the peak of interest and the corresponding isotopic ratios. The mass of the neutral molecule and relative isotopic abundances were imported directly into the \seven golden rules” Excel spreadsheet (http://fiehnlab.ucdavis.edu/projects/Seven_Golden_Rules). The mass accuracy was set to 15 ppm, and the threshold for error in the relative isotopic abundances was set to 10%. The list of elements to include in the search was constrained to include C, H, N, O, P, S, Cl, and Br. The probability of a given formulae being the “correct” one is provided as a score calculated from the error rates in satisfying the aforementioned rules. The top hits in the list of filtered elemental formulae and all accurate mass values obtained were searched against the following databases: Metlin (http://metlin.scripps.edu), KEGG (http://www.genome.jp), HMDB (http://www.hmdb.ca), MMCD (http://mmcd.nmrfam.wisc.edu) and Lipid Maps (LM) (http://www.lipidmaps.org) in order to determine the greatest possible number of candidate molecules. The criteria used for the assignment of a tentative chemical structure were: a mass difference with the simulated formula lower than 15 ppm, isotope abundance errors less than 10%, and that the candidate found in the database corresponds to an endogenous metabolite.
Results:
LC/TOF MS-Based Metabolomic Analysis of Human Serum Samples
Metabolomic investigation of sera from patients with ovarian cancer and controls using LC/TOF MS revealed a total of 576 features extracted by mzMine in positive ion mode, and 280 in negative ion mode. The data were found to be highly complex, with numerous features across both analytical dimensions. Decreasing the absolute noise level and minimum peak height from 400 and 500 to 200 and 250 increased the number of detected features to 4439 and 329 for positive and negative ion modes, respectively. While this allowed a “deeper dig” into the serum metabolome, the number of features consistently detected across samples decreased by 3.6% and 15%, respectively, suggesting that use of the previous settings provided a broad range of more stable features on which to base our feature selection methods. Detailed manual analysis of the entire dataset revealed the presence of additional redundant species (dimers, adducts, isotopes) that were removed, thus reducing the final number of features used to 360 positive ion mode and 232 negative ion mode features. The dataset with only positive ion mode features is referred to as “pos-ion-mode”, the dataset with only negative ion mode features is referred to as “neg-ion-mode”, and the dataset combining positive and negative ion mode features is referred to as “multimode”, respectively.
A 3D serum metabolic profile for a typical stage III ovarian cancer serum sample is shown in
Prediction Performance and Statistical Significance Analysis
SVMs and state-of-the-art feature selection methods were used to analyze the data. In the following sections, the linear SVM classifier is denoted as SVM, nonlinear SVM classifier with degree 2 polynomial kernel as SVM_NL; RFE feature selection with linear SVM as SVMRFE, RFE with nonlinear SVM as SVMRFE_NL, and Weston's feature selection method with nonlinear SVM as SVMRW. Three evaluation procedures were considered: i) leave-one-out-cross-validation (LOOCV); ii) 12-fold cross validation (12-fold CV) averaged over 10 trials (for each trial, the data were randomly ordered and split into 12 different folds and a 12-fold CV was performed); and iii) 52-20-split-validation averaged over 50 trials (for each trial, the data were randomly ordered and split into a training set of size 52 and a test set of size 20). Of these,
LOOCV is expected to be the most reliable given the small sample size, but all three were investigated for thoroughness.
Prediction and Feature Selection Performance
The prediction performance for each dataset was first evaluated without feature selection (
Next, the prediction performance was evaluated following feature selection. As discussed in the previous section, except for L1SVM, the other three feature selection methods tested are iterative methods with optimal feature sets determined according to criteria such as training accuracy (for SVMRFE, SVMRFE_NL), or generalization error bound (for SVMRW). In the experiments, a LOOCV average classification accuracy over the input dataset (for feature selection) containing only the selected feature subset was used as the criterion for determining the optimal feature subset for the following reasons: i) the SVM training accuracy (using the same dataset to train and test the classifier) was almost always 100% until the feature set became unreasonably small and ii) the minimal generalization error was usually achieved when the feature set was quite large. The size of the feature set was further restricted to be less than 50 to allow for fair comparison of the performance with the L1SVM feature selection results.
In the second set of experiments (
The aforementioned experiments can be regarded as measuring the SVM predictive performance of certain feature subsets, regardless of how the subsets were obtained. Note that a production classifier for ovarian cancer diagnosis would use an a priori-fixed feature set. However, Furlanello et al, 2003 (Furlanello, et al., BMC Bioinformatics, 4:54 (2003)) indicated that applying feature selection over the whole dataset might introduce selection bias into the evaluation of the feature selection results even if the prediction performance is obtained through cross-validation. Therefore, a third set of experiments to compare the generalization performance of the feature selection methods themselves in combination with SVM was performed under more conservative settings as illustrated in
LOOCV evaluation leads to a higher test accuracy than the other two evaluation procedures demonstrating the effect of the training set size on the test accuracy. LOOCV evaluation results indicate that i) feature selection using SVMRFE_NL achieved the best prediction performance on the multimode dataset, ii) feature selection using SVMRFE achieved the best prediction performance on the pus-ion-mode and neg-ion-mode datasets, and iii) the L1SVM method was the second best feature selection method while SVMRW was the worst. Both 52-20-split validation and 12-fold CV evaluation results indicate that i) L1SVM performed the best on the multimode and neg-ion-mode datasets, ii) SVMRFE_NL method performed the best on the pos-ion-mode dataset, and iii) SVMRW method resulted in the worst prediction accuracy. Overall, a clear winner was not easily identifiable among the tested methods.
As shown in Table 13, the neg-ion-mode dataset had a similar prediction performance as the multimode dataset. The analysis of sensitivity (how well cancer patients can be detected) and specificity (how well controls can be detected) (Tables 15 and 16), somewhat favors usage of the multimode dataset, in that, the results show that this dataset achieved a better balance between sensitivity and specificity.
Experiments designed to test the effect of the bagging strategy on the prediction performance were also performed (bootstrap sampling was repeated 101 times, i.e. T=101). The LOOCV evaluation results (Table 17) indicate that bagging does not boost the best prediction performance (80.6%). Although it did improve the classification accuracy for the data with certain feature selection methods (highlighted in bold), it also reduced the classification accuracy for other cases (highlighted in italics). Due to these observations and its high computational cost, the bagging process was not evaluated in further tests.
72.2
79.2
70.8
73.6
65.3
61.1
70.8
76.4
66.7
Statistical Significance of Prediction and Feature Selection
The statistical confidence of the prediction performance of SVM classifiers for the multimode dataset with LOOCV evaluation as compared to a random classifier was investigated using a permutation test. The statistic of interest was the observed difference in classification accuracy. Permutation test (T=1000) showed that the classification accuracy differences between linear SVM and a random classifier, as well as that between a polynomial kernel SVM (degree 2) and a random classifier, were statistically significant (p-value=0), while the difference between linear SVM and polynomial kernel SVM was not (p-value=0.32). Details are summarized in
The statistical significance of the observed classification accuracy (Table 10) was also evaluated. This is captured by the null hypothesis (H0) where the performance statistics of a classifier on the true data are consistent with the performance statistics of the classifier on the data with randomly assigned classes. The statistic of interest is the classification performance. The permutation test (T=1000) showed that the results with SVM classifiers are statistically significant (p-value=0).
Further assessment of the statistical significance of prediction performance (Table 11) subsequent to feature selection (with feature selection applied on the whole dataset) was performed. The permutation test in this case was designed as follows: at the tth test, i) a dataset Dt was generated by random label permutation on the original dataset D0, ii) each feature selection method A was applied to the dataset Dt to select an optimal feature subset FA,t, and iii) the prediction performance PF,A,t, on the dataset Dt with features in FA,t was measured using LOOCV evaluation. The permutation test (T=100) results indicate a p-value of 0.94 for SVMRFE (i.e. for 94% of the dataset with random label permutation, the method was able to find a feature subset that achieves at least as good a classification accuracy as it did on the original dataset); while SVMRFE_NL had a p-value of 0.11. These results again demonstrated the effect of selection bias in feature selection as indicated by Furlanello et al, 2003 (Furlanello, et al., BMC Bioinformatics, 4:54 (2003)). Therefore, these feature selection methods were further evaluated through validation. L1SVM (p-value=0.04) and SVMRW (p-value=0.02) appeared to be less affected by selection bias.
A statistical comparison between the tested feature selection methods was performed to determine if SVMRFE_NL>SVMRFE>L1SVM>SVMRW, as observed in previous experiments. A>B denotes that the feature selection results of method A generally outperform that of method B in prediction accuracy. The descriptor used in this permutation test was PFA−PFB, the difference between the prediction performance on the dataset with the feature subset output by methods A and B, respectively. The prediction performance difference between the SVMRFE NL and SVMRFE methods was statistically significant (p-value=0.01,
The statistical significance of prediction performance (Table 13) subsequent to feature selection in the more conservative setting (with feature selection applied only to the training subsampling of each cross-validation) was also assessed. First, the feature selection methods were applied to the training subsampling of the dataset to determine the optimal feature subset. Next, the prediction accuracy on the test subsampling of the dataset (nonoverlapping with the training subsampling) was obtained using the SVM model built on the training subsampling with only the selected features. The statistic of interest is the average prediction accuracy over the LOOCV procedure. The permutation test (T=100) showed that the feature selection results of L1SVM were statistically significant (p-value=0, see
For completeness, the stability of the feature selection results over the LOOCV folds was evaluated. At each cross-validation, a feature subset was obtained; hence the frequency of occurrence of features in these feature subsets was collected. Utilizing this frequency required the concepts of stable features, features with an occurrence frequency over a certain threshold (80% was used here), and stability, the ratio of stable features in the union of the selected feature subsets during cross-validations. Out of the 73 features selected by L1SVM during LOOCV evaluation, 39 were found to be stable (53.4% stability), SVMRFE had 16 stable features out of 90 (stability of 17.8%), SVMRFE_NL had 26 stable features out of 82 (stability of 31.7%) and SVMRW had 33 stable features out of 77 (stability 42.9%). The statistical significance of the features' stability (Ancona, et al., BMC Bioinformatics, 7:387 (2006))) was further evaluated using the stability statistics of feature selection results on the data with random label permutation over the LOOCV evaluation process as the statistic of interest. The results of the permutation tests (T=100) show that the stability of the L1SVM method was statistically significant with a p-value of 0.01 (see
Metabolite Identification on Selected Features
The calculated neutral masses, species investigated, and retention times of the positive and negative ion mode ESI variables used by the multimode SVMRFE_NL model are reported in Tables 18 and 19. This model consists of the relatively stable features (threshold 54%) obtained over the LOOCV folds as described above, here threshold 54% was used because there is a significant drop of feature occurrence frequency from 39 to 22. Tables 18 and 19 also list the corresponding chemical formulae, mass differences (Δm), and matching scores for these features.
AFor species having multiple isomers the following nomenclature is given: # isomers found including name of isomer [source (cross-listed source, if any)].
AFor species having multiple isomers the following nomenclature is given: # isomers found including name of isomer [source (cross-listed source, if any)].
CAdduct analysis yielded multiple possible ion species for this feature. Only 1 species could be tentatively identified.
DAdduct analysis yielded multiple possible ion species for this feature. Only 1 species could be tentatively identified
GAdduct analysis yielded multiple possible ion species for this feature. Only 1 species could be tentatively identified.
IAdduct analysis yielded multiple possible ion species for this feature. All are listed as none could be matched against the databases.
JAdduct analysis yielded multiple possible ion species for this feature. Only species that could be tentatively identified are listed.
KCross-listed as MMCD cq-10750 and MID 5666.
NAdduct analysis yielded multiple possible ion species for this feature. All are listed as none could be matched against the databases.
QAdduct analysis yielded multiple possible ion species for this feature. All are listed as none could be matched against the databases.
The corresponding mass spectra and structures are shown in
Five of the SVMRFE_NL-selected positive ion mode ESI features from the multimode dataset were tentatively identified as glycophospholipids. Due to the inability of single stage MS analysis to distinguish between isomeric compounds (compounds having identical chemical formula but different structures), the features could not be definitively assigned to a particular glycophospholipid isomer. As such, all of the possible isomers corresponding to each feature are listed in Table 18. The chemical formulae corresponding to these five features yielded a total of 106 possible compounds with the total number of isomers attributed to each feature ranging from 3-32, mass accuracies between 0.4-11.6 ppm and matching scores between 42.6-99.0%. Examples of compounds that could be tentatively matched to the elemental formulae obtained in this investigation include LysoPC(18:2(9Z,12Z), PE-NMe(18:1(19E)/18:1(9E)), PC(14:0/20:1(11Z)), PC(14:0/22:4(7Z,10Z,13Z,16Z)), and PC(14:0/22:1(13Z)).
Nine of the SVMRFE_NL-selected negative ion mode ESI features were tentatively identified as endogeneous carboxylic acids, peptides, glycerophospholipids, and hormones. The total number of isomers for these nine features ranged from 1-16 yielding a total of 65 possible compounds with mass accuracies between 1.4-14.8 ppm and matching scores between 82.7-99.3%. One of the identified features could not be assigned to a single chemical formulae due to the absence of additional supporting adduct ions in the mass spectrum. This feature was attributed to either lithocholic acid glycine conjugate or any of 8 glycerophosphocholine isomers, such as PC(P-16:0/0:0). Potential matches for the possible identities of the selected features include palmitic acid, 12-hydroxy-8E,10E-heptadecadienoic acid, stearic acid, GlnHisAla, DHEA sulfate, PC(10:4/4:0), PE(9:0/10:0) and glycoursodeoxycholic acid 3-sulfate.
Although metabolites such as lysophosphatidic acid and lipid associated sialic acid, that have been investigated as metabolic biomarkers for ovarian cancer in literature (Baker, et al., J. Am. Med. Assoc., 287(23):3081-2 (2002); Sutphen, et al., Cancer Epidem. Biomarkers Prevention, 13(7):1185-91 (2004); Xu, et al., J. Am. Med. Assoc., 280(8):719-23 (1998); Petru, et al., Gynecol. Oncol., 38(2):181-6 (1990); Schutter, et al., Tumour Biol.: J. Int. Soc. Oncodevelopmental Biol. Med., 13(3):121 (1992); Schwartz, et al., Cancer, 60(3):353-61 (1987); Tadros, et al., Am. Coll. Obstet. Gynecol. J., 74(3):379-83 (1989); Vardi, et al., Surg. Fynecol. Obstet., 168(4):296-301 (1989)) were not pinpointed in the study, the presence of several endogenous lipids as well as other endogenous metabolites in the set of selected features suggests that this approach has merit and should be further explored.
Materials and Methods:
Samples and Reagents
N-trimethylsilyl-N-methyltrifluoroacetamide (MSTFA) and trimethylchlorosilane (TMCS) were obtained from Alfa Aesar (Ward Hill, Mass.), anhydrous pyridine, acetonitrile (ACN), acetone and isopropanol were from EMD Chemicals (Gibbstown, N.J.), polyethylene glycol standard 600 (PEG 600) was from Fluka Chemical Corp. (Milwaukee, Wis.), healthy human serum (S7023—50 mL) was from Sigma-Aldrich Corp. (St. Louis, Mo.), and helium (99.9% purity) was purchased from Airgas, Inc. (Atlanta, Ga.).
Mass Spectrometry
Serum metabolomic analysis was performed in positive ion mode via a DART ion source (IonSense, Saugus, Mass.) coupled to a JEOL AccuTOF orthogonal time-of-flight (TOE) mass spectrometer (JEOL, Japan). Derivatized serum samples were placed within the ionization region using a home-built sampling arm which secured Dip-it tips (IonSense, Saugus, Mass.) at a fixed 3 mm distance from the ion source gas exit. Prior to DART MS analysis, 0.5 μL of derivatized serum solution were pipette-deposited onto the glass end of the Dip-tip coupled to the sampling arm, a 1.2 min data acquisition run started, and the sample allowed to air dry for 0.65 min. The sampling arm was then rapidly switched so that the dried sample was exposed to the ionizing zone of the DART ion source. After 0.9 min, the sample was removed, and a new Dip-it placed on the sample holder, while the remaining 0.3 minutes of the run were completed.
Following optimization, a DART ion source helium flow rate of 3.0 L min−1 heated to 200° C. was chosen. The glass tip-end was positioned 1.5 mm below the mass spectrometer inlet. A discharge needle voltage of +3600 V, and perforated and grid electrode voltages of +150 and +250 V were chosen, respectively. Accurate mass spectra were acquired in the m/z 60-1000 range with a spectral recording interval of 1.0 s. The RF ion guide peak voltage was set to 1200 V. The settings for the TOF mass spectrometer were as follows: ring lens: +8 V, orifice 1: +40 V, orifice 2: +6 V, orifice 1 temperature: 80° C., and detector voltage −2800 V. Mass drift compensation was performed after analysis of each sample using a 0.20 mM PEG 600 standard in methanol. The measured resolving power of the TOF mass spectrometer was 6000 at FWHM, with observed mass accuracies in the range 2-20 ppm, depending on the signal-to-noise ratio (S/N) of the particular peak under investigation. Metabolites were tentatively identified by matching accurate masses against a custom built database containing 2924 entries corresponding to unique endogenous human metabolites. Each entry was manually expanded to take into account the mono, di and/or tri-trimethylsilane (TMS) derivatives. Entries for families of compounds not reacting with the MSTFA/TMCS reagent mixture were not expanded. Matching of database records to experimental data was performed using the SearchFromList application part of the Mass Spec Tools suite of programs (ChemSW, Fairfield, Calif.) using a tolerance of 5 mmu. If no matches were found, the METLIN database was manually searched with a tolerance of 10 mmu.
Sample Preparation
Upon removal from a −80° C. freezer, serum samples were immediately thawed on ice. Two-hundred μL serum aliquots were pipetted and mixed with 1 mL of freshly-prepared, chilled (−18° C.) and degassed 2:1 (v/v) acetone:isopropanol mixture. The mixture was vortexed and placed in a second freezer at −18° C. overnight to precipitate proteins, followed by centrifugation at 13,000 g for 5 minutes. The supernatant was transferred to a clean centrifuge tube, and the solvent was evaporated in a speed vacuum concentrator to complete dryness. The solid residue was then redissolved in 25 μL anhydrous pyridine, and shaken for one hour at room temperature for complete dissolution. Fifty μL of MSTFA containing 0.1% TMCS were added to the sample in a N2-purged glove box. The mixture was incubated at 50° C. in an inert N2 atmosphere for half an hour, resulting in derivatization of amide, amine and hydroxyl groups. The supernatant of this derivatized mixture was subject to DART mass spectrometric analysis, each sample requiring approximately 1.2 min.
Results:
Effect of Serum Metabolite Derivatization
A comparison of DART mass spectra observed for non-derivatized human serum following protein precipitation and an identical sample which was derivatized with MSTFA/TMCS is shown in
a6 isomers found including Lys Met His: His Lys Met, Lys His Met, Met His Lys, Met Lys His and His Met Lys;
b12 isomers including Thr Glu Phe: Tyr Val Asp, Val Asp Tyr, Glu Thr Phe, Asp Tyr Val, Tyr Asp Val, Val Tyr Asp, Asp Val Tyr, Phe Thr Glu, Thr Phe Glu, Glu Phe Thr and Phe Glu Thr;
c12 isomers including Tyr Leu Glu: Tyr Glu Ile, Ile Tyr Glu, Ile Glu Tyr, Glu Tyr Leu, Leu Tyr Glu, Glu Ile Tyr, Tyr Glu Leu, Glu Tyr Ile, Leu Glu Tyr, Glu Leu Tyr and Tyr Ile Glu;
d6 isomers including Trp Arg Asp: Arg Trp Asp, Asp Arg Trp, Arg Asp Trp, Trp Asp Arg and Asp Trp Arg;
e6 isomers including Trp Lys Tyr: Lys Tyr Trp, Lys Trp Tyr, Tyr Lys Trp, Trp Tyr Lys and Tyr Trp Lys.
Among the sixteen peaks marked as “1”-“16”, thirteen of them were identified as peptides, amino acids, lipids, vitamin D3 metabolites, fatty acid alcohols and urea. This indicates that analysis of TMS derivatized metabolites is preferable to their more hydrophilic underivatized counterparts bearing functional groups such as —COOH, —OH, —NH and —SH, in which intermolecular hydrogen bonding interactions are strong, and result in their decreased volatility. Derivatization replaces reactive hydrogen atoms in these groups by TMS, leading to a reduction in metabolite polarity.
Effect of Helium Gas Flow Rate and Temperature
Helium gas temperature and flow rate are two major parameters affecting DART ion transmission (Harris and Fernandez, Anal. Chem., 81:322-329 (2009)). DART spectra for various helium gas temperatures, and the corresponding number of metabolites identified by accurate mass matching are shown in
Helium flow rates were also observed to have a strong influence on the observed DART spectra (
Time-Dependence of Metabolite Desorption/Ionization
Although the underlying mechanisms prevailing in the DART desorption process are complicated and beyond the topic of this note, the observed temporal profiles following exposure of the derivatized serum sample to the ionizing gas stream suggest a differential thermal desorption mechanism during the first 5 s following switching of the position of the sampling arm. Mass spectra averaged every 1 s of the total ion chronogram (TIC,
Repeatability
Highly repeatable measurements are critical in serum metabolomic fingerprinting since potential biomarkers of stress or disease are down-selected based on significance tests or multivariate analysis of intensity information directly obtained from mass spectra. Repeatability experiments based on ten separate runs of a control serum sample are presented in
Materials and Methods:
Sample Collection
Serum samples were obtained from the Ovarian Cancer Institute (OCI, Atlanta, Ga.) after approval by the Institutional Review Board from Northside Hospital and Georgia Institute of Technology, Atlanta, Ga. (HO5002 John McDonald PI). All donors were required to fast and to avoid medicine and alcohol for 12 h prior to sampling, except for certain allowable medications, for instance, diabetics were allowed insulin. Following informed consent by donors, 5 mL of whole blood are collected by venipuncture into evacuated blood collection tubes that contained no anticoagulant. Blood was drawn and centrifuged within an hour of serum collection, 200 μL aliquots of each serum sample was stored into 1.5 mL Safe-Lock Eppendorf micro test tubes at −80° C. until ready to use.
Sample Preparation
Prior to analysis, 200 μL of each serum sample was thawed on ice and mixed with 1 mL of freshly-prepared, chilled (−18° C.) and degassed 2:1 (v/v) acetone:isopropanol mixture. The mixture was vortexed and proteins allowed to precipitate at −18° C. overnight followed by centrifugation at 13,000 g for 5 minutes. The supernatant was transferred to a new centrifuge tube, and the solvent was evaporated in a speed vac. The solid residue was re-dissolved in 25 μL anhydrous pyridine (EMD Chemicals, Gibbstown, N.J.), and shaken for one hour at room temperature for complete dissolution. Fifty μL of N-trimethylsilyl-N-methyltrifluoroacetamide (MSTFA, Alfa Aesar, Ward Hill, Mass.) containing 0.1% trimethylchlorosilane (TMCS, Alfa Aesar) was added to the sample in a N2-purged glove box. The mixture was then incubated at 50° C. in an inert N2 atmosphere for half an hour, resulting in TMS-derivatization of amide, amine and hydroxyl groups. The final derivatized mixture was subject to DART-MS analysis.
DART-TOF MS
Serum mass spectrometric analysis was performed using a DART ion source (IonSense Inc., Saugus, Mass.) coupled to a JEOL AccuTOF orthogonal time-of-flight (TOF) mass spectrometer (JEOL Inc., Japan). Derivatized serum samples (0.5 μl) were pipette-deposited onto the glass end of a Dip-Tip® applicator (IonSense, Inc.), allowed to air dry for 0.65 minutes in a fume hood and exposed to the ionizing protonated water cluster reagent ions of the DART ion source. Each sample was run in triplicate, requiring a total of analysis time of 4.0 minutes.
The DART ion source was operated in positive ion mode with a helium gas flow rate of 3.0 L min−1 heated to 200° C. The glass tip-end was positioned 1.5 mm below the mass spectrometer inlet. The discharge needle voltage of the DART source was set to +3600 V, and the perforated, and grid electrode voltages set to +150 and +250 V, respectively. Accurate mass spectra were acquired within the range of m/z 60-1000 with a spectral recording interval of 1.0 s, and an RF ion guide peak voltage of 1200 V. The settings for the TOF mass spectrometer were as follows: ring lens: +8 V, orifice 1: +40 V, orifice 2: +6 V, orifice 1 temperature: 80° C., and detector voltage −2800 V. Mass drift compensation was performed after analysis of each sample using a 0.20 mM polyethylene glycol standard 600 standard (PEG 600, Fluka Chemical Corp., Milwaukee, Wis.) in methanol. The measured resolving power of the TOF MS detector was 6000 at FWHM, with observed mass accuracies in the range 2-20 ppm, depending on signal-to-noise ratios (S/N) of the particular peak investigated.
Data Preprocessing
All profile mass spectra were obtained by time-averaging of the total ion chronogram between 0.73 and 0.76 minutes after each injection. Following DART-TOF MS data collection, mass drift compensation was performed using PEG 600 as the reference spectrum. The background spectrum was subtracted; profile spectral data was exported in JEOL-DX format and converted to a comma-separated format prior to importing in MATLAB 7.6.0 (R2008a, MathWorks). The data were normalized to a relative intensity scale and re-sampled to a total of 20,000 points between m/z 60 and 990 using the msresample function in the Matlab Bioinformatics Toolbox. The three replicate DART spectra were then averaged.
Multivariate Classification
SVM and PLSDA analysis of averaged spectra were performed in MATLAB 7.6.0. PLSDA is performed using the PLS Toolbox (Version 4.1, Eigenvector Research) for MATLAB.
Description of fSVM Classification Method
Support Vector Machines (SVM) (Vapnik, The Nature of Statistical Learning Theory, (Springer, New York, 2000)) have been successfully used in many scientific applications, as they generally achieve state-of-the-art classification performance, particularly versus older methods and in high-dimensional settings. Though computationally intensive, they are efficient enough to handle problems of the size considered here. Given a dataset S={xi,yi}i=1M(xiεRN is the feature vector of ith instance and yi is the corresponding label), for two-class classification problems, the standard linear SVM solves the following convex optimization:
minw,ξ½∥w∥2+CΣi=1Mξi
s.t. yi(w·xi+b)+ξi≧1, ξi≧0, i=1, . . . , M
In the case of nonlinear SVMs, the feature vectors xiεRN are mapped into high dimensional Euclidean space, H, through a mapping function Φ(.):RN→H. The optimization problem becomes:
minw,ξ½∥w∥2+CΣi=1Mξi
s.t. yi(w·Φ(xi)+b)+ξi≧1, ξi≧0, i=1, . . . , M
The kernel function is defined as K(xi,xj)=Φ(xi)·Φ(xj)—for example, for a polynomial kernel of degree 2, K(xi,xj)=(gxi·xj+r)2, where g, r are kernel parameters. The linear kernel function is defined as K(xi,xj)=xi·xj. Tools such as libSVM (http://www.csie.ntu.edu.tw/cjlin/libsvm) can efficiently solve the dual formation of the following problem:
minα½Σi=1MyiyjαiαjK(xi,xj)−Σi=1Mαi
s.t. Σi=1Myiαi=0, 0≦αi≦C, i=1, . . . , M
where αi is the Lagrange multiplier corresponding to the ith inequality in the primal form. The solution is w=Σi=1MαiyiΦ(xi) (in the case of linear SVM, w=Σi=1Mαiyixi). The optimal decision function for an input vector x is f(x)=w·Φ(x)+b, that is, f(x)=Σi=1MaiyiK(xi,x), where the predicted class is +1 if f(x)>0 and −1 otherwise.
In functional classification problems, the input data instances xi are random variables that take values in an infinite dimensional Hilbert space H, the space of functions. The goal of classification (Biau, et al., IEEE Transactions on Information Theory, 51:2163-2172 (2005)) is to predict the label y of an observation X given training data (S={Xi,yi}i=1M, XiεH).
In practice, the functions that describe the input data instances X1, . . . , XM are never perfectly known. Often, n discretization points have been chosen in t1, . . . , tNεR, and each functional data instance Xi is described by a vector in RN, (Xi(t1), . . . , Xi(tN)). Sometimes, the functional data instances are badly sampled and the number and the location of discretization points are different between different functional data instances. A usual solution under this context is to construct an approximation (such as B-spline interpolation) for each input functional data instance Xi based on its observation values, and then apply sampling uniformly to the reconstructed functional data (Visintin, et al., Clin. Cancer Res., 14:1065-1072 (2008); Greene, et al., Clin. Cancer Res., 14: 7574-7575 (2008)). Therefore, a simple solution would be to apply the standard SVM to the vector representation of the functional data.
However, in some application domains such as chemometrics, it is well known that the shape of a spectrum is sometimes more important than its actual mean value. Therefore, it is beneficial to design SVMs specifically for functional classification, by introducing functional transformations and function kernels (Williams, et al., J. Proteome Res., 6:2936-2962 (2007); Anderson, and Anderson, Mol. Cell. Proteomics, 1:845-867 (2002).
This procedure is equivalent to working with a functional kernel, KN(xi,xj) defined as K(PV
Good candidates for the basis functions include the Fourier basis and wavelet bases. If the functional data are known to be nonstationary, a wavelet basis might yield better results than the Fourier basis. Other good choices include B-spline bases, which generally perform well in practice (Rossi and Villa, Neurocomputing, 69:730-742 (2006).
Metabolite Identification
Metabolites in the fSVM model utilizing 1:7:20,000 subsampled features were tentatively identified by finding the closest mass spectral peak matching the selected model features in the 103-714 m/z range. This m/z range is fully covered by the TOF calibration function thus providing the most reliable accurate mass matches. No attempt was made to identify SVM model features outside this range. Accurate masses of mass spectral peaks closest to the model features were matched against a custom built database containing 2924 entries corresponding to endogenous human metabolites in the HMDB database. Each entry was manually expanded to take into account the mono, di and/or tri-trimethylsilane (TMS) derivatives. Entries for families of compounds not reacting with the MSTFA/TMCS reagent mixture were not expanded. Matching of database records to experimental DART-TOF MS data was performed using the SearchFromList application part of the Mass Spec Tools suite of programs (ChemSW, Fairfield, Calif.) using a tolerance of 10 mmu. If no matches were found, the next closest match within 20 mmu was selected.
Results:
The approach used here circumvents chromatographic separation, making use of non-contact direct ionization with minimum sample preparation and no matrix addition. The assay is based on Direct Analysis in Real Time (DART) MS (Cody, et al., Anal. Chem., 77:2297-2302 (2005)), an innovative technique where a stream of excited metastables is used to desorb and chemically ionize a dried drop of metabolite mixture solution extracted from serum. A mass spectrometer is used to evaluate the relative abundances of these metabolites. The method displays no memory effects, as it is performed in a non-contact fashion. This increases the reproducibility of the metabolic fingerprints, enabling the detection of differences between disease states. Moreover, DART is able to ionize a broad range of metabolites with varying polarities (Cody, Anal. Chem., 81:1101-1107 (2009)), enabling the simultaneous interrogation of multiple species.
The results from the application of a rapid methodology to the detection of metabolic changes associated with ovarian cancer are presented here. This study was approved by the Institutional Review Boards of Georgia Institute of Technology and Northside Hospital, (Atlanta) from which the patient blood samples (Table 21) were obtained.
aControls refer to patients with histology within normal limits (NWL).
Peripheral blood was drawn from ovarian cancer and control patients using standardized procedures. Samples were subsequently processed and stored in 200 μl aliquots at −80° C. in the tissue bank of the Ovarian Cancer Institute (Atlanta). Following protein precipitation, derivatized metabolites were subject in triplicate to DART mass spectrometric analysis using a time-of-flight (TOF) mass spectrometer (
A customized functional Support Vector Machine (fSVM) classification algorithm for the classification of the metabolic profiles for developed for this study. The fSVM operates as follows: 1) The data are collapsed along the desorption time dimension by using the average value within the time range of interest for each mass; 2) The resulting vector is smoothed using B-splines (Eubank, Nonparametric Regression and Spline Smoothing, (Marcel Dekker, New York (1988)) to create the functional representation; 3) The vector of spline coefficients is classified by a SVM (Ramsay, and Silverman, Functional Data Analysis, (Springer, New York, (2005)), i.e., using a kernel between a pair of smooth functions. In order to deal with the very large number of features (over 20,000 m/z values per sample run), a variety of approaches were tested, including simple subsampling, ANOVA feature selection, and recursive feature elimination.
The efficacy of the classifiers was evaluated by leave-one-out cross-validation (LOOCV). Feature selection was performed on each training set. The results of the fSVN analyses (one-way ANOVA with p=0.05; one-way ANOVA with p=0.01; selection of 1 from every 7 peaks consecutively across al 20,000 peaks) are presented in Table 22.
100.0
98.0
98.9
100.0
98.0
98.9
100.0
98.9
aAverage number of features selected during each CV.
The classifiers were evaluated and optimized using LOOCV. ANOVA feature selection in combination with fSVM was first applied only to the training dataset and then the test set predicted using the selected features subset. The sensitivity (SENS), specificity (SPEC) and accuracy (ACC) were determined by true positive (TP)/positive (P), true negative (TN)/negative (N) and (TP+TN)/(P+N), respectively. The best accuracies obtained are shown in bold. fSVM_NL=functional support vector machine with nonlinear (NL) degree 2 polynomial kernel. In each case, the fSVMs yielded an average of only one misclassification in all LOOCV resulting in an accuracy of 98.9%.
Table 23 presents a summary of analytical results using standard SVMs and partial least-squares discriminant analysis (PLSDA) (Barker and Rayens, J. Chemom., 17:166-173 (2003)), two of the most frequently employed data analysis methods in bioinformatics and chemometrics.
95.5
100
97.9
100
96
97.9
97.7
98.0
97.9
97.7
98.0
97.9
aAverage number of features selected during each CV.
Classifiers were evaluated and optimized using LOOCV. Feature selection methods in combination with SVM or PLSDA were applied only to the training dataset and then the test set predicted using the selected features subset. The best prediction accuracies obtained are bolded. SVM_NL=SVM with nonlinear degree 2 polynomial kernel, PLSDA (8LV)=partial least squares discriminant analysis with 8 latent variables, RFE=recursive feature elimination, L1SVM=L1-norm SVM, SVMRW=SVM following Weston's feature selection.
All methods performed well, owing to the inherent discriminative power of the data but the highest accuracy was obtained using the fSVM approach. In a second set of experiments, a training set of 64 patients was used with 30 held out as a test set. fSVM achieved 100% accuracy, though the LOOCV estimate should be regarded as more reliable. A list of features selected by L1-norm; RFE, 7-element subsampling and ANOVA that fall within the TOF mass spectrometer calibration range, and their tentative identifications is provided in Tables 24-26.
There is general consensus among the ovarian cancer community that to be of clinical significance, a screening test for ovarian cancer in the general population must have a minimum positive predictive value (PPV) of ˜10% (Schwartz and Taylor, Ann. Med., 27:519-528 (1995)). Because the prevalence of ovarian cancer in the general population is low (˜0.04%), the required specificity of any potential screening test must be ≧99%. The results presented here suggest the potential of this method as an ovarian cancer diagnostic of significant clinical value.
This application claims priority to and benefit of U.S. Provisional Patent Application No. 61/056,618, filed on May 28, 2008, and U.S. Provisional Patent Application No. 61/175,571, filed on May 5, 2009.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/45508 | 5/28/2009 | WO | 00 | 1/5/2011 |
Number | Date | Country | |
---|---|---|---|
61056618 | May 2008 | US | |
61175571 | May 2009 | US |