METADATA IN DIRECTORY SERVICE SYSTEMS AND METHODS

Abstract
A method and apparatus for implementing directory services, such as X.500 and LDAP in a SQL environment, and for providing a desired level of indexing, extensibility and scalability. In the directory service system, a plurality of objects are defined to be hierarchical, and the relationships among objects follow a tree structure where each object has a parent object and except for a root, each parent can have zero or more children. The database comprises at least one table having a plurality of rows and columns and stores a plurality of data items, each having a value, each being related to one of a plurality of data types and each having attributes defined by the directory. The attributes of the directory are arranged in a row-per-data type and value format, resulting in a representation identified as meta-data, wherein values are represented per row by
Description


BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention


[0003] The present invention relates to the field of directory services. In particular, the present invention is directed to application of X.500, LDAP and similar services to a relational database, a database design and use of the database to perform X.500 services.


[0004] One aspect of the invention relates to the use of metadata, wherein different types of objects are stored together in the same table and in a generic way, in a directory service system and its method of operation.


[0005] Other aspects of the present disclosure are directed to an implementation using a RDBMS (Relational Database Management System). The present invention also comprises a property-based table structure and methods of operation of a database application.


[0006] 2. Description of the Related Art


[0007] X.500 is the International Standard for Electronic Directories [CCITT89] or [ITU93]. These standards define the services, protocols and information model of a very flexible and general purpose directory. X.500 is applicable to information systems where the data is fairly static (e.g. telephone directory) but may need to be distributed (e.g. across organisations or countries), extensible (e.g. store names, addresses, job titles, devices etc.), object oriented (i.e. to enforce rules on the data) and/or accessed remotely.


[0008] Relational Database Management System


[0009] (RDBMS) provide facilities for applications to store and manipulate data. Amongst the many features that they offer are data integrity, consistency, concurrency, indexing mechanisms, query optimisation, recovery, roll-back, security. They also provide many tools for performance tuning, import/export, backup, auditing and application development.


[0010] RDBMS are the preferred choice of most large scale managers of data. They are readily available and known to be reliable and contain many useful management tools. There is a large base of RDBMS installations and therefore a large amount of existing expertise and investment in people and procedures to run these systems, and so data managers are looking to use this when acquiring new systems. Most relational database products support the industry standard SQL (Structured Query Language).


[0011] There has also been a move towards Object Oriented systems which provide data extensibility and the ability to handle arbitrarily complex data items. In addition, many corporations and government departments have large numbers of database applications which are not interconnected. Data managers are looking for solutions which enable them to integrate their data, and to simplify the management of that data. X.500 and it's associated standards provide a framework and a degree of functionality that enables this to be achieved. The fact that X.500 is an international standard means that data connectivity can be achieved across corporations and between different countries.


[0012] The problem, therefore, is to address the need of data managers and implement X.500 with all the flexibility of object-oriented systems but using an SQL product so that it can achieve the scalability and performance inherent in relational systems coupled with the stability, robustness, portability and cost-effectiveness of current SQL products.


[0013] There have been a number of attempts of solving the above problem and over a considerable period of time. None of the attempts have resulted in a product which has proven to be commercially accepted by the market, and thus in the market place there is a long felt need yet to be addressed.


[0014]
FIG. 1 shows an abstract from the “GOSIPNews” issue No. 4, dated April 1994 (Source: “Interoperability Products” distributed in Australia by the Centre for Open Systems) and which lists X.500 products currently available. None of these products use a SQL database as an underlying data store, and none of these products therefore address successfully the market need of implementing X.500 using an SQL RDBMS.


[0015] The Proceedings of IFIP WG6.6 International Symposium (ISBN: 0444 889 167) have published a paper presented by Francois Perruchond, Cuno Lanz, and Bernard Plattner and entitled “A Relational Data Base Design for an X.500 Directory System Agent”. The Directory System disclosed, as with many prior art systems, is relatively slow in operation, particularly where the database is relatively extensive and is incomplete in its implementation of X.500, such as aliases, subsearch and entry information.


[0016] Another attempt is disclosed in the proceedings of IREE, ISBN 0909 394 253, proceedings Apr. 22-24, 1991 by C. M. R. Leung. In that disclosure, there is described a database scheme in which a single entry table holds detailed information about each directory object, and is also incomplete in its implementation of X.500.


[0017] This approach has been discredited by a number of text books and knowledge in the art, such as “Object-Oriented Modeling and Design” by J. Rumbaugh, et al, 1991, ISBN 0-13-630054-5, in which at paragraph 17.3.8 it is clearly stated that “putting all entities in the one table is not a good approach to relational database design”.


[0018] As noted above, there have been a number of attempts made to address prior art problems, but none of the attempts have resulted in a product which has proven to be commercially accepted by the market. Of interest in this application, are the solutions of problems that are associated with indexing, extensibility and scalability.



SUMMARY OF INVENTION

[0019] An object of the present inventions is to address problems associated with indexing, extensibility and scalability, or at least one of the prior art problems.


[0020] One aspect of the invention resides in representing the X.500 attributes of the prior art, that previously required separate columns for respective data types:
1empl # nameagesalary,


[0021] as a plurality of generic columns:
2typesyntaxvalue,


[0022] the latter representation being an extensible representation that forms a basic principal design. Because of the extensible nature of the principal design, the latter representation is adapted to implementation with SQL. In other words, prior art representations are arranged in ‘column(s) per data type’, whereas the present invention is arranged in ‘row(s) per data and value type’. The latter representation is known as meta-data The meta-data “value” may be binary.


[0023] A further feature of the invention is realised by the application of the metadata representation to directory services, such as X.500 or LDAP. This application is realised by the provision of a ‘property table’, in which a column defining distinguishable objects by name and parent name is added to the principal design.


[0024] The present invention also provides a method of representing, storing and/or processing directory services, such as X.500 or LDAP, which contain objects having attributes, the improvement being representing, storing and/or processing the attributes in the form of type, syntax, and value. This leads to relatively efficient implementation of directory services in a relational database.


[0025] Further, benefits accrue from the aspects and implementation of a metadata-based directory service, including:


[0026] a. independence of size—the implementation disclosed has the ability to be scaled,


[0027] b. independence of depth of tree—the implementation disclosed has hierarchy comparability,


[0028] c. performance—if index is put on the type column, then each and every type is indexed.


[0029] A detailed description of the present invention can be found in the following text, at least in section numbers 1 and 2 in the Summary of Invention and section 1.1 of the description of the preferred embodiments and the related Figures.


[0030] With regard to the remainder of the specification as a whole, in general, it seeks to disclose a number of other inventions related to the implementation of X.500 services in a RDBMS which supports SQL or any other relational language. X.500 services can be invoked via a number of protocols, such as X.500 and LDAP.


[0031] The scope of the present invention is outlined in this specification, including the claims.


[0032] In this document, at the time of filing, SQL is the most popular relational language and although it is only one form of relational language, the intent of the present invention is to have application to any other form of relational language, not just SQL.


[0033] These inventions can be related to the following headings:


[0034] 1. Principal Design


[0035] 2. Conceptual Design


[0036] 3. Conceptual Method(s)


[0037] 4. Logical Design


[0038] 5. Logical Method(s)


[0039] 6. Physical Design


[0040] 7. Example Implementation


[0041] The X.500 standard in no way dictates how the directory is to be implemented, only its capabilities and behaviour. One key to solving the implementation problem is the realisation that X.500 defines a fixed set of services (e.g. Add, Modify, Search etc.) that can operate on arbitrary data.


[0042] It has been discovered that problems associated with the prior art may be alleviated by a unique approach, by what may be described as inverting relational theory modeling from a data modeling approach to a service modeling approach. That is, from the problem of:


[0043] processing arbitrary queries on a fixed set of data to the present approach of processing arbitrary data using a fixed set of queries/services.


[0044] Each service is modelled (instead of each data type) and the relationships between each service defined (instead of the relationships between each data type).


[0045] Implementation of service modeling using relational queries to satisfy X.500 services enables benefits of RDBMS to be exploited.


[0046] The benefits of this approach are many. A summary is illustrated in FIG. 3. Some of the benefits include:


[0047] relatively fast starting time.


[0048] the ability to reduce memory requirements relative to memory resident systems.


[0049] the ability to base X.500 on any SQL database and thereby protect the investment in products, expertise and procedures in managing existing systems.


[0050] the ability to achieve performance relatively independent of size and relatively independent of the complexity of the data type. Every data type is treated generically. Every data type has an index on it. The result of indexing gives the ability to efficiently search the directory without caching large portions of directory into memory. Unlike the prior art where either only one index can be used to satisfy one given query or large portions of information is system intensively cached and searched in memory.


[0051] the ability to support different languages (e.g. Spanish, Hebrew and Kanji) which may have various collating sequences. Single, double or other byte character sets may also be supported.


[0052] using a disk based model to minimise I/O and efficiently retrieve I/O.


[0053] the ability to service complex X.500 searches.


[0054] the ability to create X.500 databases of far greater size than previously possible, without compromising performance or robustness. The databases can be small or large (250,000, 1 million or more entries).


[0055] an optimal table design minimises wastage of disk space.


[0056] the ability to leverage off hundreds of man years of relational database developments and use “industrial strength” databases with proven reliability, integrity, security and tools for developing high performance applications.


[0057] Based on this unique approach, the following disclosure will detail a number of inventions in an order with reference to FIGS. 2A and 2B, which illustrates schematically an overview of the present X.500 system. The table and column, names, order of columns and numeric values disclosed are given on an arbitrary basis in the overview. The number of columns disclosed represent a preferred operable requirement. Additional columns do not alter the use of the table as herein contemplated.







BRIEF DESCRIPTION OF THE DRAWINGS

[0058]
FIG. 1 is an illustration of a table that lists X.500 products currently available, none of which use a SQL data base as an underlying data store.


[0059]
FIG. 2A is an illustration schematically of an overview of the present invention, particularly the principal design and the corresponding conceptual design, as applied to the provision of a table structure for an X.500 system.


[0060]
FIG. 2B is an illustration schematically of an overview of the present invention, particularly the logical design and the corresponding physical design, as applied to the provision of a table structure for an X.500 system.


[0061]
FIG. 3 is an illustration of a pie chart that provides a summary representation of the benefits of implementing service modeling using relational queries to satisfy X.500 services.


[0062]
FIG. 4 is an illustration of a hierarchy within a hypothetical organization, arranged as a tree, that is used to explain the services that may be provided according to the present invention.


[0063]
FIG. 5 is an illustration of a hierarchy within a hypothetical organization, arranged as a tree, that has an alias referencing a different branch of the tree, according to the present invention.







DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0064] 1. Principal Design


[0065] The X.500 prior art attempts at implementation have been unable to overcome the relatively basic structural and operational differences between the X.500 requirements and functionality and SQL. The X.500 standard has a particular structure by nature, whereas SQL is designed to operate on relational structured tables.


[0066] For a typical relational database application, the nature of data is well known, i.e. tables will consist of a number of columns and each column contains data relating to a particular data type (see Table B1). The different data types that can be stored is limited to the columns of the table. The data types are also limited to the types supported by the database (e.g. string, numeric, money, date). The database may also store data of a form not understood by the database per se, but understood by the application e.g. binary data.
3TABLE B1Employee TableNameSurnameTitlePhoneChrisMASTERSSales Manager03 727-9456AlanaMORGANSales Support03 727-9455. . .. . .. . .. . .


[0067] If a new data type needs to be added (e.g. mobile) then a new column will have to be added to the table. This can cause problems if data table changes are not easy to implement. Also if the new data type is not well used (e.g. less than 1% of the organisation) then significant redundant data storage may result. See Table B2.
4TABLE B2Employee TableNameSurnameTitlePhoneMobileChrisMASTERSSales Manager03 727-9456018 042671AlanaMORGANSales Support03 727-9455. . .. . .. . .. . .. . .


[0068] In essence, one invention in the application of X.500 resides in overcoming the extensibility by representing the X.500 attributes of the prior art:
5empl # nameagesalary


[0069] as described above, as
6typesyntaxvalue,


[0070] the latter representation being an extensible representation and is thus adapted to implementation with SQL. The latter representation is known as meta-data. The meta-data “value” may be binary.


[0071] A further development based on the above principal design is the adaption of the ‘principal design’ to X.500. This adaption has been realised by the provision of a ‘property table’, in which object name and parent name is added to the ‘principal design’.


[0072] Further benefits accrue from the implementation disclosed above; including:


[0073] a. independence of complexity of filter—the implementation disclosed may utilise a query optimiser provided in SQL, and therefore there is no need to replicate a query optimiser in each proprietary database to which the present invention is applied,


[0074] b. independence of size—the implementation disclosed has the ability to be scaled,


[0075] c. independence of depth of tree—the implementation disclosed has hierarchy comparability,


[0076] d. performance—if index is put on the type column, then each and every type is indexed.


[0077] 2. Conceptual Design


[0078] The prior art has had difficulty in implementing X.500 as it has not been structured for extensibility, object oriented and hierarchy which are requirements of X.500.


[0079] This is addressed, in one form, by functionally decomposing the ‘property table’ and thus resulting in what is called the Conceptual Design.


[0080] The conceptual design resides in providing at least one of:


[0081] 1. Attribute table, where extensibility is addressed by allowing the definition of a new attribute type in this table by adding a row to the table;


[0082] 2. Object table, which defines the attributes within each object; and/or


[0083] 3. Hierarchy table, which defines the relationship between the objects.


[0084] In another invention, this problem is addressed by providing table structures in accordance with those disclosed in FIGS. 2A and 2B.


[0085] Yet further inventions reside in addressing problems of data tolerance by providing in the present X.500 system for the replacement of the ‘value’ column of the object table with value ‘norm’ and value ‘raw’ columns and/or replacing the RDN column in the hierarchy table with ‘name norm’ and ‘name raw’ columns.


[0086] Further, the difficulty in prior art of accomodating aliases is addressed in the present X.500 system by providing an ‘alias’ column in the hierarchy table. The ‘alias’ column is flagged to indicate that, that entry is an alias.


[0087] Further refinement may be provided by replacing the ‘alias’ column with alias and A-EID columns. The A-EID provides information about where the alias points.


[0088] Still further refinement may be provided by replacing the ‘parent’ column in the hierarchy table with ‘parent’ and ‘path’ columns.


[0089] The ‘path’ addresses the problem of implementing X.500 search, with aliases and subtrees. The ‘path’ has at least two unique properties: a) to determine the absolute position in the hierarchy; and b) it is used to determine if an entry is in a given subtree by its prefix.


[0090] 3. Conceptual Method


[0091] A number of unique methods of interrogating the conceptual design are disclosed in the detailed description following, including:


[0092] a) mapping the X.500 services into a sequence of SQL statements;


[0093] b) the search strategy is to apply the filter over the search area using the path or parent columns, and/or;


[0094] c) in dealing with aliases during navigation—where an alias points is cached In the A EID column;


[0095] d) in dealing with alias during search—find the unique set of base objects which define areas of the tree that need to be searched, and then apply b) above to each area of the tree.


[0096] A further invention is realised by using the attribute table for incoming data to find the AID from the X.500 object ID and outgoing data read from the database, vice versa.


[0097] Furthermore, for any incoming distinguished name, it is navigated to its appropriate EID, then each search is performed as required by X.500.


[0098] Still furthermore, for a search, filter and subtree searches can be provided by a single pass resolution and using the path column. One invention is to utilise a ‘path’ field to simultaneously apply an arbitrary filter over an arbitrary subtree. The complications of aliases is handled by applying the above method to a uniquely resolved subtree.


[0099] Yet another unique method is to store the “path” of each entry as a string. Each path will then be prefixed by the path of its parent entry. This is useful for the filter in the search service.


[0100] 4. Logical Design


[0101] The logical design is based on a service decomposition of the conceptual design, though the realisation that X.500 service components are independent.


[0102] The advantages accruing from this include:


[0103] 1. Reduces the number of indexes per table, as more tables are provided. It has been found that primary indexes are most efficient (speed, size) and secondary indexes may have large overheads (speed, size).


[0104] 2. Enable data in tables to be clustered. Clustering occurs as a result of its primary key (storage structure) and thus data may be organised on disk around its key. E.g. for the ‘search’ table, surnames may be clustered together.


[0105] 3. Management—smaller tables are easier to manage, e.g. faster to update indexes, collect statistics, audit, backup, etc.


[0106] 4. Reduced I/O—speed improvements due to smaller rows, means more rows per page and thus operations perform less I/O's.


[0107] 5. Logical Methods


[0108] A number of unique methods of interrogating the logical design tables are disclosed in the detailed description following.


[0109] In addition, one method resides in caching the attribute table. Thus, (with the exception of initial loading) no SQL statements are issued to the database. In the present X.500 system, conversions are performed in memory. This provides a substantial speed advantage.


[0110] Further, validation is performed in memory which avoids database roll-back. Roll-backs are time and system consuming.


[0111] Still further, for the arbitrary filter, a dynamic SQL equivalent is built. This enables arbitrary complexity in X.500 searches.


[0112] Also for search results, the present system utilises set orientation queries of SQL to avoid ‘row at a time’ processing. Thus search results may be assembled in parallel in memory.


[0113] 6. Physical Design


[0114] New tables and new columns are introduced to overcome column width and key size restrictions and to achieve space optimisations.


[0115] The following text is a disclosure of embodiments of the inventions outlined:


[0116] 1. Principal Design


[0117] With reference to FIG. 2A, the principal design addresses the basic problem of representing the extensible, object oriented and hierarchical nature of X.500 in relational tables. In this section it will be disclosed (with examples) that the principal table design can be represented by a single table as shown in Table 1 below.
7TABLE 1X.500 Property Tableobject nameparent nametypesyntaxvalue


[0118] Throughout this and the following sections all column names and their positions in each table are arbitrary. The intent is to define what they contain and how they are used.


[0119] 1.1 Extensibility


[0120] For a typical relational database application, the nature of data is well known, i.e., tables will consist of a number of columns and each column contains data relating to a particular data type (see Table 1.1a). The table is self descriptive, i.e. the relations between data items is implied by being on the same row (this is the basis of relational theory).
8TABLE 1.1aTypical relational tablenamesurnametitlephoneChrisMASTERSSales Manager03 727-9456AlanaMORGANSales Support03 727-9455. . .. . .. . .. . .


[0121] However, the above approach is not extensible because the number of different data types is limited to the number of columns of the table. If a new data type needs to be added (e.g. mobile phone number) then a new column will have to be added to the table (see Table 1.1b). Any application accessing this table will need to be updated to explicitly query it.
9TABLE 1.1bRelational table with an extra columnnamesurnametitlephonemobileChrisMASTERSSales Manager03 727-9456018 042671AlanaMORGANSales Support03 727-9455. . .. . .. . .. . .. . .


[0122] Other problems also exist in practice. If the new data type is not well used (e.g. less than 1% of the organisation has a mobile phone) then the table will be sparse (e.g. if a given person does not have a mobile then that row/column entry will be NULL). Also, the data types are limited to the types supported by the database (e.g. string, numeric, money, date, etc.).


[0123] The solution is to treat the data types as generic. The present invention adopts the method of representing arbitrary attributes (e.g. XOM [X/OPEN Object Management] API [Application Programming Interface]) as a type, syntax, value combination (see Table 1.1c)
10TABLE 1.1cRepresenting arbitrary attributestypesyntaxvalueNameStringChrisSurnameStringMASTERSTitleStringSales ManagerPhoneNumeric03 727-9456MobileNumeric018 042671


[0124] 1.2 Object Oriented


[0125] X.500 defines objects (e.g. people, organisations, etc.) which may contain an arbitrary number of “attributes”. Since many objects must appear in the table a mechanism is required to distinguish each object. An “object name” column is added to the table for this purpose (see Table 1.2a).
11TABLE 1.2aRepresenting objects with arbitrary valuesobject nametypesyntaxvalueChris MastersNameStringChrisChris MastersSurnameStringMASTERSChris MastersTitleStringSales ManagerChris MastersPhoneNumeric03 727-9456Chris MastersMobileNumeric018 042671Alana MorganNameStringAlanaAlana MorganSurnameStringMORGANAlana MorganTitleStringSales SupportAlana MorganPhoneNumeric03 727-9455


[0126] The above method allows any number of attributes to be assigned (related) to an entry. These attributes could be of arbitrary complexity (e.g. a multi-line postal address could be handled). As the number of columns is fixed new attributes can be added to any object without having to redefine the application. If a new attribute is added then an application that reads the entry will get back an extra row.


[0127] 1.3 Hierarchical


[0128] A method of representing hierarchical systems (e.g. parts explosion) is to use a parent/child combination (see Table 1.3a)
12TABLE 1.3aParts explosion hierarchyparentchildcarenginecarfuel system. . .. . .enginecarburettorenginepistons. . .. . .carburettorfuel valvecarburettorair valve. . .. . .


[0129] X.500 defines its objects to be hierarchical. The relationships between objects follow a tree structure where each object has a parent object and each parent can have zero or more children. This relationship can be represented in a general PROPERTY table by the addition of a “parent name” column, which is used to store the name of the parent object (see Table 1.3b).
13FIG. 1.3b — X.500 Property Tableobject nameparent nametypesyntaxvalueDatacraftrootOrganisationStringDatacraftDatacraftrootAddressPostalP0 Box 353AddressCroydon VICChris MastersDatacraftNameStringChrisChris MastersDatacraftSurnameStringMASTERSChris MastersDatacraftTitleStringSales ManagerChris MastersDatacraftPhoneNumeric03 727-9456Chris MastersDatacraftMobileNumeric018 042671Alana MorganDatacraftNameStringAlanaAlana MorganDatacraftSurnameStringMORGANAlana MorganDatacraftTitleStringSales SupportAlana MorganDatacraftPhoneNumeric03 727-9455


[0130] Note that the root of the tree has no parent. Thus, if both Chris and Alana work for Datacraft and Datacraft is a child of the root then we can say that Chris and Alana are children of Datacraft and that Datacraft is the parent of Chris and Alana.


[0131] 2. Conceptual Design


[0132] In Section 1 it was shown that a single Property Table could represent the extensible, object oriented and hierarchical nature of X.500 (see Table 2a).
14TABLE 2aProperty Tableobject nameparent nametypesyntaxvalue


[0133] With reference to FIG. 2A in this section it will be shown that full X.500 functionality can be represented by using three tables as shown below (see Table 2b and FIG. 2A).
15TABLE 2bFull Conceptual DesignHierarchy TableEIDParentPathAliasA_EIDNameNormNameRawObject TableEIDAIDVIDDistingValueNormValueRawAttribute TableAIDTypeSyntaxObjectId


[0134] The conceptual design addresses major problems with implementing full X.500 functionality in relational tables. As each major design issue is presented, examples are provided to illustrate the solution.


[0135] 2.1 Functional Decomposition


[0136] The Property Table (FIG. 2A) can be decomposed into separate tables that reflect the hierarchical, object oriented and extensible nature of X.500, preferably as follows;


[0137] a Hierarchy Table which defines the structural relationship between objects.


[0138] an Object Table which defines the attribute values within each object.


[0139] an Attribute Table which defines the different attribute types.


[0140] These tables result from a process called functional decomposition.


[0141] To address the problem of correlating the relationships between tables, arbitrary numeric identifiers are introduced. The EID or “entry identifier” correlates each object with its hierarchy information. The AID or “attribute identifier” correlates each value in the object table with its attribute information.


[0142] The design is considered very efficient because the repeating groups in the table (type-syntax and object name-parent name) have been removed. Also, for SQL, the joining columns are simple integers.
16TABLE 2.1Basic Conceptual DesignHierarchy TableEIDParentName10 0Datacraft3010Chris Masters3110Alana MorganObject TableEIDAIDValue1010Datacraft1016PO Box 123 CROYDON30 3Chris30 4MASTERS3012Sales Manager302003 727-945631 3Alana31 4MORGAN3112Sales Support312003 727-9455Attribute TableAIDTypeSyntax 3Namestring 4Surnamestring10Organisationstring12Titlestring16Postal Addressaddress string20Phonetelephone string


[0143] 2.2 X.500 Attributes


[0144] X.500 attributes have a protocol identifier which is transferred when any data is communicated between end systems. These identifiers are internationally defined and are called OBJECT IDENTIFIERS (e.g. 2.5.4.4 means a surname string). Thus an “ObjectId” column can be added to the Attribute table so that conversions between X.500 object identifiers and the internal attribute identifiers can be performed.


[0145] In addition, X.500 allows an attribute to have an arbitrary number of values (e.g. the mobile phone could be treated just as a second telephone number). Thus a “value identifier” or VID is introduced to identify values within an attribute in the Object Table.
17TABLE 2.2Conceptual Design with X.500 attributesHierarchy TableEIDParentName10 0Datacraft3010Chris Masters3110Alana MorganObject TableEIDAIDVIDValue10101Datacraft10161P0 Box 123CROYDON30 31Chris30 41MASTERS30121Sales Manager3020103 727-945630202018 04267131 31Alana31 41MORGAN31121Sales Support3120103 727-9455Attribute TableAIDTypeSyntaxObjectId 3Namestring2.5.4.3 4Surnamestring2.5.4.410Organisationstring2.5.4.1012Titlestring2.5.4.1216Postal Addressaddress string2.5.4.1620Phonetelephone string2.5.4.20


[0146] 2.3 X.500 Names


[0147] In X.500, each entry uses one or more of its attribute values (Distinguished Values) for naming the entry. A “Disting” column is added to the Object Table to flag the distinguished values.


[0148] The Distinguished Values combine to form a Relative Distinguished Name (RDN) which names the entry. The “Name” column in the Hierarchy table stores the RDN. This is an optimisation that negates the need for the RDN to be constructed from the distinguished values in the Object table.


[0149] An entry is uniquely named by a Distinguished Name (DN) which consists of all the RDN's of the of its ancestors down from the root and the RDN of the object itself. An on is to add a “path” column to the Hierarchy table which defines the absolute position of the entry in the tree as a list of EID's. The path has three important properties;


[0150] 1) enables fast construction of DN's, (the EID list defines all the RDN's)


[0151] 2) enables fast subtree searches (see Conceptual Methods),


[0152] 3) it is independent of its DN (any of the RDN's in the DN can be renamed without affecting the path).
18TABLE 2.3Conceptual Design with X.500 attributes and namesHierarchy TableEIDParentPathName10 010.Datacraft301010.30.Chris, MASTERS311010.31.Alana, MORGANObject TableEIDAIDVIDDistingValue101011Datacraft101610PO Box 123CROYDON30 311Chris30 411MASTERS301210Sales Manager30201003 727-9456302020018 04267131 311Alana31 411MORGAN311210Sales Support31201003 727-9455Attribute TableAIDTypeSyntaxObjectId 3Namestring2.5.4.3 4Surnamestring2.5.4.410Organisationstring2.5.4.1012Titlestring2.5.4.1216Postal Addressaddress string2.5.4.1620Phonetelephone string2.5.4.20


[0153] 2.4 X.500 Aliases


[0154] X.500 also has the concept of ‘aliases’. An alias object effectively points to another entry and thus provides an alternate name for that entry. Thus an “alias” flag is added to the Hierarchy Table. When an alias is discovered during Navigation (i.e. the supplied DN contains an alias), then the alias value must be read from the Object Table. This alias DN must be resolved to where the alias points before Navigation of the original entry can continue.


[0155] An innovation is to use an “aliased EID” column or A13EID to store “where” the alias “points to”. This removes the need to repeatedly navigate through an alias.
19TABLE 2.4Conceptual Design with X.500 attributes, names and aliasesHierarchy TableEIDParentPathAliasA_EIDName10 010.00Datacraft301010.30.00Chris,MASTERS311010.31.00Alana,MORGAN351010.35.131SupportEngineerObject TableEIDAIDVIDDistingValue101011Datacraft101610PO Box 123CROYDON30 311Chris30 411MASTERS301210Sales Manager30201003 727-9456302020018 04267131 311Alana31 411MORGAN311210Sales Support31201003 727-945535 411Support Engineer35 710Datacraft/Alana,MorganAttribute TableAIDTypeSyntaxObjectId 1Alias NameDistinguished2.5.4.1Name 3Namestring2.5.4.3 4Surnamestring2.5.4.410Organisationstring2.5.4.1012Titlestring2.5.4.1216Postal Addressaddress string2.5.4.1620Phonetelephone string2.5.4.20


[0156] 2.5 X.500 Data Tolerance


[0157] Every X.500 attribute has a (internationally defined) syntax. X.500 attribute syntaxes define how each attribute should be treated. In all string syntaxes (e.g. Printable, Numeric etc.) superfluous spaces should be ignored. In some syntaxes the case is not important (e.g. Case Ignore String and Case Ignore List) and so the names “Chris Masters”, “Chris MASTERS” and “ChRis MaSTeRS” are considered identical.


[0158] In order to do comparisons (e.g. search for a particular value), the syntax rules can be applied to create a normalised form (e.g. “CHRIS MASTERS”). If this normalised form is stored in the database, then any variations in input form are effectively removed, and exact matching can be used (which is necessary when using SQL).


[0159] Both the normalised data and “raw” data are stored in the database. The “raw” data is necessary so that users can retrieve the data in exactly the same format as it was orginally input. As per the X.500 and LDAP standard, data received from a user, raw data records with ASN.1 (Abstract Syntax Notation No.1). Thus the “Name” column in the Hierarchy Table becomes the “NameRaw” and a “NameNorm” column is added. Similarly, the “Value” column in the Object Table becomes the “ValueRaw” and a “ValueNorm” column is added.
20TABLE 2.5Full Conceptual DesignHierarchy TableEIDParentPathAliasA_HIDNameNormNameRaw10010.00DATACRAFTDatacraft301010.30.00CHRIS, MASTERSChris, MASTERS311010.31.00ALANA, MORGANAlana, MORGAN351010.35.131SUPPORT ENGINEERSupport EngineerObject TableEIDAIDVIDDistingValueNormValueRaw101011DATACRAFTDatacraft101610PO BOX 123 CROYDONPO Box 123 CROYDON30311CHRISChris30411MASTERSMASTERS301210SALES MANAGERSales Manager30201003727945603 727-9456302020018321435018 04267131311ALANAAlana31411MORGANMORGAN311210SALES SUPPORTSales Support31201003727945503 727-945535411SUPPORT ENGINEERSupport Engineer35710DATACRAFT/ALANA MORGANDatacraft/Alana,MorganAttribute TableAIDTypeSyntaxObjectId1Alias NameDistinguished Name2.5.4.13NameCase Ignore String2.5.4.34SurnameCase Ignore String2.5.4.410OrganisationCase Ignore String2.5.4.1012TitleCase Ignore String2.5.4.1216Postal AddressCase Ignore List2.5.4.1620PhoneTelephone String2.5.4.20


[0160] 3. Conceptual Methods


[0161] This section introduces the basic X.500 services and shows how the conceptual table design, shown in Table 3a or FIG. 2A, is sufficient to implement X.500 services and their complexities.
21TABLE 3aConceptual Table DesignHierarchy TableEIDParentPathAliasA_EIDNameNormNameRawObject TableEIDAIDVIDDistingValueNormValueRawAttribute TableAIDTypeSyntaxObjectID


[0162] The example hierarchy shown in Table 3b, as seen in FIG. 4, will be used to illustrate these services. Each name in the diagram represents an object entry in the database. The triangle represents an alias entry, and the dotted line represents the connection between the alias entry and the object that it points to. The numbers next to each entry are the entry EID's.


[0163] In the example, entry “1” has an RDN with a value of “Datacraft”, entry “11” has an RDN with a value of “Sales”, entry “20” has an RDN with a value of “Network Products” and entry “31” has an RDN with a value of “Alana Morgan”. The DN of entry “31” is made up of a sequence of RDN's, namely, ““Datacraft”, “Sales”, “Network Products”, “Alana Morgan”.


[0164] The alias entry “Datacraft/Networks” points to the entry “Datacraft”, “Sales”, “Network Products”. When navigating to this entry the navigate process would find the alias entry, then find the DN of the object pointed to by the alias and then navigate from the root to the object entry returning an EID of “20” and a path of “1.11.20.”.


[0165] Listed below are sample tables which show how data is stored. The Hierarchy table (Table 3c) shows how the entries for the example hierarchy are stored. The Attribute table (Table 3e) shows attributes which are contained in the entry “Datacraft/Sales/Network Products/Chris Masters”. The Object table (Table 3d) shows how the values of these attributes are stored.
22TABLE 3cSample Hierarchy TableEIDParentPathAliasA_EIDNameNormNameRaw101.00DATACRAFT[Datacraft]1011.10.120NETWORKS[Networks]1111.11.00SALES[Sales]1211.12.00MARKETING[Marketing]20111.11.20.00NETWORK PRODUCTS[Network Products]30201.11.20.30.00CHRIS MASTERS[Chris Masters]31201.11.20.31.00ALANA MORGAN[Alana Morgan]32201.11.20.32.00PETER EVANS[Peter Evans]


[0166]

23





TABLE 3d










Sample Object Table












EID
AID
VID
Disting
ValueNorm
ValueRaw















30
3
0
1
CHRIS
[Chris]


30
4
0
1
MASTERS
[Masters]


30
12
0
0
SALES MANAGER
[Sales Manager]


30
20
0
0
03 727 9456
[(03) 727-9456]


30
20
1
0
018 042 671
[(018)-042 671]










[0167]

24





TABLE 3e










Sample Attribute Table












AID
Type
Syntax
ObjectID







 3
commonName
caseIgnoreString
2.5.4.3



 4
surname
caseIgnoreString
2.5.4.4



12
title
caseIgnoreString
2.5.4.12



20
telephoneNumber
telephoneNumber
2.5.4.20











[0168] Distinguished Names


[0169] For the entry shown in the sample Object Table (Table 3d) two of the attributes, commonName and surname, are distinguished values (or naming values) which combine to form the RDN for the entry. This RDN is stored in the Hierarchy Table.


[0170] Multi-valued Attributes


[0171] In X.500, it is permissible for an attribute to be multi-valued. The VID column is distinguish between values for an attribute. In the sample Object Table, the telephoneNumber attribute is multi-valued.


[0172] 3.1 Mapping Services to SQL


[0173] 3.1.1 Attribute Types and Values


[0174] Any data supplied by an X.500 service is supplied as a list of ObjectId's and their associated values. These must be converted into AID's (using the Attribute table) and normalised values (using the Object table) for use by the X.500 application. The database returns data as AID's and Raw Values, which must then be converted into ObjectId's and their associated values in the X.500 result.


[0175] 3.1.2 Navigation


[0176] Each X.500 service supplies a Distinguished Name which is converted into an EID for use by the X.500 application. When the application processes a service it returns one or more EID's. These EID's can then be translated back into Distinguished Names in the X.500 result.


[0177] All X.500 services rely on navigating the directory tree. To navigate to a particular entry, the following procedure is performed:


[0178] Given the DN for the entry, locate the entry in the hierarchy table which has an RDN equal to the first RDN in the DN.


[0179] Store the EID.


[0180] Recursively, locate the entry which has an RDN equal to the next RDN in the DN and a parent equal to the stored EID.


[0181] Example


[0182] Navigate to the entry “Datacraft/Sales/Network Products/Peter Evans”. This will result in a number of select statements, with each returned EID being used as the value of the PARENT in the next statement.


[0183] select EID from HIERARCHY


[0184] where PARENT=0 and RDN=“DATACRAFT”


[0185] select EID from HIERARCHY


[0186] where PARENT=1 and RDN=“SALES”


[0187] select EID from HIERARCHY


[0188] where PARENT=11 and RDN=“NETWORK PRODUCTS”


[0189] select EID from HIERARCHY


[0190] where PARENT=20 and RDN=“PETER EVANS”


[0191] 3.1.3 Read


[0192] Selected attributes to be read can be supplied. Only the values of these attributes (if they are present in the entry) will be returned.


[0193] ‘Types only’ can be selected as a read option, in which case no values will be returned. All types present in the entry, or those selected, will be returned.


[0194] Navigate to the entry to be read. Store the EID. In the Object Table, read the values of all rows which match the stored EID.


[0195] Example


[0196] Read the entry “Datacraft/HQ/Network Products” and return all types and values.


[0197] Navigate to the entry (as in 3.1.2) and then;


[0198] select AID, VALUERAW from OBJECT


[0199] where EID=20


[0200] 3.1.4 Compare


[0201] Compare returns a ‘matched’ or ‘not matched’ result. A raw value is input but the compare is performed using the normalised value.


[0202] Navigate to the required entry. Store the EID. In the Object Table, test for a matching value in all rows which match the stored EID and the specified AID.


[0203] Example


[0204] Compare the telephone Number “03 727 9256” with the entry “Datacraft/Sales/Network Products/Chris Masters”.


[0205] Navigate to the entry and then;


[0206] select VALUERAW from OBJECT


[0207] where EID=30


[0208] and AID=20


[0209] and VALUENORM=“03 727 9456”


[0210] If a value is selected then return “matched” else return “not matched”.


[0211] 3.1.5 List


[0212] Navigate to the required entry. Store the EID. In the Hierarchy Table, return the RDN's for all rows with a parent matching the stored EID.


[0213] Example


[0214] List from the entry “Datacraft/Sales”.


[0215] Navigate to the entry and then;


[0216] select NAMERAW from HIERARCHY


[0217] where PARENT=11


[0218] 3.1.6 Add Entry


[0219] Navigate to the required parent entry. Store the EID of the parent. Add a new EID to the Hierarchy table and add rows to the Object table for each value in the new entry.


[0220] Example


[0221] Add a new entry under the entry “Datacraft/Sales/Network Products”.


[0222] Navigate to the entry and then;


[0223] insert into OBJECT (EID, AID, VID, DISTING, VALUENORM, VALUERAW) values (33, 3, 1, 1, EDWIN MAHER, Edwin Maher) and


[0224] insert into HIERARCHY (EID, PARENT, PATH, ALIAS, A-EID, NAMENORM, NAMERAW) values (33, 20, 1.11.20.33., 0, 0, EDWIN MAHER, Edwin Maher)


[0225] 3.1.7 Remove Entry


[0226] Navigate to the required entry. Check that the entry is a leaf on the tree, (i.e. check that it has no subordinate entries on the tree). Store the EID. Remove the entry from the Hierarchy table. In the Object Table, remove all rows which match the stored EID.


[0227] Example


[0228] Remove an entry (with EID=33) under the entry “Datacraft/Sales/Network Products”.


[0229] Navigate to the entry and then;


[0230] delete from OBJECT


[0231] where EID=33 and


[0232] delete from HIERARCHY


[0233] where EID=33


[0234] 3.1.8 Modify Entry


[0235] Navigate to the required entry. Store the EID. In the Object Table, Add, Remove or Modify rows matching the stored EID.


[0236] Example


[0237] Modify the entry “Datacraft/Sales/Network Products/Alana Morgan”.


[0238] Add value−title=“Branch Manager”.


[0239] Navigate to the entry and then;


[0240] select EID, AID, VID, VALUENORM from OBJECT


[0241] where EID=31


[0242] Test the returned rows for an attribute of title. If none exist, the attribute can be added, otherwise the attribute must be checked to see if it can be multi-valued and whether it already exists.


[0243] Insert into OBJECT (EID, AID, VID, DISTING, VALUENORM, VALUERAW) values (31, 12, 1, 0, BRANCH MANAGER, Branch Manager).


[0244] 3.1.9 Modify RDN


[0245] Navigate to the required entry. Check that the new name (RDN) does not exist in the current level of the subtree (i.e. that the new DN is distinct). Store the EID. Modify the entry in the Hierarchy and Object tables.


[0246] Example


[0247] Modify the RDN of the entry “Datacraft/Sales/Network Products/Chris Masters” to “Christine Masters”.


[0248] Navigate to the entry and then;


[0249] select EID from HIERARCHY


[0250] where PARENT=20


[0251] and VALUENORM=“CHRISTINE MASTERS”


[0252] If no entries are returned then the new RDN may be inserted. First set the old RDN to be a non-distinguished value.


[0253] update OBJECT


[0254] set DISTING=0


[0255] where EID=30 and VALUENORM=“CHRIS”and


[0256] update HIERARCHY


[0257] set NAMENORM=“CHRISTINE MASTERS” and


[0258] set NAMERAW=“Christine Masters”


[0259] where EID=30 and


[0260] insert into OBJECT (EID, AID, VID, DISTING, VALUENORM, VALUERAW) values (30, 3, 1, 1, “CHRISTINE”, “Christine”)


[0261] 3.2 Search Strategy


[0262] The most powerful and useful X.500 service is the search service. The search service allows an arbitrary complex filter to be applied over a portion of the Directory Information Tree (the search area).


[0263] A filter is a combination of one or more filter items connected by the operators AND, OR and NOT. For example; surname=“MASTERS” AND title=“SALES MANAGER”


[0264] The Search area is the part of the tree that is covered by the scope of the search (base-object-only, one-level or whole-subtree).


[0265] One technique for resolving searches is to apply the filter and then to see if any matching entries are in the search area. In this case a filter is applied to the entire tree and EID's for all rows matching the filter are returned. Then, for each EID found, step search up through the hierarchy to see if the entry is a subordinate of the base object (i.e. the entry has a parent/grandparent/ . . . that is the base object). If the number of matches is large and the subtree small this is very inefficient. This technique doesn't cope with aliases as an alias is not a parent of the object that it points to and many aliases may point to a single object.


[0266] A second strategy is to obtain a list of all EID's in the search area and then apply the filter to these EID's. If an alias is resolved that points outside of the original search area then the subtree pointed to by the alias is expanded and the EID's in that subtree are added to the list. The filter is then applied to the set of expanded EID's. This is very poor if the search area is large.


[0267] An innovation is to simultaneously apply the filter over the search area (instead of sequentially as in the two methods described above). This is called single pass resolution. This method is considered to provide considerable performance improvement over the above methods because the rows that are retrieved are those that satisfy both the filter and scope requirements of the search.


[0268] When performing a one level search the filter is applied to all entries that have a parent equal to the EID of the base object (for example; search where parent=20 will apply the filter to entries 30, 31 and 32).


[0269] When performing a subtree search the path is used to expand the search area. The “path” of each entry is a string of numbers (e.g. “1.10.50.222.” which indicates that entry 222 has a parent of 50, a grandparent of 10 and a great grandparent of 1). The path has the unique property that the path of an entry is a prefix of the path of all entries that are subordinate to the entry. That is the path of an entry forms the prefix of the paths of all entries in the subtree below the entry. Therefore when performing a subtree search we obtain the base object of the subtree and then apply the filter to all entries that have a path which is prefixed by the path of the base object (for example; to search for all entries under “Sales” we perform a search where PATH LIKE 1.11.%).


[0270] Base Object Search


[0271] Navigate to the base object. Store the EID. In the Object Table, read nominated values from rows which match the stored EID where a filter criteria is satisfied, eg, telephone prefix=“727”.


[0272] Example


[0273] Search from the base object “Datacraft/Sales/Network Products” for an entry with surname=“MORGAN”, using a “base-object-only” search. Navigate to the base object and then;


[0274] select AID, VALUERAW from OBJECT


[0275] where EID=20 and AID=4


[0276] and NAMENORM=“MORGAN”


[0277] One Level Search


[0278] Navigate to the base object. Store the EID. Return the list of EID's which have a parent EID matching the stored EID (in Hierarchy table) and have values which satisfy the filter criteria (OBJECT table). In the Object Table, read nominated values for the returned EID's.


[0279] Example


[0280] Search from the base object “Datacraft/Sales/Network Products” for an entry with surname=“MORGAN”, using a “one-level-only” search. Navigate to the base object and then;


[0281] select H.EID from HIERARCHY H, OBJECT O


[0282] where PARENT=20 and AID=4 and NAMENORM=“MORGAN”


[0283] and H.EID=O.EID


[0284] then place the EID's returned into an EIDLIST and


[0285] select AID, VALUERAW from OBJECT


[0286] where EID in [EIDLIST]


[0287] Subtree Search


[0288] Navigate to the base object. Store the EID. Return the list of all EID's with a path like that of the base object (Hierarchy table) and have values which satisfy the filter criteria (OBJECT table). In the Object Table, read nominated values for the returned EID's.


[0289] Example


[0290] Search from the base object “Datacraft/Sales/Network Products” for an entry with surname=“MORGAN”, using a “whole-subtree” search. Navigate to the base object and then;


[0291] select H.EID from HIERARCHY H, OBJECT O


[0292] where PATH like “1.11.20.%” and AID=4


[0293] and NAMENORM=“MORGAN”


[0294] and H.EID=O.EID


[0295] then place the EID's returned into an EIDLIST and


[0296] select AID, VALUERAW from OBJECT


[0297] where EID in [EIDLIST]


[0298] 3.3 Aliases and Navigate


[0299] Aliases are resolved during navigation if the “don't-dereference-alias” flag is not set and the service is not an update service (add, delete, modify, modifyRDN).


[0300] When an alias is discovered during navigation the alias must be resolved. That is, the object that the alias points to must be obtained. First we check the A_EID column of the Hierarchy table. If the A_EID is 0 then the object that the alias points to must be obtained from the Object table and this object must then be navigated to and the resultant EID stored in the A_EID column. If this is done successfully then the remainder of the path can be navigated. By storing the EID of the aliased object in the A_EID column of the Hierarchy table it is possible to avoid navigating to aliased objects. This can save time, especially if the aliased object is at a low level of the hierarchy.


[0301] 3.4 Aliases and Search


[0302] Aliases are dereferenced during a search if the “search-aliases” flag in the search argument is set. The performance of the search service while dereferencing aliases becomes a two step process. Firstly, define the search area and then apply the filter to the entries within the search area. Aliases dereferenced as part of the search service can expand the search area to which the filter is applied. They also restrict the search area in that any dereferenced aliases are excluded from the search area.


[0303] Aliases and OneLevel Search


[0304] If aliases are being dereferenced as part of a one level search and an alias entry is found then the alias must be resolved (using the Object table or the A_EID). The aliased object is then added to the search area to which the filter is applied. In a oneLevel search where aliases are found the search area will consist of non-alias entries directly subordinate to the base object and all dereferenced aliases.


[0305] Aliases and Subtree Search


[0306] If aliases are being dereferenced as part of a whole subtree search and an alias entry is found then the alias must be resolved (using the Object table or the A_EID) and this EID must then be treated as another base object, unless it is part of an already processed sub tree.


[0307] When dereferencing aliases during a search the “Path” column can be used to find alias entries within a subtree join. If an alias entry is found that points outside of the current subtree then the subtree pointed to by the alias can also be searched for aliases. One property of the hierarchical tree structure is that each subtree is uniquely represented by a unique base object (i.e. subtrees do not overlap). When performing a subtree search we build up a list of base objects which define unique subtrees. If no aliases are found then the list will contain only one base object. If an alias is found that points outside of the subtree being processed then we add the aliased object to the list of base objects (unless one or more of the base objects are subordinate to the aliased object in which case the subordinate base object(s) are replaced by the aliased object). The search area will therefore consist of non-alias entries that have a path prefixed by the path of one of the base objects.


[0308] 4. Logical Design


[0309] Whilst the Conceptual Design (see Table 4a) is sufficient to implement the X.500 functionality, further performance improvements can be made.
25TABLE 4aConceptual DesignHierarchy TableEIDParentPathAliasA_EIDNameNormNameRawObject TableEIDAIDVIDDistingValueNormValueRawAttribute TableAIDTypeSyntaxObjectId


[0310] Performance improvements in conventional relational design can be achieved because assumptions can be made about the data—the data is essentially fixed at the time an application is designed. In X.500, none of the data types are known. However performance improvements can still be made because assumptions can be made about the services—these are known at the time the X.500 application is designed.


[0311] With reference to FIG. 2B, one innovative approach is to recognise that each table can be organised around the major service relationships (instead of around the major data relationships in conventional relational design). It shall be shown that the above tables can be decomposed into a number of smaller and more efficient tables as shown below.
26TABLE 4bLogical DesignDITEIDPARENTALIASRDNNAMEEIDRAWTREEEIDPATHALIASEIDA_EIDSEARCHEIDAIDVIDDISTINGNORMENTRYEIDAIDVIDRAWATTRAIDSYNTAXDESCOBJECTID


[0312] 4.1 Service Decomposition


[0313] The practical reality for most RDBMS's is that big tables with many columns do not perform as well as smaller tables with fewer columns. The major reasons are to do with indexing options, I/O performance and table management (see Sections 4.5 and 4.6). This is why prior art relational design techniques aim to focus primary information into separate tables and derive secondary information via table joins (i.e. normalisation and fragmentation techniques).


[0314] One innovation in achieving X.500 performance is to decompose the tables around primary service relationships and derive secondary services via joins. This process is called service decomposition. The following considerations are made:


[0315] (1) Columns that have strong relationships are preferred to be kept together (to avoid unnecessary joins);


[0316] (2) If the number of significant rows in a given column is independent of the other related columns, then that given column is a candidate for a separate table.


[0317] (3) If a column is only used for locating information (input) or only used for returning results (output) then it is a candidate for its own table.


[0318] (4) If a column is used as a key for more than one service then it is preferred to be a primary key and therefore in its own table (each table can have only one primary key).


[0319] (5) Keys are preferred to be unique or at least strong (non-repetitious).


[0320] A first level analysis of column usage is shown in Table 4.1.
27TABLE 4.1Basic column usageX.500ValueValueNameNameServiceTableEIDAIDVIDNormRawParentAliasNormRawPathNavigateHRSRSRReadOS(S)/RRRRRCompareOSSSListHSRRSearch-OS/RS(S)(S)(S)filterSearch-S/R(S)/RRRRRresultAddH/OSRemoveH/OSModifyOSSSSModifyH/OSSSSRDNKey to symbols in the above table: H - Hierarchy table O - Object table S - Supplied value (used in the SQL for Searching the table) R - Returned value (value retrieved from the tables) ( ) - item may or may not be present depending on the options of the service.


[0321] From the above information and further analysis, the Conceptual Design tables can be decomposed into a number of smaller tables as described in the following sections.


[0322] 4.2 Hierarchy Table Decomposition


[0323] The Hierarchy table contains the following columns:
28TABLE 4.2aHierarchy TableEIDParentPathAliasA_EIDNameNormNameRaw


[0324] The Hierarchy Table contains information about objects and their parents, their names, their absolute positions in the hierarchy and if they are aliases. This table can therefore be split into four tables: DIT, NAME, TREE and ALIAS.


[0325] The parent information is used for finding a given child or acting on entries that have a given parent. Finding a given child (e.g. Parent=0, NameNorm=“DATACRAFT”) is the basis for Navigation and update checking (checking for the existence of an object before an Add or ModifyRdn). Acting on entries that have a given parent is used during List or OneLevel Search. Thus the DIT (Directory Information Tree) table has information required for Navigation, but allows its PARENT column to be used by other services.
29TABLE 4.2bDIT TableEIDPARENTALIASRDN


[0326] An object is differentiated from its siblings via its Relative Distinguished Name (RDN). RDN's are returned for a List (in conjunction with a given Parent) or as part of a full Distinguished Name (Read, Search). Thus the NAME table has information required for returning names (the raw RDN).
30TABLE 4.2cNAME TableEIDRAW


[0327] An object's absolute position in the hierarchy is necessary for building DN's (from which the raw RDN's are retrieved) and for expanding subtrees during Search. Thus the TREE table has information about an entry's Path (the sequence of EID's down from the root).
31TABLE 4.2dTREE TableEIDPATH


[0328] Alias information is cached so that every time an alias is encountered during Navigate it does not have to be repeatedly resolved. Thus the ALIAS table only contains entries that are aliases. It is also used during OneLevel Search (in conjunction with the DIT Parent column) and Subtree Search (in conjunction with the Path column) to determine if there are any aliases in the search area.
32TABLE 4.2eALIAS TableEIDA_EID


[0329] 4.3 Object Table Decomposition


[0330] The Object table contains the following columns:
33TABLE 4.3aObject TableEIDAIDVIDDistingValueNormValueRaw


[0331] The Object Table essentially contains information for finding a particular value (e.g. AID=surname, ValueNorm=“HARVEY”) and for retrieving values (e.g. AID=surname, ValueRaw=“Harvey”). This table can therefore be split into two tables: SEARCH and ENTRY.


[0332] The Search Table is used to resolve filters in the Search service. It is also used to find values during Compare, Modify and ModifyRDN. The Search table contains one row for each attribute value of each entry. Only the normalised values are stored in this table.
34TABLE 4.3bSEARCH TableEIDAIDVIDDISTINGNORM


[0333] The Entry table is used to return values in Reads and Searches. The Entry table contains one row for each attribute value for each entry. The RAW value is the value exactly as initially supplied when the entry was added or modified.
35TABLE 4.3cENTRY TableEIDAIDVIDRAW


[0334] 4.4 Attribute Table


[0335] The Attribute table is essentially the same as the Conceptual Design. In practice the “type” field is only descriptive, since any incoming/outgoing X.500 Object Identifier gets converted to/from the internal attribute identifier, AID. Thus this column has been renamed DESC to signify that it is a description field.
36TABLE 4.4ATTR TableAIDSYXDESCObjectId


[0336] 4.5 Index Selection


[0337] Performance when using SQL is achieved because the RDBMS is able to satisfy the query using a relevant index. This means that every query that has a condition (the “where” clause in SQL) is preferred to have an associated index (otherwise the RDBMS has to resort to a table level scan). However in practical RDMS's:


[0338] The number of indexes is restricted;


[0339] There may be a high overhead to maintain secondary indexes;


[0340] Composite indexes may be required to satisfy any one query. Thus, if performing a query across columns (e.g., type=surname and value=“SMITH”) then separate indexes on type and value may not result in a fully indexed access. A composite index on both type and value may be required.


[0341] One innovation of the table decomposition in the previous sections is to maximise the use of primary indexes across tables. This reduces the number of secondary indexes (i.e. they become primary indexes on their own table). Following is a list of the indexes for each of the six tables used in the logical design.
37TABLE 4.5Table indexes for the Logical DesignTablePrimary KeySecondary IndexDITPARENT, RDNEIDNAMEEIDTREEPATHEIDSEARCHAID, NORMEID, AID, VIDENTRYEID, AID, VIDATTR(cached)


[0342] The table design means that many queries can be handled without joins, giving substantial performance improvement.


[0343] The joins that are considered necessary are listed below:


[0344] List—for returning the RAW-RDNs under a given object (DIT joined with NAME).


[0345] Search/Subtree—for finding EIDs that match a filter over a whole subtree (where the base object is not the root) (TREE joined with SEARCH).


[0346] Search/OneLevel—for finding EIDs that match a filter one-level under the base object (DIT joined with SEARCH).


[0347] Search/Aliases/Subtree—for finding all the aliases in a subtree (TREE joined with ALIAS).


[0348] Search/Aliases/OneLevel—for finding all the aliases under a given object (DIT joined with ALIAS).


[0349] Note that the above joins are first level joins (i.e. between only two tables). It is preferable not to use higher order joins.


[0350] 4.6 Input/Output Performance


[0351] An innovation of decomposing tables around services, which increases the number of tables, is that the new tables are much smaller than the unfragmented tables. This can significantly reduce the amount of I/O for the following reasons:


[0352] Row Size


[0353] By reducing the number of columns in any row, the row width will be shortened. This means that more rows will fit onto a page (where it is assumed that one disk I/O returns one “page” of information). In combination with clustering below, whenever a set of rows need to be retrieved, only one (or a few) page(s) may actually have to be read off the disk (e.g. when reading the attributes of an object, if the ENTRY table is keyed on EID, AID, VID then all the rows relating to that object will be together and will probably be on the same page).


[0354] Clustering


[0355] Each of the fragmented tables is preferred to have their own (independent) primary key which enables them to cluster data according to how it is used. The primary key may dictate the “storage structure”. Thus in the SEARCH table, if the primary key is on AID, NORM (i.e. type, value) then all the data of the same type (e.g. surname) and similar values (e.g. Harvey, Harrison) will be clustered in the same area of the disk. This means that during a Search (e.g. surnames beginning with “HAR”) similar data will collected together on the one (or just a few) disk page(s). If the rows are small then the number of disk pages that have to be accessed is significantly reduced.


[0356] Caching


[0357] Most commercial RDBMS's have the ability to cache pages frequently accessed. Since tables are effectively input (e.g. Navigating using the DIT table), or output (e.g. retrieving information from the ENTRY table) then similar requests (e.g. Searches over the same portion of the Tree) will tend to result in frequently used pages being cached, meaning frequently invoked queries will gain significant benefits. Also the caching is more efficient since pages are “information intensive” as a result of small row size and clustering.


[0358] Management


[0359] Smaller tables are generally easier to manage: e.g. viewing, creating indexes, collecting statistics, auditing, backups, etc.


[0360] Logical Methods


[0361] This section describes methods of interrogating the Logical Design tables, with reference to FIG. 2B.


[0362] Throughout this section, each X.500 method is defined and illustrated with an example. Referring again to FIG. 4, which will be referred to in the following discussion as Table 5a, it can be seen that Table 5a displays a small hierarchy tree which includes an alias reference. The corresponding Table contents are shown in Table 5b.
38TABLE 5bExample TablesEIDPARENTALIASRDNDIT 1 00DATACRAFT10 11NETWORKS11 10SALES12 10MARKETING20110NETWORK PRODUCTS30200CHRIS MASTERS31200ALANA MORGAN32200PETER EVANSEIDRAWNAME 1[Datacraft]10[Networks]11[Sales]12[Marketing]20[Network Products]30[Chris Masters]31[Alana Morgan]32[Peter Evans]EIDPATHTREE 11.101.10.111.11.121.12.201.11.20.301.11.20.30.311.11.20.31.321.11.20.32.EIDA-EIDALIAS1020EIDSYXDESCOBJECTIDATTRIBUTE0objectIdentifierSyntaxobjectClass2.5.4.01distinguishedNameSyntaxaliasedObjectName2.5.4.13caseIgnoreStringSyntaxcommonName2.5.4.34caseIgnoreStringSyntaxsurname2.5.4.47caseIgnoreStringSyntaxlocalityName2.5.4.78caseIgnoreStringSyntaxstateOrProvinceName2.5.4.89caseIgnoreStringSyntaxstreetAddress2.5.4.910caseIgnore StringSyntaxorganizationName2.5.4.1011caseIgnoreStringSyntaxorganizationalUnitName2.5.4.1112caseIgnoreStringSyntaxtitle2.5.4.1213caseIgnoreStringSyntaxdescription2.5.4.1316PostalAddresspostalAddress2.5.4.1617caseIgnoreStringSyntaxpostalCode2.5.4.1718caseIgnoreStringSyntaxpostOfficeBox2.5.4.1820telephoneNumberSyntaxtelephoneNumber2.5.4.20EIDAIDVIDDISTINGNORMSEARCH 1 0002.5.6.4 11001DATACRALFT 11600266-268 MAROONDAH HIGHWAY 11700313810 0002.5.6.110 101DATACRAFT/SALES/NETWORKPRODUCTS11 0002.5.6.5111101SALES111300SALES DEPARTMENT12 0002.5.6.5121101MARKETING121300MARKETING DEPARTMENT20 0002.5.6.5201101NETWORK PRODUCTS201300NETWORK PRODUCTS SECTION30 0002.5.6.730 301CHRIS30 401MASTERS301200SALES MANAGER30200003 727 9456302010018 042 67131 0002.5.6.731 301ALANA31 401MORGAN311200SALES SUPPORT31200003 727 945532 0002.5.6.732 301PETER32 401EVANS321200SALESPERSON32200003 727 9454EIDAIDVIDRAWENTRY 1100[Datacraft] 1160[266-268 Maroondah Highway]10 10[Datacraft/Sales/Network Products]11 00[2.5.6.5]11110[Sales]11130[Sales Department]12 00[2.5.6.5]12110[Marketing]12130[Marketing Department]20 00[2.5.6.5]20110[Network Products]20130[Network Products Section]30 00[2.5.6.7]30 30[Chris]30 40[Masters]30120[Sales Manager]30200[(03) 727-9456]30201[018-042 671]31 00[2.5.6.7]31 30[Alana]31 40[Morgan]31120[Sales Support]31200[(03) 727-9455]32 00[2.5.6.7]32 30[Peter]32 40[Evans]32120[Salesperson]32200[(03) 727-9454]NOTE: [. . .] indicates a binary encoding of the exact data entry value.


[0363] 5.1 Common Services


[0364] Tree Navigation


[0365] All X.500 services rely on navigating the directory tree, illustrated in FIG. 3. The purpose of tree navigation is to retrieve the EID of the entry corresponding to the supplied Distinguished Name. Navigation begins from the root of the tree and continues down the tree until all the RDN's in a DN have been resolved (verified). This process is known as a “Tree Walk”.


[0366] The DIT Table is the primary table used for tree navigation. Referring to the example hierarchy tree, illustrated as table 5a in FIG. 3, resolution of the DN “Datacraft/Sales/Network Products/Peter Evans” involves the following processes:


[0367] Scan the DIT table for a row containing PARENT=0 and RDN=“DATACRAFT”. The EID for this row is 1.


[0368] Scan the DIT table for a row containing PARENT=1 and RDN=“SALES”. The EID for this row is 11.


[0369] Scan the DIT table for a row containing PARENT=11 and RDN=“NETWORK PRODUCTS”. The EID for this row is 20.


[0370] Scan the DIT table for a row containing PARENT=20 and RDN=“PETER EVANS”. The EID for this row is 32.


[0371] The DN has now been resolved and any values relating to the object can be obtained from the Entry Table using the key EID=32.


[0372] Aliases


[0373] Sometimes a DN can contain an alias, which is effectively another DN. Aliases complicate the tree walk process because the tree walk cannot continue until the alias is resolved. This requires a separate tree walk for the alias.


[0374] As an example, consider the DN “Datacraft/Networks/Peter Evans”. The first two steps in resolving this DN would be:


[0375] Scan the DIT table for a row containing PARENT=0 and RDN=“DATACRAFT”. The EID for this row is 1.


[0376] Scan the DIT table for a row containing PARENT=1 and RDN=“Networks” The EID for this row is 10.


[0377] At this stage we discover that this entry is an alias. The Alias Table is checked to see if the EID of the alias has been cached. If this is the first time an attempt has been made to resolve this alias then the A_EID column in the Alias Table will be zero. For the purpose of discussion it will be assumed that this is the first time.


[0378] To resolve the alias, the DN of the aliased object must be determined. This is stored in the “aliasedObjectName” attribute of the alias entry. The aliasedObjectName has an AID=1 (from the ATTR table) and so the DN is obtained from the Entry Table (RAW value) where EID=10 and AID=1.


[0379] In this example, the DN of the alias is “Datacraft/Sales/Network Products”. This DN is resolved completely using the normal tree walking technique. The value of EID is 20.


[0380] At this stage, navigation continues for the unresolved RDN's in the original DN, namely “PETER EVANS”. The last step required is then:


[0381] Scan the DIT table for a row containing PARENT=20 and RDN=“PETER EVANS”.


[0382] Once an alias has been resolved it can be added (cached) in the Alias Table. This table contains a reference, A_EID, to the aliased object. In the above example, an entry in the Alias Table with an EID of 10 would have an A_EID of 20. Once an alias has been cached a tree walk is no longer necessary to resolve the alias.


[0383] Directory Paths


[0384] When objects are added to the DIT table, a corresponding row is added to another table called the Tree Table. This table stores the list of the EID's which identify a “Path” to the object.


[0385] Distinguished Names


[0386] Most services require the distinguished name to be returned in the Service Result. Using the directory path from the Tree Table, a DN can be constructed from the RAW RDN values stored in the Name Table.


[0387] Entry Information Selection


[0388] Many of the X.500 Services are requested with an argument called “EntryInformationSelection” or EIS. The EIS argument is used to indicate what information in the Entry should be returned. Basically, EIS can be optionally;


[0389] no information


[0390] attributes and values for selected or all attributes


[0391] values only for selected or all attributes


[0392] Entry Information


[0393] Entry Information is a return parameter for Read and Search. It always contains the Distinguished Names of selected entries and, optionally, attributes and/or values as specified in the EIS argument of the request.


[0394] Common Arguments


[0395] All of the X.500 Services pass a set of common arguments in the Service Request. Common Arguments contain information such as service controls (time limit and size limit), the DN of the requestor of the service and security information.


[0396] Common Results


[0397] Some X.500 Services pass a set of common results in the Service Response. Common Results contain information such as security parameters, the DN of the performer of the service and an alias dereferenced flag.


[0398] 5.2 Read Service


[0399] A Read operation is used to extract information from an explicitly identified entry.
39X.500 definitionArgumentDescriptionNameA Distinguished NameEntryInformationSelectionThe attributes and values to be returned(ie EIS)Common ArgumentsResultDescriptionEntry InformationThe DN plus any attributes and valuesreturnedCommon Results


[0400] Method


[0401] Perform a tree walk using the DIT table, resolving aliases if necessary. Obtain the base EID.


[0402] Using PATH from the Tree Table and the RAW RDN's from the Name Table, build a DN.


[0403] If EIS specifies no attributes or values, just return the DN.


[0404] If EIS specifies ALL types and values, return the RAW values from the Entry Table for the matching EID.


[0405] If EIS specifies selected types and values, obtain the AID's from the Attribute Table and then return selected types and/or values for the matching EID.


[0406] Example


[0407] Read the entry “Datacraft/Sales/Network Products/Peter Evans”.


[0408] EIS is set to: attribute Types=allAttributes, InfoTypes=attributeTypesAndValues.


[0409] Using the DIT table perform a Tree Walk traversing EID's 1, 11, 20 and 32 for the normalised RDN's DATACRAFT, SALES, NETWORK PRODUCTS, PETER EVANS. The EID of the selected object is 32.


[0410] Extract the PATH from the Tree Table for EID=32. The PATH is 1.11.20.32.


[0411] Build aDN from the RAW values in the Name Table for EID's 1, 11, 20, 32.


[0412] Using the Entry Table and the Attribute Table, for each matching EID;


[0413] return the OBJECTID's from the Attribute Table and the ASN.1 encoded RAW values from the Entry Table
402.5.4.0[2.5.6.7]2.5.4.3[PETER]2.5.4.4[EVANS]2.5.4.9[SALESPERSON]2.5.4.20[(03) 727-9454]


[0414] return the DN


[0415] 5.3 Compare Service


[0416] A Compare operation is used to compare a value (which is supplied as an argument of the request) with the value(s) of/particular attribute type in a particular object entry.
41X.500 DEFINITIONArgumentDescriptionNameA Distinguished NameAttributeValueAssertionThe attribute type and value to be comparedCommon ArgumentsResultDescriptionDistinguishedNameThe DN of the selected object (returned if analias is dereferenced)matchedTRUE/FALSE result of comparefromEntryN/ACommon Results


[0417] Method


[0418] Perform a tree walk using the DIT table, resolving aliases if necessary. Obtain the EID of the base object.


[0419] From the Attribute Table, obtain the AID of the attribute to be compared.


[0420] From the Entry Table, select the row(s) matching the EID and AID.


[0421] Compare the value.


[0422] Return TRUE or FALSE as the Compare result.


[0423] If an alias is dereferenced, return the DN of the selected object, using the path from the Tree Table and the RAW RDN's from the Name Table.


[0424] Example


[0425] Compare the DN “Datacraft/Sales/Network Products/Peter Evans” with a purported AttributeValueAssertion of “title=[Salesperson]”.


[0426] Obtain the EID for the given DN using a TreeWalk. The EID of the selected object is 32.


[0427] Using the Attribute table, obtain the AID for “title”, ie AID=12.


[0428] Using the Search Table locate rows with EID=32 and AID=12 and test for “NORM=SALESPERSON”.


[0429] Return TRUE or FALSE depending on the outcome of this test. In this instance the result would be TRUE.


[0430] Since no aliases were dereferenced, the DN of the entry is not returned.


[0431] 5.4 List Service


[0432] A list operation is used to obtain a list of immediate subordinates of an explicitly identified entry.
42X.500 DEFINITIONArgumentDescriptionNameA Distinguished NameCommon ArgumentsResultDescriptionDistinguishedNameThe DN of the selected object (returned if analias is dereferenced)subordinatesA list of RDN’s for the subordinate entries(aliases, indicated by an alias flag, are notdereferenced)partialOutcomeQualifierAn indication that an incomplete result wasreturned, eg, a time limit or size limitrestriction.Common Results


[0433] Method


[0434] Perform a tree walk using the DIT table, resolving aliases if necessary. Obtain the EID of the base object.


[0435] Using the DIT and Name Tables return the ALIAS flag and the RAW RDN PARENT is equal to the EID of the base object.


[0436] Example


[0437] Perform a list for the DN “Datacraft”.


[0438] Obtain the EID for the DN using a TreeWalk. The EID of the selected object is “1”.


[0439] For each EID with a PARENT=1


[0440] return the RAW RDN from the Name Table, ie, [Networks], [Sales], [Marketing]


[0441] return the alias flags, ie, TRUE, FALSE, FALSE.


[0442] As no alias was dereferenced in the tree walk, the DN of the selected object is not returned. Note also that the alias entry [Networks] is not dereferenced.


[0443] 5.5 Search Service


[0444] The Search Service is the most complex of all X.500 services. Search arguments indicate where to start the search (baseObject), the scope of the search (subset), the conditions to apply (filter) and what information should be returned (selection). In addition, a flag is passed to indicate whether aliases should be dereferenced (searchAliases).


[0445] The possible values for subset are baseObject, oneLevel and wholeSubtree. Base object indicates that the search filter will only be applied to attributes and values within the base object. OneLevel indicates the Search filter will be applied to the immediate subordinates of the base object. Whole subtree indicates the Search filter will be applied to the base object and all of its subordinates.


[0446] A simple example of a filter condition would be: surname=“EVANS” or telephoneNumber PRESENT.
43X.500 DEFINITIONArgumentDescriptionbaseObjectThe Distinguished Name of the baseObjectsubsetbaseObject, oneLevel or wholeSubtreefiltersearch conditionssearchAliasesa flag to indicate whether aliases amongsubordinates of the base object should bedereferenced during the search.selectionEIS as for READ. The attributes and valuesto be returned.Common ArgumentsResultDescriptionDistinguishedNameThe DN of the selected object (returned if analias is dereferenced)entriesAttributes & values (as defined in selection) forthe entries which satisfy the filter.partialOutcomeQualifierAn indication that an incomplete result wasreturned, eg, a time limit or size limitrestriction.Common Results


[0447] The search procedures for each search scope are outlined as follows:


[0448] Base Object


[0449] Perform a tree walk using the DIT table, resolving aliases if necessary. Obtain the EID of the base object.


[0450] Apply the filter to attributes and values in the Search Table with the EID of the selected object.


[0451] If the filter condition is matched, return the Entry Information from the Entry Table.


[0452] If an alias is dereferenced, return the DN using the Tree Table to extract the PATH and the Name Table to build the DN.


[0453] One Level


[0454] Perform a tree walk using the DIT table, resolving aliases if necessary. Obtain the EID of the base object.


[0455] Check to see if any aliases exist with PARENT=EID and if so resolve them to obtain an aliases dereferenced list.


[0456] Using the Search and DIT Tables, apply the filter (attribute/value conditions) and the scope (PARENT=EID of selected object and any aliases dereferenced). A list of matching EID's will be returned.


[0457] If an alias is dereferenced, return the DN using the Tree Table to extract the PATH and the Name Table to build the DN.


[0458] For each matching EID:


[0459] Return the Entry Information obtained from the Search Table using the Entry Table (as per Read Service).


[0460] Whole Subtree


[0461] Perform a tree walk using the DIT table, resolving aliases if necessary. Obtain the EID of the base object.


[0462] Check to see if any aliases exist with PATH prefix matching the PATH of the selected object.


[0463] For each alias discovered, check to see if the alias points outside the current subtree and if it does repeat the previous step. Once all aliases have been resolved, a set of unique base objects will have been found (with no overlapping areas).


[0464] Using the Search and Tree Tables, apply the filter (attribute/value conditions) and the scope (PATH LIKE PATH prefix of the selected object) to each unique base object. A list of matching EID's will be returned.


[0465] If an alias is dereferenced during Navigation (not during searching), return the DN using the Tree Table to extract the PATH and the Name Table to build the DN.


[0466] For each matching EID:


[0467] Return the Entry Information obtained from the Search Table using the Entry Table (as per Read Service).


[0468] Example


[0469] Perform a search on the baseObject “Datacraft/Sales” with:


[0470] Scope set to WholeSubtree


[0471] a Filter of “surname, substring initial=M”. (Look for all surnames beginning with “M”)


[0472] SearchAliases set to TRUE.


[0473] EIS set to attribute Types=allAttributes, InfoTypes=attributeTypesAndValues.


[0474] Method


[0475] Obtain the EID for the base object DN using a TreeWalk. The EID of the base object is “11”.


[0476] From the Tree Table, obtain the PATH for EID=11, ie, “1.1 1”.


[0477] Check for any aliases among entries that have a path beginning with “1.11.”. There are no aliases in this case.


[0478] Obtain the AID for the attribute “surname” in the Attribute Table, ie, 4.


[0479] Apply the filter and scope simultaneously. i.e. Using the Search Table, obtain a list of EID's from the target list where AID=4 and the value begins with “M” joined with the Tree Table who's PATH is LIKE ‘1.11.%’. The matching EID's are 30 and 31.


[0480] Using the Entry Table and the Attribute Table, for each matching EID:


[0481] return the OBJECTID's from the Attribute Table and the ASN.1 encoded RAW values from the Entry Table
442.5.4.0,[2.5.6.7],2.5.4.3,[Chris],2.5.4.4[Masters]2.5.4.9[Sales Manager]2.5.4.20[(03) 727-9456]2.5.4.20[(018)-042 671]2.5.4.0[2.5.6.7]2.5.4.3[Alana]2.5.4.4[Morgan]2.5.4.9[Sales Support]2.5.4.20[(03) 727-9454]


[0482] 5.6 Add Entry Service


[0483] An AddEntry operation is used to add a leaf entry either an object entry or an alias entry) to the Directory Information Tree.
45X.500 DEFINITIONArgumentDescriptionobjectThe Distinguished Name of the ent to be addedentryA set of attributes to addCommon ArgumentsResultDescriptionNULLNULL


[0484] Method


[0485] Using the DIT table, tree walk to the parent of the entry to be added (Parent EID).


[0486] Using the DIT table, check if the entry exists (check for RDN=new RDN and PARENT=Parent EID).


[0487] If the entry does not exist, allocate a new EID and add the entry. Insert into the DIT Table, the Name Table, the Tree Table, the Search Table, the Entry Table and, if it is an alias entry, the Alias Table.


[0488] Example


[0489] Under the object with a DN of “Datacraft/Marketing” add an object with the following attributes and values.
46surname[Delahunty]commonName[Mary]title[Marketing Manager]telephoneNumber[(03) 727-9523]


[0490] Obtain the EID for the base object DN using a TreeWalk. The EID of the base object is “12”.


[0491] Using the DIT Table, look for a duplicate entry, ie, PARENT=12 and RDN=“MARY DELAHUNTY”. No duplicates exist.


[0492] Add the following rows to the Tables shown.
475.7 Remove Entry ServiceEIDPARENTALIASRDNDIT33110MARY DELAHUNTYEIDRAWNAME33[Mary Delahunty]EIDPATHTREE331.12.21.EIDAIDVIDDISTINGNORMSEARCH33 0002.5.6.733 301DELAHUNTY33 401MARY331200MARKETINGMANAGER33200003 727 9523EIDAIDVIDRAWENTRY33 00[2.5.6.7]33 30[Delahunty]33 40[Mary]33120[Marketing Manager]33200[(03) 727-9523]


[0493] RemoveEntry operation is used to remove a leaf entry (either an object entry or entry) from the Directory Information Tree.
48X.500 DEFINITIONArgumentDescriptionobjectThe Distinguished Name of the entry to bedeletedCommon ArgumentsResultDescriptionNULLNULL


[0494] Method


[0495] Perform a tree walk using the DIT table. Obtain the EID of the base object.


[0496] If the entry exists, and it is a leaf entry, then for the condition EID=EID of the selected object, delete from the DIT Table, the Name Table, the Tree Table, the Search Table, the Entry Table and, if it is an alias entry, the Alias Table.


[0497] Example


[0498] Delete the object with a DN of “Datacraft/Marketing/Mary Delahunty”


[0499] Method


[0500] Obtain the EID for the base object DN using a TreeWalk. The EID of the base object is “21”. Check that no entries have PARENT=21.


[0501] Delete all rows added to the DIT Table, the Name Table, the Tree Table, the Search Table and the Entry Table (refer to Add Entry example) where EID=21.


[0502] 5.8 Modify Entry Service


[0503] The ModifyEntry operation is used to perform a series of one or more of the following modifications to a single entry:


[0504] add a new attribute


[0505] remove an attribute


[0506] add attribute values


[0507] remove attribute values


[0508] replace attribute values


[0509] modify an alias
49X.500 DEFINITIONArgumentDescriptionobjectThe Distinguished Name of the entry to bemodifiedchangesA list of modificationsCommon ArgumentsResultDescriptionNULLNULL


[0510] Method


[0511] Perform a tree walk using the DIT table. Obtain the EID of the selected object.


[0512] For the selected object, perform one or more of the following actions: Add Value, Delete Value, Add Attribute, Delete Attribute


[0513] The operations required for each action are as follows:


[0514] Add Value


[0515] If the attribute exists, add the value to the Entry Table and the Search Table. Checks are: If the attribute is single valued test for an existing value; if the attribute is multi-valued check for a duplicate value.


[0516] Delete Value


[0517] For the Entry Table and the Search Table, if the value exists, delete it. A Distinguished Value cannot be deleted.


[0518] Add Attribute


[0519] If the attribute does not exist, add the Attribute Values to the Entry Table and the Search Table.


[0520] Delete Attribute


[0521] For the Entry Table and the Search Table, if the attribute exists, delete it. Delete all values with AID=attr and EID=base object. Naming attributes cannot be deleted.


[0522] Example


[0523] Modify the Entry “Datacraft/Sales/Network Products/Chris Masters” with the following changes:


[0524] Delete Attribute and Value telephoneNumber 018-042 671


[0525] Modify Attribute and Value title Sales Assistant


[0526] The Search and Entry Tables reflect the changes.
50SEARCHEIDAIDVIDDISTINGNORM300002.5.6.730301CHRIS30401MASTERS301200SALES ASSISTANT30200003 727 9456ENTRYEDAIDVIDRAW3000[2.5.6.7]3030[Chris]3040[Masters]30120[Sales Assistant]30200[(03) 727-9456]5.9 Modify RDN Service


[0527] The ModifyRDN operation is used to change the Relative Distinguished Name of a leaf entry (either an object entry or an alias entry) from the Directory Information Tree.
51ArgumentsDescriptionobjectThe Distinguished Name of the entry to bemodifiednewRDNThe new RDN of the entrydeleteOldRDNflag - delete all values in the old RDN not innew RDNCommon ArgumentsResultDescriptionNULLNULL


[0528] Method


[0529] Perform a tree walk using the DIT table. Obtain the EID and Parent EID of the base object.


[0530] Using the DIT table, check for equivalent entries and return error if one is found. An equivalent entry has RDN=new RDN and PARENT=Parent EID.


[0531] Using the Name Table, replace the old RDN with the new RDN.


[0532] Using the DIT Table, replace the old RDN with the new RDN.


[0533] Using the Entry Table, insert the new value.


[0534] Using the Search Table, locate value=old RDN and set DISTING to 0. Insert the new value.


[0535] If deleteOldRDN is set to TRUE the procedures following the Tree Walk are as follows:


[0536] Using the DIT table, check for a sibling with the same name and an EID not equal to the base EID


[0537] Using the Name Table, replace the old RDN with the new RDN.


[0538] Using the DIT Table, replace the old RDN with the new RDN.


[0539] Using the Entry Table, delete the old value(s) and insert the new value(s).


[0540] Using the Search Table, delete the old value(s) and insert the new value(s).


[0541] Example


[0542] Modify the RDN of “Datacraft/Sales/Network Products/Chris Masters”. The new RDN is “Christine Masters”.


[0543] deleteOldRDN is set to FALSE.


[0544] The changes to the Tables will be as follows:
52DITEIDPARENTALIASRDN[21110CHRISTINE MASTERSNAMEEIDRAW21[Christine Masters]SEARCHEIDAIDVIDDISTINGNORM300002.5.6.730301CHRISTINE30310CHRIS30401MASTERS301200SALES ASSISTANT30200003 727 9456ENTRYEIDAIDVIDRAW3000[2.5.6.7]3030[Christine]3031[Chris]3040[Masters]30120[Sales Assistant]30200[(03) 727-9456]5.10 Complications


[0545] If error, limit or abandon occurs during processing of any of the services, then the processing is discontinued and an appropriate error message returned.


[0546] Errors


[0547] Each X.500 service consists of 3 parts; ARGUMENT, RESULT and ERRORS. In the above descriptions of the services, ARGUMENT and RESULT have been included in the X.500 definitions. Error conditions, however, are many and varied and no attempt is made to describe them in this document. The National Institute of Standards and Technology (NIST) document “Stable Implementation Agreements for Open Systems Interconnection Protocols: Version 3” provides a full coverage of errors for the X.500 standard.


[0548] Time Limit & Size Limit


[0549] Time Limit and Size Limit form part of Service Controls. They can be optionally set to some finite limit and included in the Common Arguments.


[0550] Time Limit indicates the maximum elapsed time, in seconds, within which the service shall be provided. Size Limit (only applicable to List and Search) indicates the maximum number of objects to be returned. If either limit is reached an error is reported. For a limit reached on a List or a Search, the result is an arbitrary selection of the accumulated results.


[0551] Abandon


[0552] Operations that interrogate the Directory, ie Read, Compare, List and Search, may be abandoned using the Abandon operation if the user is no longer interested in the results.


[0553] Aliases & Search


[0554] If an alias is encountered in a search and that alias points to a separate branch of the directory tree, then dereferencing of the alias requires:


[0555] Navigation from the root entry to the referenced entry


[0556] Searching of all items subordinate to the referenced entry


[0557] In the example shown in FIG. 5, if a WholeSubtree Search was performed on a base object of “Telco/Corporate/Data Services” the entries “Mervyn Purvis” and the alias “Strategic” would be searched. Strategic, however, points to a different branch of the tree which requires searching of the entry “Strategic” and all of its subordinates, ie, “Alan Bond”, “Rex Hunt”, “Wayne Carey” and “John Longmire”.


[0558] 5.11 Implementation Optimisations


[0559] The Logical methods include a number of optimisations that enhance performance. These methods are outlined below.


[0560] Caching


[0561] The Attribute table can be cached. This means that (apart from initial loading of the attributes) no SQL statements need to be issued to the database when decoding or encoding the attributes. In the present X.500 system attribute conversions are performed in memory. This provides a substantial speed advantage.


[0562] Validation


[0563] Query validation is performed in memory where possible. This avoids database rollbacks which are time and system consuming. For example when adding an entry each attribute is validated before any attempt is made to add the entry. If an error is found then no SQL calls need to be issued.


[0564] Optimise Query Handling


[0565] As the format of most services is known, many instances of these services can be resolved using static SQL statements. More complex services, such as searches with complex filters, can be resolved using dynamic SQL. This enables arbitrarily complex searches to be performed.


[0566] Parallel Queries


[0567] Also when processing search results the present system utilises set orientation queries of SQL to avoid ‘row at a time’ processing. Thus search results may be assembled in parallel in memory.


[0568] Data Storage


[0569] The tables that store raw data store the data in ASN.1 format. This provides an efficient means of transferring data into or out of the database.


[0570] Database Techniques


[0571] Complex services can be further improved by using the query optimiser, which provides a mechanism for reducing the time spent in resolving the query. The use of a relational database also provides an efficient use of memory and enables large databases to be constructed without the need for large amounts of memory being available. Many other X.500 applications cache the entire database in memory to achieve performance. This method consumes large amounts of memory and is not scalable.


[0572] 6. Physical Design


[0573] The physical design results from a process called physical transformation of the logical design. The physical design represents a preferred realisation or embodiment of the logical design. FIG. 2B and the tables below show one form of the physical design. New columns and tables are highlighted by double borders.
53TABLE 6Physical DesignDITEIDPARENTRDNKEYRDNFLAGSNAMEEIDRAWFLAGSTREEEIDLEV1LEV2LEV3LEV4PATHFLAGSINFOMAXEIDFLAGSALIASEIDA_EIDFLAGSSEARCHEIDAIDVIDNORMKEYNORMFLAGSENTRYEIDAIDVIDRAWFLAGSBLOBEIDAIDVIDVFRAGRAWFLAGSATTRAIDSYNTAXDESCOBJECTIDFLAGSSENTRYEIDAIDVIDVALUEFLAGSOCLASSOCIDDESCOBJECTIDMUSTLISTMAYLISTSUPERLISTFLAGS


[0574] The reasons for the above changes are described below.


[0575] 6.1 Efficiency


[0576] INFO Table


[0577] This table holds the highest EID value that has been used in the database. The inclusion of the INFO table enables the next EID to be obtained without any calculation of the maximum EID being performed by the database. This provides improved efficiency in adding entries to the database. More importantly the inclusion of the INFO table removes contention problems which may occur when multiple DSA's are adding entries at the same time.


[0578] Shadow Keys


[0579] Three tables have had shadow keys added. These are:


[0580] a) The NORMKEY column in the SEARCH table.


[0581] b) The RDNKEY column in the DIT table.


[0582] c) The LEV1, LEV2, LEV3 and LEV4 columns in the TREE table.


[0583] Each of these shadow key columns is a shortened version of a larger column. They have been added to shorten the indexes on each table. This gives improved performance for any queries that use the indexes and it also improves disk space usage as small indexes take up less space than large indexes.


[0584] The shadow keys in the PATH table utilise the structured nature of the PATH. By being a composite key then exact matching can be used in the SQL instead of the “LIKE” operator.


[0585] e.g. WHERE LEV1=1=AND LEV2=10 AND . . .


[0586] instead of WHERE PATH LIKE ‘1.10.%’.


[0587] If each of the LEV columns has their own index, then a sub-tree search needs to only use the base object. e.g. LEV2=10, since all objects under entry 10 will have LEV2=10.


[0588] SENTRY Table


[0589] Some types of attribute values do not need to be normalised e.g. integer, boolean, date. Instead of storing them twice (SEARCH.NORM and ENTRY.RAW) they can be stored just once in a hybrid table called the SENTRY table. This reduces table sizes and increases storage efficiency at the cost of having to search two tables and retrieve from two tables.


[0590] OCLASS Table


[0591] Most attributes have a wide variation in their values e.g. surnames could range from AALDERS to ZYLA with a great many different values in between. However, Object Classes (whose values are ObjectIdentifiers or OIDs) have very few values e.g. in an organisation of 10,000 people, the only object classes in the directory may be for organisation, organisationalUnit and organisationalPerson (of which many may be the latter). The OCLASS table gives a numeric descriptor to an object class called an OCID. The OCID can then be stored in the SENTRY table and a mapping done whenever an Object Class is searched or retrieved. The other LIST columns store standard object class configuration information—namely the must and may contain attributes and the inherited superclasses.


[0592] 6.2 Portability


[0593] BLOB Table


[0594] This table has been included to hold “Binary Large Objects”. The maximum size of a one row entry in the ENTRY table is limited by the length of the RAW field. This means that entries must be fragmented. Fragmented entries will occupy more than one row and so a VFRAG field must be used to denote the fragment of the entry that is being stored in a particular row.


[0595] There are two options for storing very large values:


[0596] a) Add a “fragment flag” to the ENTRY table and store the entry in fragments over a number of lines; or


[0597] b) Add a BLOB table to store the entry and add a “BLOB flag” to the ENTRY table to indicate that this value is stored in the BLOB.


[0598] The second option has a number of advantages. Firstly, the inclusion of a BLOB table prevents the ENTRY table from becoming excessively large. Generally most entries will be less than a few hundred characters in length, so the length of the RAW field in the ENTRY table can accordingly be reduced to cater for those entries and the RAW field in the BLOB table can be increased to a value approaching the maximum record size. This will make storage more efficient, i.e. reduce the amount of unused bytes in each column of each table and reduce the number of fragments needed for each entry in the BLOB table. It also means that each value will have only one entry in the ENTRY table and that the ENTRY and SEARCH tables maintain their one-to-one correlation. Secondly the use of a BLOB table enables the application to make use of any database support for Binary Large Objects. (e.g. 64K Binary Columns).


[0599] 6.3 Functional Extensibility


[0600] FLAGS Columns


[0601] FLAGS column(s) are preferred to be added. These column(s) have been added to provide extensibility to the design. Specific values can be added to the flags as new functionality is required, without changing the table structure.


[0602] Note:


[0603] a) In the SEARCH table, the DISTING field may be absorbed into the FLAGS field.


[0604] b) In the DIT table, the ALIAS field may be absorbed into the FLAGS field.


[0605] The FLAGS column(s) may also provide a “summary” function for each of the tables. This means that the nature of an entry can be determined to some extent by checking the value of the FLAGS field. For example, a flag can be set, in the DIT table, when an entry is a leaf. Checking this flag is much simpler than checking for children of the entry.


[0606] The FLAGS column can also be used to store security information, whether an alias points inside its parents sub-tree, whether a value is a BLOB, etc.


[0607] 7. Example Implementation


[0608] The following provides an example of system performance and capabilities. It is to be understood that the present inventions should not be limited to the following disclosure.


[0609] 7.1 Overall System Benefits


[0610] The present invention is considered to provide enhanced performance over prior art implementations. Performance can be appraised in many ways, including:


[0611] aliases;


[0612] size (use of relational theory);


[0613] complexity (use of query optimiser and search method(s));


[0614] extensibility (use of meta-data); and


[0615] substantially without degrading efficiency (use of disk based model) and reliability (use of RDBMS).


[0616] The present invention is considered unique in its ability to claim performance improvement in all areas noted above.


[0617] 7.2 Test Results


[0618] Performance testing of the present invention has been carried out, with the objectives of:


[0619] Proving that an SQL based X.500 application can perform at subsecond speeds, dispelling a widely held myth in the marketplace that it is impossible to implement an X.500 DSA application as an integrated RDBMS application and achieve efficiency and performance.


[0620] Proving that the design of an SQL based X.500 application can outperform existing memory resident style X.500 designs, especially for databases in excess of 100K entries, a typical limit of current designs.


[0621] Providing a structured suite of tests that can demonstrate the above performance on demand for a wide variety of services and database sizes.


[0622] Test results reveal the following Table 7A
54TABLE 7AServiceDatabase Size (number of entries)OperationQualifierDetail1K10K20K50K100K200KBINDanonymous0.000.000.000.000.000.00LISTlevel 1 4 items0.050.050.050.050.050.05level 34 items0.060.060.060.060.060.06level 4 100 items0.220.230.230.240.230.24READlevel 4 1 item, all info0.070.070.070.070.070.08level 4 (via alias) 1 item, all info0.070.070.070.070.070.07SEARCH1 level, equality100 entries, 1 item0.120.120.120.120.130.131 level, initial100 entries, 1 item0.130.140.150.150.150.141 level, any100 entries, 1 item0.300.350.330.320.360.291 level, final100 entries, 1 item0.240.350.310.300.350.28subtree, equality 1K, 1 item, level 10.110.110.110.110.110.11 10K, 1 item, level 1xxxxxx0.120.120.120.12 20K, 1 item, level 1xxxxxxxxx0.120.130.12 50K, 1 item, level 1xxxxxxxxxxxx0.130.13100K, 1 item, level 1xxxxxxxxxxxxxxx0.12subtree, initial 1K, 1 item, level 10.130.120.120.120.120.11 10K, 1 item, level 1xxxxxx0.110.120.120.12 20K, 1 item, level 1xxxxxxxxx0.130.120.12 50K, 1 item, level 1xxxxxxxxxxxx0.130.12100K, 1 item, level 1xxxxxxxxxxxxxxx0.11full, complex OR all entries, 1 item0.090.090.090.090.090.09full, complex ANDall0.110.110.110.110.110.11entries, 1 itemfull, complex OR/ANDall0.260.280.290.280.290.26entries, 1 itemfull, complex AND/ORall0.120.120.130.140.130.12entries, 1 itemfull, complex AND/ANDall0.160.150.160.170.180.18entries, 1 itemfull, complexall entries, 1 item0.180.180.180.190.200.26AND/AND/ANDfull, equalityall entries, 1 item0.080.080.080.080.080.08full, no filter, all-infoall0.300.740.430.590.490.67entries, 10 itemsfull, no filter, all-infoall1.361.841.501.791.821.86entries, 100 itemsfull, initialall entries, 1 item0.080.080.080.080.080.08ADDlevel 5 100 sisters0.220.190.220.200.190.19MODIFYlevel 5 100 sisters0.090.110.110.110.110.11RENAMElevel 5 100 sisters0.150.160.150.160.160.15DELETElevel 5 100 sisters0.170.160.170.170.170.19UNBIND0.000.000.000.000.000.00Notes: 1. All searches and reads return all info 2. All tests were performed under the following environment;


[0623] Sun SparcStation 5 with 32 Mb of memory (entry level UNIX machine)


[0624] Ingres 6.4/04 configured for 32 users (standard Ingres installation)


[0625] DSA prototype V2.1.2


[0626] Timings measured at DSA console (ie does not include network overheads)


[0627] All numbers are in units of seconds and “K” means 1,000's.


[0628] 7.3 Test Conclusions


[0629] A set of directories was constructed ranging from 1K to 200K entries with varying depth and width of the hierarchy, and a corresponding test plan was produced. The tests were performed a number of times to ensure consistency.


[0630] The following conclusions can be drawn from these results;


[0631] 1. The effects of navigation, in test, were negligible.


[0632] 2. Reading an object via an alias, in test, showed no appreciable decrease in performance and in some cases reading an object via an alias was in fact faster than reading the object directly. This is due to the reduced navigation required when an alias points “down” to an object that is deeper in the tree structure than the alias entry.


[0633] 3. Search results were “flat” over different sized subtrees in different sized directories for both exact and initial string searches.


[0634] 4. Initial and exact full tree searches, in test, were slightly quicker than their respective subtree searches, even though the number of entries searched was greater. This is due to the fact that the full tree searches are able to use more efficient SQL (no table joins are required).


[0635] 5. All services were, in test, performed in under one second, except for searches returning large amounts of data. However the average time of retrieval per entry drops as the number of entries retrieved increases (e.g for 10 entries retrieval time is approximately 50 milliseconds per entry, for 100 entries this drops to approximately 20 milliseconds per entry).


[0636] 6. All complex searches, in test, were performed in under one second. However, there may be some obscure searches (e.g containing combinations of NOT) which may not perform as well.


[0637] Because this is a disk based system (rather than a memory based system) performance is essentially only dependent on the number of entries actually returned. It is relatively independent of the search complexity, the depth of the hierarchy, the number of attributes per entry or the types of attributes used in the query. In a “live” application of the system it may be possible to improve on the achieved test results by tuning the caching parameters, and by having a greater diversity of attributes.


Claims
  • 1. In a directory service system, which utilizes a database comprising at least one table having a plurality of rows and columns, said database comprising a plurality of data items, each having a value, each being related to one of a plurality of data types and each having attributes defined by the directory, the method of managing said database comprising: arranging the attributes of the directory in a row-per-data type and value type format.
  • 2. A method as claimed in claim 1, wherein the row-per-data type and value format is provided for at least three columns comprising: data type: identifying one of said plurality of data types, syntax: identifying the nature of the data type, and value: identifying the data value.
  • 3. A method as claimed in claim 2 wherein each of the plurality of data items are defined as related to a specified object, identified by a respective object name, and said row-per-data type and value format is provided for a fourth column comprising an object name.
  • 4. A method as claimed in claim 3 wherein said specified objects are defined in a hierarchical structure comprising at least a parent name, and said parent name is provided in a fifth column.
  • 5. A method as claimed in claim 4 wherein the relationships among a plurality of objects follow a tree structure, where each object has a parent object and, except where the parent is a root, each parent can have zero or more children.
  • 6. A method as claimed in claim 2, wherein one of said plurality of tables is an ATTRIBUTE table and further comprising: providing an identifier for each data type; and storing the type and syntax in an ATTRIBUTE table together with said identifier.
  • 7. A method as claimed in claim 6, further comprising the step of: storing a corresponding identifier and ‘value’ in other tables of the directory.
  • 8. A method as claimed in claim 6 further including the step of providing at least one of SEARCH, ENTRY and BLOB tables for the storing row-per-data-value format.
  • 9. A method as claimed in claim 7 further including the step of providing at least one of SEARCH, ENTRY and BLOB tables for the storing row-per-data-value format.
  • 10. A method of storing attributes of a directory having the form ‘type’, ‘syntax’, ‘value’ the method including the step of: storing the ‘type’ and ‘syntax’ in an ATTRIBUTE table together with an identifier.
  • 11. A method as claimed in claim 10, further including the step of: storing a corresponding identifier and ‘value’ in other tables of the directory.
  • 12. A method as claimed in claim 11, further including the step of providing a PROPERTY table, which includes object name and parent name as well as metadata.
  • 13. A method of representing, storing and/or processing directory services, which contain objects having attributes, the improvement comprising at least one of representing, storing and processing the attributes in the form of type, syntax, and value.
  • 14. A relational database comprising: at least one table with a plurality of columns, said at least one table supporting the Structured Query Language (SQL), said table having data represented therein in a row per data type and value format.
  • 15. A directory service system comprising: a database comprising at least one table having a plurality of rows and columns, said database comprising a plurality of data items, each having a value, each being related to one of a plurality of data types and each having attributes defined by the directory, wherein the attributes of the directory are arranged in a row-per-data type and value format.
  • 16. A directory service system as claimed in claim 15, wherein the row-per-data type and value format is provided for at least three columns comprising: data type: identifying one of said plurality of data types, syntax: identifying the nature of the data type, and value: identifying the data value.
  • 17. A directory service system as claimed in claim 16 wherein each of the plurality of data items are defined as related to a specified object, identified by a respective object name, and said row-per-data and value type format is provided for a fourth column comprising an object name.
  • 18. A directory service system as claimed in claim 17 wherein said specified objects are defined in a hierarchical structure comprising at least a parent name, and said parent name is provided in a fifth column.
  • 19. A directory service system as claimed in claim 15, further comprising: means for arranging the attributes of the directory in said row-per-data and value type format.
  • 20. A directory service system as claimed in claim 19, wherein one of said plurality of tables is an ATTRIBUTE table, and further comprising: means for providing an identifier for each data type; and means for storing the type and syntax in said ATTRIBUTE table together with said identifier.
  • 21. A directory service system as claimed in claim 20, further comprising: means for storing a corresponding identifier and ‘value’ in other tables of the directory.
  • 22. A directory service system as claimed in claim 20, further including at least one of SEARCH, ENTRY and BLOB tables for the storing row-per-data type and value format.
  • 23. A directory service system as claimed in claim 21, further including at least one of SEARCH, ENTRY and BLOB tables for the storing row-per-data type and value format.
  • 24. A directory service system as claimed in claim 15 further comprising means for providing database services for said table using a database Structured Query Layout (SQL) language.
  • 25. A directory service system, which utilizes a database comprising at least one table having a plurality of rows and columns, said database comprising a plurality of data items, each having a value, each being related to one of a plurality of data types, and each having an attribute, the improvement wherein said attributes are represented in a row-per-data type and value format in the form per row of at least: type syntax value.
  • 26. An attribute, for use in a directory service system, which utilizes a database comprising at least one table having a plurality of rows and columns, said database comprising a plurality of data items, each having a value, each being related to one of a plurality of data types, said attribute being represented in a row-per-data type and value format in the form per row of at least: type syntax value.
  • 27. A directory service system which defines a plurality of objects to be hierarchical, and the relationships among objects follow a tree structure where each object has a parent object and except for a root, each parent can have zero or more children, comprising: a database comprising at least one table having a plurality of rows and columns, said database comprising a plurality of data items, each having a value, each being related to one of a plurality of data types and each having attributes defined by the directory, wherein the attributes of the directory are arranged in a row-per-data type and value format; and means for implementing a plurality of data services for said database.
  • 28. A directory service system as claimed in claim 27, wherein the row-per-data type and value format is provided for at least three columns comprising: data type: identifying one of said plurality of data types, syntax: identifying the nature of the data type, and value: identifying the data value.
  • 29. A directory service system as claimed in claim 28 wherein each of the plurality of data items are defined as related to a specified object, identified by a respective object name, and said row-per-data type and value format is provided for a fourth column comprising an object name.
  • 30. A directory service system as claimed in claim 29 wherein a parent name is provided in a fifth column.
  • 31. A directory services system as claimed in claim 27, wherein said means for implementing provides X.500 or LDAP directory services and said database comprises an SQL database.
  • 32. A directory service system as claimed in claim 27, further comprising: means for arranging the attributes defined by the directory in said row-per-data type and value format.
  • 33. A directory service system as claimed in claim 32 including an ATTRIBUTE table into which ‘type’ and ‘syntax’ can be stored.
  • 34. A directory service system as claimed in claim 31, further comprising: means for storing a corresponding identifier and ‘value’ in other tables of the directory.
  • 35. A directory service system as claimed in claim 27, wherein at least some of said data values are binary.
  • 36. A directory service system implementing the method of any one of claims 1 to 13.
  • 37. A method as claimed in any one of claims 1-13 wherein said method further comprises providing database services for said table using a database Structured Query Layout (SQL) language.
  • 38. A method as claimed in any one of claims 1-13, wherein said directory services comprise X.500 or LDAP directory services.
  • 39. A directory service system as claimed in any one of claims 15-35 wherein the system is a X.500 or LDAP directory service system.
  • 40. A directory services system as claimed in claims 15-35, wherein said database comprises an SQL database.
  • 41. A computer program product comprising a computer program storage medium containing therein a computer program operable in accordance with the method recited in any one of claims 1-13. The invention as herein disclosed.
Priority Claims (2)
Number Date Country Kind
PM 7842 Sep 1994 AU
PM 9586 Nov 1994 AU
Parent Case Info

[0001] This is a divisional of U.S. Ser. No. 08/793,575, which is currently pending and which is incorporated herein by reference in its entirety.

Divisions (1)
Number Date Country
Parent 08793575 May 1997 US
Child 09427265 Oct 1999 US