The present invention relates generally to laminated materials, and more particularly to laminated materials comprising at least one textured metal sheet layer bound to at least one graphite foil layer.
There is a growing need for lighter, stiffer, cheaper structural materials, preferably with all three qualities, with which to make better products.
Stainless steel laminated with graphite foil is a widely used material that has properties that make it suitable for many purposes, such as making gaskets. Such gaskets can provide high blowout resistance and so can be used in applications with high sealing stresses. Such material is permanently elastic over a wide temperature range, such as −200° C. to 550° C. It does not age, is not brittle and provides long-term uniformity and resiliency independent of temperature so that is can withstand high compressive stresses. It can also tolerate high pressure, such as up to 500 bar. The steel, or “carrier”, layer is typically a 0.10-0.12 mm thick sheet of “tanged” stainless steel. The laminate is then formed by pressing a sheet of graphite foil onto each surface of the metal sheet to create a laminate with a thickness typically of 1 to 4 mm. The use of tanged metal allows the layers to bind mechanically, without the need for any adhesive, as the tangs on each surface of the metal penetrate into the graphite foil pressed on each surface.
Such tanged metal sheeting is formed by a metal foil puncher, which employs needles that perforate the foil, causing tangs to extend from the side of the sheet opposite the side that the needle penetrates. As a result, the sheeting is weakened by the perforations. Also, if the metal sheet is only laminated on one side, the unlaminated metal surface is not smooth because of the perforations. Furthermore, the thickness of the metal layer is limited because it must be thin enough to allow the puncher needles to penetrate it. It would be desirable to provide a material having graphite foil laminated on at least one side that does not suffer from the disadvantages resulting from the use of such tanged metal.
In a disc brake caliper, a hydraulically actuated piston forces, by action and reaction, a pair of opposing brake pads to pinch a rotor attached to a vehicle wheel. Brake pads have a stiff backing plate with friction pads affixed to one side. Shims of a thin material are often used on the side of the plate contacted by the piston. The shim's function is to reduce the frequency of occurrence of a loud and annoying squeal noise from what are otherwise mechanically perfect brakes. At least some of the noise comes from the fact that, to prevent jamming, the plate has some freedom of radial movement within the caliper so that the rotor can be freed, while the piston has little freedom of movement. In braking, the rigid rotor is frictionally engaged by the hard brake pad (which is in turn supported by its hard backing plate). The brake pad can frictionally slide to some degree against the rigid piston and caliper. High frictional forces are generated during this sliding movement which can cause squeal. Like a stick of chalk forced at an angle across a rigid board, friction can lead to very severe vibrational noise. As well, these recurring forces can lead to fretting and chipping of the piston rim. Brake squeal is a very expensive problem for car and brake manufacturers as customers invariably want the noise remedied under warranty even if the brakes are otherwise perfect.
A great many designs of shims using various materials have been tried over the years to fit between the piston and the plate to reduce such friction and resulting squeal. None have been entirely satisfactory. While graphite sheeting has various properties that make it very suitable for noise reduction, it is unsuitable by itself for use as a shim because of its brittleness. Laminates using graphite foil and tanged metal are generally not suitable because such tanged metal is not strong enough to be well suited for use in brake pad shims. It would be desirable to provide a material with graphite on at least one side that is suitable for use as a shim.
According to a first aspect of the invention, a laminate sheet having as a first lamina a relatively hard material with first and second surfaces is provided. The first surface has piercing structures extending therefrom which may be pointed. Each structure has an apex portion referred to as a tip. The second lamina is a graphite foil material that is mated to the relatively hard material. The mating is effected by some of the piercing structures protruding into the graphite foil material, piercing the inner surface of the graphite foil.
The relatively hard material is preferably not perforated and the second surface may be flat. At least some of the piercing structures may extend completely through the graphite foil material, protruding through the outer surface of the graphite foil to expose their tips. At least some of the exposed tips of the piercing structures may be clinched, meaning that they are turned over, onto or into the graphite foil material. In other embodiments, the piercing structures may not extend completely through the graphite foil material so that the outer surface of the foil remains uniformly smooth.
The relatively hard material is preferably metal, which preferably is steel. It may have a thickness of at least 0.2 mm or may have a thickness of at least 5.0 mm, although the thickness may be less than or equal to 0.2 mm.
According to a second aspect of the invention, a multi-layer laminate sheet having a first lamina that is a dual sided sheet of a relatively hard material with texturing on two surfaces thereof is provided. The surface texture is created by a plurality of raised and generally pointed piercing structures, with each structure having an apex portion referred to as a tip. The laminate includes two outer laminae of a graphite foil material, one layer being disposed on each surface of the dual sided sheet. The graphite foil material is mated to the relatively hard material by having some of the piercing structures of the relatively hard material protrude through the inner surface of the foil into the graphite foil material. The relatively hard material is preferably not perforated. At least some of the piercing structures may extend completely through one of the layers of graphite foil material, protruding through the outer surface of the foil, to expose their tips. At least some of the exposed tips of the piercing structures may be clinched by being turned over, onto or into the graphite foil material. In other embodiments, the piercing structures may not extend completely through the graphite foil material so that the outer surfaces of the foils remain uniformly smooth.
According to a third aspect of the invention, a noise damping shim is provided. The shim has a first layer of a relatively hard material having first and second surfaces. The first surface has a plurality of raised and generally pointed piercing structures and is mated to a second layer of a graphite foil material such that at least some of the piercing structures pierce the graphite foil material. The shim may be configured to engage a brake pad so that it acts as an intermediate element (or buffer) between the backing plate and piston of the braking system.
In the following description the word “clinch” (clinching, clinchable, clinched), is used to describe the act of bending over the exposed apex portion or “tip” of a pin- or nail-like structure that has pierced through two or more layers and extends therefrom. Clinching is common practice in the wood construction trade. Clinching is analogous to riveting in metal work, or to any other deformation of a fastener to prevent its easy withdrawal. The purpose of clinching is to impart greater cohesion between the two laminate layers that are so joined.
The terms “pointed structure” and “piercing structure” are used synonymously herein as a general term to describe any type of nail- or pin-like structure (or hooked or barbed structure) raised on the surface of a material (for embedding or piercing) that are capable of piercing and then penetrating the surface of a graphite foil. An appropriate choice of hardness of the material and shape and configuration of the piercing structures is selected to ensure such piercing capability.
In the instant invention, piercing structures have been raised from a surface of a lamina consisting of relatively hard material, such as a sheet of stainless steel. They can pierce into the inner surface of an adjacent graphite foil lamina and, if longer than the graphite foil's thickness, can pierce the outer surface of the foil. The protruding tips may be bent over or clinched to create the “locked-laminate” embodiment of the instant invention. In a laminate, where a first lamina is mated with only one other lamina, the surface, or face, of the first lamina that is mated to the other lamina is referred to as the inner surface, and the other surface, which is not mated with another lamina, is referred to as the outer surface.
The first lamina may be formed from any suitable relatively hard material but is preferably made of a ductile material such as sheet steel. Various materials may be used. In one preferred embodiment, the first material has a Brinell hardness of more than about 80. The side (outer surface) of the first lamina, which is not textured, is preferably flat and uniformly smooth, with no holes or perforations therethrough.
The two laminae are thereby continuously locked together as a laminate 108 which can then be severed into individual sheets 107 of laminate. Alternatively, the laminate 108 may be collected as a bulk product on a take-up reel (not shown) (thus, the process may be a coil-to-coil process). The bulk product may be further cut or shaped for specific applications, including cut-to-measure applications on a job site.
Rolls 100, 100a can press against the entire width of the material “sandwich” or just in localized areas (e.g. edges).
Unlike the prior art, the first lamina of relatively hard material may be formed from any desired thickness of material that can be suitably textured. For example, the thickness of the first lamina may be greater than or equal to 0.3 mm, 1.0 mm, 5.0 mm or 10.0 mm, although for some applications the thickness may be less than 0.3 mm, 0.2 mm or 0.1 mm. The texturing may be performed so as to ensure that the vertical (i.e. perpendicular to the surface of the lamina) heights of the piercing structures do not exceed the thickness of the graphite foil lamina(e) to be used, in which case the piercing structures will not penetrate through the outer surface(s) of the foil(s) in the laminate so that the outer surfaces of the laminate are uniformly smooth. Alternatively, the piercing structures may have a vertical height sufficiently greater than (e.g., 1.3 to 1.5 times greater than) the thickness of the graphite foil to be used to form the laminate so that the tips of some, most or all of the piercing structures pierce and protrude through the outer surface of the graphite foil and are exposed. As discussed above, the exposed tips of the piercing structures may then be clinched.
A shim is a noise-reducing inter-layer piece of material of any shape or outline. As discussed above, shims are widely employed between brake pistons and brake pad backing plates to reduce noise, such as squealing, which may occur when the piston engages the backing plate during braking.
Graphite has noise-reducing properties that make it well suited for use as a noise insulator. However, by itself, it is too brittle to be used as a shim. The metal-graphite laminate described herein though is well suited for use as a shim, such as a braking pad shim. The laminate is an effective noise damping medium. With its lubricating properties, graphite modulates the braking effect of friction linings and contributes to braking comfort and to noise reduction. The excellent thermal conductivity properties of graphite also play an important role in the use of the laminate in applications where there are large temperature variations, such as in automotive brakes. Graphite has a much lower friction coefficient than materials typically used to produce shims so that the laminate acts as a slip agent, which contributes to its noise-reducing ability. Graphite is also resistant to oxidation.
In embodiments where the piercing structures protrude through the outer surface, and are optionally clinched, the resulting outer surface of the graphite foil becomes “bubbled”, as shown in
It should be understood that the above-described embodiments of the present invention, particularly, any “preferred” embodiments, are only examples of implementations, merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) of the invention as will be evident to those skilled in the art.
Where, in this document, a list of one or more items is prefaced by the expression “such as” or “including”, is followed by the abbreviation “etc.”, or is prefaced or followed by the expression “for example”, or “e.g.”, this is done to expressly convey and emphasize that the list is not exhaustive, irrespective of the length of the list. The absence of such an expression, or another similar expression, is in no way intended to imply that a list is exhaustive. Unless otherwise expressly stated or clearly implied, such lists shall be read to include all comparable or equivalent variations of the listed item(s), and alternatives to the item(s), in the list that a skilled person would understand would be suitable for the purpose that the one or more items are listed.
The words “comprises” and “comprising”, when used in this specification and the claims, are to used to specify the presence of stated features, elements, integers, steps or components, and do not preclude, nor imply the necessity for, the presence or addition of one or more other features, elements, integers, steps, components or groups thereof.
The scope of the claims that follow is not limited by the embodiments set forth in the description. The claims should be given the broadest purposive construction consistent with the description as a whole.
Number | Date | Country | Kind |
---|---|---|---|
CA 2821897 | Jul 2013 | CA | national |
This application is a continuation of U.S. patent application Ser. No. 14/907,350, filed Jan. 25, 2016, which is a U.S. National Stage Patent Application of PCT/CA2014/000579, filed Jul. 21, 2014, which claims the benefit of Canadian Patent Application No. 2,821,897, filed Jul. 26, 2013, all of which are hereby incorporated in their entireties by this reference.
Number | Name | Date | Kind |
---|---|---|---|
1897088 | Victor | Feb 1933 | A |
1915221 | Fitzgerald | Jun 1933 | A |
2171530 | Balfe | Sep 1939 | A |
2255268 | Perrine | Sep 1941 | A |
2274765 | Zalkind | Mar 1942 | A |
3092532 | Swick et al. | Jun 1963 | A |
3513950 | Ratcliffe et al. | May 1970 | A |
3533891 | Puyear | Oct 1970 | A |
3551232 | Thompson | Dec 1970 | A |
3557407 | Lemelson | Jan 1971 | A |
3605360 | Lindal | Sep 1971 | A |
4023613 | Uebayasi et al. | May 1977 | A |
4234638 | Yamazoe et al. | Nov 1980 | A |
4552252 | Stahl | Nov 1985 | A |
4569424 | Taylor, Jr. | Feb 1986 | A |
4640390 | Saumweber et al. | Feb 1987 | A |
4653242 | Ezard | Mar 1987 | A |
4705278 | Locacius et al. | Nov 1987 | A |
4723783 | Belter et al. | Feb 1988 | A |
4776602 | Gallo | Oct 1988 | A |
4781389 | Beyer et al. | Nov 1988 | A |
4815172 | Ward | Mar 1989 | A |
4911972 | Mercuri | Mar 1990 | A |
4939818 | Hahn | Jul 1990 | A |
5031483 | Weaver | Jul 1991 | A |
5067210 | Keyaki | Nov 1991 | A |
5142743 | Hahn | Sep 1992 | A |
5143184 | Snyder et al. | Sep 1992 | A |
5172920 | Schlenk | Dec 1992 | A |
5362074 | Gallo et al. | Nov 1994 | A |
5376410 | Mackelvie | Dec 1994 | A |
5469604 | Calmettes et al. | Nov 1995 | A |
D374609 | Akeno | Oct 1996 | S |
D376533 | Akeno | Dec 1996 | S |
5611122 | Torigoe et al. | Mar 1997 | A |
5738924 | Sing | Apr 1998 | A |
5788247 | Tensor | Aug 1998 | A |
D400427 | Okawa et al. | Nov 1998 | S |
5842546 | Biswas | Dec 1998 | A |
5879489 | Burns et al. | Mar 1999 | A |
5896629 | Van Hooreweder | Apr 1999 | A |
5975252 | Suzuki et al. | Nov 1999 | A |
D425405 | Naohara et al. | May 2000 | S |
6170620 | Akita et al. | Jan 2001 | B1 |
6247704 | Battistoni | Jun 2001 | B1 |
6258457 | Ottinger et al. | Jul 2001 | B1 |
6276045 | Buchi et al. | Aug 2001 | B1 |
6279222 | Bunker et al. | Aug 2001 | B1 |
6383678 | Kaneko et al. | May 2002 | B1 |
6431331 | Arbesman | Aug 2002 | B1 |
6464047 | Arbesman | Oct 2002 | B1 |
6622346 | Graham et al. | Sep 2003 | B2 |
6671935 | Filion et al. | Jan 2004 | B2 |
6843095 | Arbesman | Jan 2005 | B2 |
6860368 | Kulis, Jr. et al. | Mar 2005 | B2 |
6910255 | Arbesman | Jun 2005 | B2 |
6913673 | Baggot et al. | Jul 2005 | B2 |
7048097 | Arbesman | May 2006 | B2 |
7222701 | Pham | May 2007 | B2 |
7320386 | Kulis, Jr. et al. | Jan 2008 | B2 |
7686142 | Jung | Mar 2010 | B2 |
7841052 | Ducauchuis | Nov 2010 | B2 |
7989049 | Potier | Aug 2011 | B2 |
8048507 | Townsend et al. | Nov 2011 | B2 |
8088316 | Muth et al. | Jan 2012 | B2 |
D654355 | Cheng | Feb 2012 | S |
8407864 | Mask et al. | Apr 2013 | B2 |
8683840 | Tuma et al. | Apr 2014 | B2 |
8685520 | Meyer et al. | Apr 2014 | B2 |
9273741 | Arbesman et al. | Mar 2016 | B1 |
9360067 | Arbesman et al. | Jun 2016 | B1 |
9388872 | Arbesman et al. | Jul 2016 | B1 |
20020169435 | Neeb et al. | Nov 2002 | A1 |
20020170789 | Poelemans | Nov 2002 | A1 |
20040016608 | Gutowski | Jan 2004 | A1 |
20040140165 | Pham | Jul 2004 | A1 |
20040201182 | Notter | Oct 2004 | A1 |
20050170157 | Armela et al. | Aug 2005 | A1 |
20060027427 | Anda et al. | Feb 2006 | A1 |
20060118238 | Borazghi | Jun 2006 | A1 |
20060243017 | Jung et al. | Nov 2006 | A1 |
20060246256 | Ausen et al. | Nov 2006 | A1 |
20080003401 | Barnes et al. | Jan 2008 | A1 |
20090223753 | Kappagantu et al. | Sep 2009 | A1 |
20100170758 | Chen | Jul 2010 | A1 |
20100207334 | Virgin et al. | Aug 2010 | A1 |
20110036736 | Knowlton et al. | Feb 2011 | A1 |
20110051724 | Scott et al. | Mar 2011 | A1 |
20110079065 | Cabanski et al. | Apr 2011 | A1 |
20110233875 | Shaver et al. | Sep 2011 | A1 |
20110260371 | Arora et al. | Oct 2011 | A1 |
20120003462 | Wong | Jan 2012 | A1 |
20120006959 | Braun et al. | Jan 2012 | A1 |
20130152654 | Arbesman et al. | Jun 2013 | A1 |
20130224512 | Zurfluh et al. | Aug 2013 | A1 |
20150024231 | Kutsumiza et al. | Jan 2015 | A1 |
20150053517 | Arbesman et al. | Feb 2015 | A1 |
20150086750 | Arbesman et al. | Mar 2015 | A1 |
20150099093 | Arbesman et al. | Apr 2015 | A1 |
20150140255 | Mackelvie | May 2015 | A1 |
20150239201 | Walker | Aug 2015 | A1 |
20160167341 | Arbesman et al. | Jun 2016 | A1 |
20160176152 | Mackelvie | Jun 2016 | A1 |
20160230792 | Arbesman et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2038152 | Sep 1992 | CA |
1330521 | Jul 1994 | CA |
1337622 | Nov 1995 | CA |
2127339 | Jan 1996 | CA |
2272115 | Nov 1999 | CA |
2300401 | Dec 1999 | CA |
2391183 | Dec 2003 | CA |
2778455 | Nov 2013 | CA |
145893 | Dec 2013 | CA |
2780397 | Dec 2013 | CA |
2798303 | Jun 2014 | CA |
2821897 | Jan 2015 | CA |
102272471 | Dec 2011 | CN |
19754740 | Mar 1999 | DE |
102004048464 | Apr 2006 | DE |
102006015100 | Oct 2007 | DE |
102006015145 | Oct 2007 | DE |
102006015148 | Oct 2007 | DE |
859163 | Aug 1998 | EP |
934820 | Aug 1999 | EP |
1090728 | Apr 2001 | EP |
2125126 | Feb 1984 | GB |
2359186 | Aug 2001 | GB |
2507128 | Apr 2014 | GB |
59174431 | Nov 1984 | JP |
8021462 | Jan 1996 | JP |
H08200505 | Aug 1996 | JP |
H11240706 | Sep 1999 | JP |
2007170461 | Jul 2007 | JP |
2000-243408 | Sep 2009 | JP |
2013-012626 | Jan 2013 | JP |
2013053687 | Mar 2013 | JP |
2013089799 | May 2013 | JP |
0000344 | Jan 2000 | WO |
WO02090792 | Nov 2002 | WO |
2011051724 | May 2011 | WO |
2013177667 | Dec 2013 | WO |
2015010183 | Jan 2015 | WO |
2015157846 | Oct 2015 | WO |
Entry |
---|
Japanese Office Action and English translation for Application No. 2017-171512, dated Sep. 5, 2018, 10 pages. |
“Graphite Sheet Gaskets”, Environmental Gasket Company Ltd., copyright 2009, 2009, 5 pages. |
“SL T-20 Tang Sheet Specifications Datasheet,” Dynoteq Kft, 1 page. |
“Tanged Stainless Steel Reinforced Graphite Sheet data sheet”, Gee Graphite, 1 page. |
U.S. Appl. No. 14/907,350, “Non-Final Office Action”, dated Feb. 8, 2018, 7 pages. |
Alba Gaskets, “Tanged Graphite”, Data/Specification Sheet, 1 page. |
Cixi Cazseal Packing & Gasket Co, “Graphite Sheet with Tanged Metal CAZ GrafoilTM 440T”, Joint Sheets, 1 page. |
James Walker & Co., “Supagraf® expanded graphite jointings”, Supagraf Tanged T10, 1 page. |
JPU111984174431, “Japanese patent application filed Nov. 21, 1984 (unexamined)”. |
Ningbo Sunwell, “Tanged Metal Reinforced Graphite Gasket”, Data Sheets, Ningbo Sunwell Fluid Technologies Co., Ltd., 2010, 1 page. |
SPG Gaskets Co., “Specification Sheet: SPG7003”, 1 page. |
U.S. Appl. No. 14/907,350, “Non-Final Office Action”, dated Sep. 10, 2018, 9 pages. |
Brazilian Office Action for Application No. 112016001603-3, dated Jan. 22, 2020, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20180297326 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14907350 | US | |
Child | 16011596 | US |