Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues

Information

  • Patent Grant
  • 11063228
  • Patent Number
    11,063,228
  • Date Filed
    Wednesday, October 30, 2019
    5 years ago
  • Date Issued
    Tuesday, July 13, 2021
    3 years ago
Abstract
Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues for full color displays and lighting applications.
Description
TECHNICAL FIELD

This invention relates to metal-assisted delayed fluorescent (MADF) emitters employing benzo-imidazo-phenanthridine and analogues for full color displays and lighting applications.


BACKGROUND

Compounds capable of absorbing or emitting light can be used in a variety of optical and electro-optical devices, including photo-absorbing devices (e.g., solar- and photo-sensitive devices), photo-emitting devices, organic light-emitting diodes (OLEDs), and devices capable of photo-absorption and photo-emission. Much research has been devoted to the discovery and optimization of organic and organometallic materials for use in optical and electro-optical devices. Metal complexes can be used for many applications, such as emitters for OLEDs. Despite advances in research devoted to optical and electro-optical materials, many currently available materials exhibit a number of disadvantages, including poor processing ability, inefficient emission or absorption, and insufficient stability.


SUMMARY

General Formulas I-III represent MADF emitters based on cyclic platinum (II) and palladium (II) complexes employing benzo-imidazo-phenanthridine and analogues.




embedded image



In General Formulas I-III:


M is Pt (II) or Pd (II),


each of V1-V16, if present, is independently C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi.


each of X1, X2, Y1, Y2, Y3, and Y4 is independently present or absent, and each X1, X2, Y1, Y2, Y3, and Y4 present independently represents C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi, or if valency permits, each independently represents CR7, SiR7, GeR7, NR7, P═O, As═O, B, BR7, AlR7, Bi═O, CR7R8, C═O, SiR7R8, GeR7R8, NR7, PR7, PR7R8, R7P═O, AsR7, R7As═O, S═O, SO2, Se═O, SeO2, BR7, BR7R8, AlR7, AlR7R8, R7Bi═O, or BiR7,


each of L1, L2, L3, and L4 is independently present or absent, and each L1, L2, L3, and L4 present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene, and


each of R, R1, R2, R3, R4, R5, R6, R7, and R8 is independently absent or present as a single substituent or multiple substituents, valency permitting, and each R, R1, R2, R3, R4, R5, R6, R7, and R8 present independently represents deuterium, halogen, hydroxyl, thiol, nitro, cyanide, isocyanide, sulfinyl, mercapto, sulfo, carboxyl, hydrazino; substituted or unsubstituted: aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, ureido, phosphoramide, silyl, polymeric; or any conjugate or combination thereof.


General Formula IV represents MADF emitters based on cyclic platinum (II) and palladium (II) complexes employing benzo-imidazo-phenanthridine and analogues.




embedded image



In General Formula IV:


M is Pt (II) or Pd (II)


X represents a single bond or CR7R8, C═O, SiR7R8, GeR7R8, NR7, PR7, PR7R8, R7P═O, AsR7, R7As═O, O, S, S═O, SO2, Se, Se═O, SeO2, BR7, BR7R8, AlR7, AlR7R8, R7Bi═O, or BiR7,




embedded image



each independently represents one of the following chemical moieties:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



where:


N is nitrogen,


each of V1, V2, V3, V4, V5, and V6, if present, is independently C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi,


each of X1, X2, Y1, Y2, Y3, and Y4 is independently present or absent, and each X1, X2, Y1, Y2, Y3, and Y4 present independently represents C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi, or valency permitting, CR7, SiR7, GeR7, NR7, P═O, As═O, B, BR7, AlR7, Bi═O, CR7R8, C═O, SiR7R8, GeR7R8, NR7, PR7, PR7R8, R7P═O, AsR7, R7As═O, S═O, SO2, Se═O, SeO2, BR7, BR7R8, AlR7, AlR7R8, R7Bi═O, or BiR7,


each of L1, L2, L3, and L4 is independently present or absent, and each L1, L2, L3, and L4 present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene,


each of R, R1, R2, R3, R4, R5, R6, R7, and R8 is independently absent or present as a single substituent or multiple substituents, valency permitting, and each R, R1, R2, R3, R4, R5, R6, R7, and R8 present independently represents deuterium, halogen, hydroxyl, thiol, nitro, cyanide, isocyanide, sulfinyl, mercapto, sulfo, carboxyl, hydrazino; substituted or unsubstituted: aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, ureido, phosphoramide, silyl, polymeric, or any conjugate or combination thereof, and


each of




embedded image



is independently present or absent, and each Ar present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene.


General Formulas V-XIII represent MADF emitters based on cyclic platinum (II) and palladium (II) complexes employing benzo-imidazo-phenanthridine and analogues.




embedded image


embedded image



In General Formulas V-XIII,


M is Pt (II) or Pd (II),


N is nitrogen,


each of V1a-V1f, V2a-V2f, V3a-V3f, V4a-V4f, V5a-V5f, and V6a-V6f, if present, is independently N, C, P, O, S, or Si,


each of X, X1, X2, X3, and X4 is independently present or absent, and each X, X1, X2, X3, and X4 present independently represents a single bond. CR7R8, C═O, SiR7R8, GeR7R8, NR7, PR7, PR7R8, R7P═O, AsR7, R7As═O, O, S, S═O, SO2, Se, Se═O, SeO2, BR7, BR7R8, AlR7, AlR7R8, R7Bi═O, or BiR7,


each of Y1 and Y2 is independently CR, SiR, GeR, N, NR, P, P═O, As, As═O, B, BR, Al, AlR, Bi═O, or Bi,


each of L1, L2, L3, and L4 is independently present or absent, and each L1, L2, L3, and L4 present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene,


each of R, R1, R2, R3, R4, R5, R6, R7, and R8 is independently absent or present as a single substituent or multiple substituents, valency permitting, and each R, R1, R2, R3, R4, R5, R6, R7, and R8 present independently represents deuterium, halogen, hydroxyl, thiol, nitro, cyanide, isocyanide, sulfinyl, mercapto, sulfo, carboxyl, hydrazino; substituted or unsubstituted: aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, ureido, phosphoramide, silyl, polymeric; or any conjugate or combination thereof.


Octahedral iridium (III) metal-assisted delayed fluorescent (MADF) emitters employing benzo-imidazo-phenanthridine are represented by General Formulas XIV-XVII.




embedded image


In General Formulas XIV-XVII, y=0, 1, or 2, and m+y=3. For m=3, the moieties can be the same or different. That is, when m=3, the three moieties can be the same, two of the moieties can be the same, or all three of the moieties can be different.


Implementations include a light emitting diode including a complex of General Formulas I-XVII, and a lighting device including such light emitting diode.


These general and specific aspects may be implemented using a device, system or method, or any combination of devices, systems, or methods. The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a cross-sectional view of an organic light-emitting device.



FIG. 2 is an emission spectrum of the metal-assisted delayed fluorescent emitter of Example 3 in tehtrahydro-2-methylfuran at 77K.



FIG. 3 is an emission spectrum of the metal-assisted delayed fluorescent emitter of Example 12 in tehtrahydro-2-methylfuran at 77K.



FIG. 4 is an emission spectrum of the metal-assisted delayed fluorescent emitter of Example 27 in methylene chloride at room temperature.



FIGS. 5A-5C show external quantum efficiency (EQE) versus luminance, EQE versus current density, and an electroluminescent spectrum, respectively, for a light-emitting device including the emitter of Example 46.



FIGS. 6A-6C show external quantum efficiency (EQE) versus luminance, EQE versus current density, and an electroluminescent spectrum, respectively, for a light-emitting device including the emitter of Example 46.





DETAILED DESCRIPTION

Cyclometalated Pt (II) and Pd (II) complexes have found wide applications as emitters for OLEDs in recent decades. Metal-assisted delayed fluorescent (MADF) emitters based on Pt (II) and Pd (II) complexes can exhibit both singlet and triplet excitons, resulting in a unity internal quantum efficiency and short lifetimes. Through the judicious design of cyclometalating ligands, MADF emitters can display singlet-triplet energy splitting.


MADF emitters based on cyclic platinum (II) and palladium (II) complexes employing benzo-imidazo-phenanthridine and analogues are disclosed. The triplet state consists mostly of the lower energy C{circumflex over ( )}N portion of the molecules which is localized on the benzo-imidazo-phenanthridine (or analogues). The singlet energy can be reduced by extending the conjugation of benzo-imidazo-phenanthridine (or analogues) with no or little energy change of triplet energy. The small energy gap between singlet and triplet allows excitons to be thermally promoted to the singlet state and efficiently emitted via thermally assisted delayed fluorescence (TADF) while the remaining triplet excitons can emit via the available efficient phosphorescent pathway. This class of emitters is suitable for full color displays and lighting applications.


MADF emitters employing benzo-imidazo-phenanthridine and analogues include compounds of General Formulas I-III shown below.




embedded image



In General Formulas I-III:


M is Pt (II) or Pd (II),


each of V1-V16, if present, is independently C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi, each of X1, X2, Y1, Y2, Y3, and Y4 is independently present or absent, and each X1, X2, Y1, Y2, Y3, and Y4 present independently represents C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi, or if valency permits, each independently represents CR7, SiR7, GeR7, NR7, P═O, As═O, B, BR7, AlR7, Bi═O, CR7R8, C═O, SiR7R8, GeR7R8, NR7, PR7, PR7R8, R7P═O, AsR7, R7As═O, S═O, SO2, Se═O, SeO2, BR7, BR7R8, AlR7, AlR7R8, R7Bi═O, or BiR7,


each of L1, L2, L3, L4, L5, and L6 is independently present or absent, and each L1, L2, L3, L4, L5, and L6 present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene, and


each of R, R1, R2, R3, R4, R5, R6, R7, and R8 is independently absent or present as a single substituent or multiple substituents, valency permitting, and each R, R1, R2, R3, R4, R5, R6, R7, and R8 present independently represents deuterium, halogen, hydroxyl, thiol, nitro, cyanide, isocyanide, sulfinyl, mercapto, sulfo, carboxyl, hydrazino; substituted or unsubstituted: aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, ureido, phosphoramide, silyl, polymeric; or any conjugate or combination thereof.


Examples of suitable substituents R1-R8 include:




embedded image


embedded image


Examples of General Formulas I-III are shown below.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



In these implementations of General Formulas I-III:


M is Pt (II) or Pd (II),


N is nitrogen,


each of V1-V6, if present, is independently C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi,


each of X1, X2, Y1, Y2, Y3, and Y4 is independently present or absent, and if present, each X1, X2, Y1, Y2, Y3, and Y4 independently represents C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi, or valency permitting, each independently represents CR7, SiR7, GeR7, NR7, P═O, As═O, B, BR7, AlR7, Bi═O, CR7R8, C═O, SiR7R8, GeR7R8, NR7, PR7, PR7R8, R7P═O, AsR7, R7As═O, S═O, SO2, Se═O, SeO2, BR7, BR7R8, AlR7, AlR7R8, R7Bi═O, or BiR7,


each of L1, L2, L3, and L4 is independently present or absent, and each L1, L2, L3, and L4 present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene,


each of R, R1, R2, R3, R4, R5, R6, R7, and R8 is independently absent or present as a single substituent or multiple substituents, valency permitting, and each R, R1, R2, R3, R4, R5, R6, R7, and R8 present independently represents deuterium, halogen, hydroxyl, thiol, nitro, cyanide, isocyanide, sulfinyl, mercapto, sulfo, carboxyl, hydrazino; substituted or unsubstituted: aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, ureido, phosphoramide, silyl, polymeric; or any conjugate or combination thereof.


Examples of suitable substituents R1-R8 include:




embedded image


embedded image


In the implementations of General Formulas I-III, each of




embedded image



is independently present or absent, and each Ar present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene, including the following moieties:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



in which R1, R2, R3, R4, X1, and X2 are as defined herein.


Compounds of General Formulas I-III are shown below.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


MADF emitters based on cyclic platinum (II) and palladium (II) complexes employing benzo-imidazo-phenanthridine and analogues include compounds of General Formula IV shown below.




embedded image



In General Formula IV:


M is Pt (II) or Pd (II)


X represents a single bond or CR7R8, C═O, SiR7R8, GeR7R8, NR7, PR7, PR7R8, R7P═O, AsR7, R7As═O, O, S, S═O, SO2, Se, Se═O, SeO2, BR7, BR7R8, AlR7, AlR7R8, R7Bi═O, or BiR7,




embedded image



each independently represents one of the following chemical moieties:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


where:


N is nitrogen.


each of V1, V2, V3, V4, V5, and V6, if present, is independently C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi,


each of X1, X2, Y1, Y2, Y3, and Y4 is independently present or absent, and each X1, X2, Y1, Y2, Y3, and Y4 present independently represents C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi, or valency permitting, CR7, SiR7, GeR7, NR7, P═O, As═O, B, BR7, AlR7, Bi═O, CR7R8, C═O, SiR7R8, GeR7R8, NR7, PR7, PR7R8, R7P═O, AsR7, R7As═O, S═O, SO2, Se═O, SeO2, BR7, BR7R8, AlR7, AlR7R8, R7Bi═O, or BiR7,


each of L1, L2, L3, and L4 is independently present or absent, and each L1, L2, L3, and L4 present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene,


each of R, R1, R2, R3, R4, R5, R6, R7, and R8 is independently absent or present as a single substituent or multiple substituents, valency permitting, and each R, R1, R2, R3, R4, R5, R6, R7, and R8 present independently represents deuterium, halogen, hydroxyl, thiol, nitro, cyanide, isocyanide, sulfinyl, mercapto, sulfo, carboxyl, hydrazino; substituted or unsubstituted: aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, ureido, phosphoramide, silyl, polymeric, or any conjugate or combination thereof, and


each of




embedded image



is independently present or absent, and each Ar present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene, where suitable examples of substituents include the following:




embedded image


embedded image


In A—B and A′—B′, Ar is independently present or absent, and each Ar present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene. Suitable examples of Ar include the following:




embedded image


embedded image



in which R and R7 are as defined herein.


Compounds of General Formula IV are shown below.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


MADF emitters based on cyclic platinum (II) and palladium (II) complexes employing benzo-imidazo-phenanthridine and analogues include General Formulas V-XIII.




embedded image


embedded image



In General Formulas V-XIII:


M is Pt (II) or Pd (II),


N is nitrogen,


each or V1a-V1f, V2a-V2f, V3a-V3f, V4a-V4f, V5a-V5f, and V6a-V6f, if present, is independently N, C, P, O, S, or Si,


each of X, X1, X2, X3, and X4 is independently present or absent, and each X, X1, X2, X3, and X4 present independently represents a single bond, CR7R8, C═O, SiR7R8, GeR7R8, NR7, PR7, PR7R8, R7P═O, AsR7, R7As═O, O, S, S═O, SO2, Se, Se═O, SeO2, BR7, BR7R8, AlR7, AlR7R8, R7Bi═O, or BiR7,


each of Y1 and Y2 is independently CR, SiR, GeR, N, NR, P, P═O, As, As═O, B, BR7, Al, AlR, Bi═O, or Bi,


each of L1, L2, L3, and L4 is independently present or absent, and each L1, L2, L3, and L4 present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene,


each of R, R1, R2, R3, R4, R5, R6, R7, and R8 is independently absent or present as a single substituent or multiple substituents, valency permitting, and each R, R1, R2, R3, R4, R5, R6, R7, and R8 present independently represents deuterium, halogen, hydroxyl, thiol, nitro, cyanide, isocyanide, sulfinyl, mercapto, sulfo, carboxyl, hydrazino; substituted or unsubstituted: aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, ureido, phosphoramide, silyl, polymeric; or any conjugate or combination thereof.


Compounds of General Formulas V-XIII include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



The substituents in these compounds are as defined herein.


Octahedral iridium (III) metal-assisted delayed fluorescent (MADF) emitters employing benzo-imidazo-phenanthridine are represented by General Formulas XIV-XVII:




embedded image



In General Formula XIV-XVII,


N is nitrogen,


Ir is iridium,


m+y=3, and when m=3, y=0, when m=2, y=1, when m=1, y=2,


each n is independently an integer, valency permitting,


each




embedded image



represents one of the following chemical moieties:




embedded image


embedded image


each of R, R1, R2, R3, R4, R5, R6, R1′, and R4′ is independently absent or present as a single substituent or multiple substituents, valency permitting, and each R, R1, R2, R3, R4, R5, R6, R1′, and R4′ present independently represents deuterium, halogen, hydroxyl, thiol, nitro, cyanide, isocyanide, sulfinyl, mercapto, sulfo, carboxyl, hydrazino; substituted or unsubstituted: aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, amino, monoalkylamino, dialkylamino, monoarylamino, diarylamino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, ureido, phosphoramide, silyl, polymeric, or any conjugate or combination thereof, where the following are examples:




embedded image


embedded image


each of X1, X2, X3, X4, Y1, Y2, Y3, Y4, Y5, Y6, and Y7 is independently present or absent, and each X1, X2, X3, X4, Y1, Y2, Y3, Y4, Y5, Y6, and Y7 present independently represents C, N, Si, O, S, Ge, P, As, Se, B, Al, or Bi, or, valency permitting, CR7, SiR7. GeR7, NR7, P═O, As═O, B, BR7, AlR7, Bi═O, CR7R8, C═O, SiR7R8, GeR7R8, NR7, PR7, PR7R8, R7P═O, AsR7, R7As═O, S═O, SO2, Se═O, SeO2, BR7, BR7R8, AlR7, AlR7R8, R7Bi═O, or BiR7,


each




embedded image



is independently present or absent, and each Ar present independently represents a substituted or unsubstituted aryl, heteroaryl, or N-heterocyclic carbene, and the following chemical moieties:




embedded image


embedded image


embedded image


In General Formulas XIV-XVII, for m=3, the moieties can be the same or different. That is, when m=3, the three moieties can be the same, two of the moieties can be the same, or all three of the moieties can be different.


Implementations of General Formulas XIV-XVII include the following:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


As referred to herein, a linking atom or group connects two atoms such as, for example, an N atom and a C atom. A linking atom or group is in one aspect disclosed as L1, L2, L3, etc. herein. The linking atom can optionally, if valency permits, have other chemical moieties attached. For example, in one aspect, an oxygen would not have any other chemical groups attached as the valency is satisfied once it is bonded to two groups (e.g., N and/or C groups). In another aspect, when carbon is the linking atom, two additional chemical moieties can be attached to the carbon. Suitable chemical moieties include amine, amide, thiol, aryl, heteroaryl, cycloalkyl, and heterocyclyl moieties. The term “cyclic structure” or the like terms used herein refer to any cyclic chemical structure which includes, but is not limited to, aryl, heteroaryl, cycloalkyl, cycloalkenyl, heterocyclyl, carbene, and N-heterocyclic carbene.


As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, and aromatic and nonaromatic substituents of organic compounds. Illustrative substituents include, for example, those described below. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this disclosure, the heteroatoms, such as nitrogen, can have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. This disclosure is not intended to be limited in any manner by the permissible substituents of organic compounds. Also, the terms “substitution” or “substituted with” include the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., a compound that does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. It is also contemplated that, in certain aspects, unless expressly indicated to the contrary, individual substituents can be further optionally substituted (i.e., further substituted or unsubstituted).


In defining various terms, “A1”, “A2”, “A3”, “A4” and “A5” are used herein as generic symbols to represent various specific substituents. These symbols can be any substituent, not limited to those disclosed herein, and when they are defined to be certain substituents in one instance, they can, in another instance, be defined as some other substituents.


The term “alkyl” as used herein is a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, s-pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dode cyl, tetradecyl, hexadecyl, eicosyl, tetracosyl, and the like. The alkyl group can be cyclic or acyclic. The alkyl group can be branched or unbranched. The alkyl group can also be substituted or unsubstituted. For example, the alkyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol, as described herein. A “lower alkyl” group is an alkyl group containing from one to six (e.g., from one to four) carbon atoms.


Throughout the specification “alkyl” is generally used to refer to both unsubstituted alkyl groups and substituted alkyl groups; however, substituted alkyl groups are also specifically referred to herein by identifying the specific substituent(s) on the alkyl group. For example, the term “halogenated alkyl” or “haloalkyl” specifically refers to an alkyl group that is substituted with one or more halide, e.g., fluorine, chlorine, bromine, or iodine. The term “alkoxyalkyl” specifically refers to an alkyl group that is substituted with one or more alkoxy groups, as described below. The term “alkylamino” specifically refers to an alkyl group that is substituted with one or more amino groups, as described below, and the like. When “alkyl” is used in one instance and a specific term such as “alkylalcohol” is used in another, it is not meant to imply that the term “alkyl” does not also refer to specific terms such as “alkylalcohol” and the like.


This practice is also used for other groups described herein. That is, while a term such as “cycloalkyl” refers to both unsubstituted and substituted cycloalkyl moieties, the substituted moieties can, in addition, be specifically identified herein; for example, a particular substituted cycloalkyl can be referred to as, e.g., an “alkylcycloalkyl.” Similarly, a substituted alkoxy can be specifically referred to as, e.g., a “halogenated alkoxy,” a particular substituted alkenyl can be, e.g., an “alkenylalcohol,” and the like. Again, the practice of using a general term, such as “cycloalkyl,” and a specific term, such as “alkylcycloalkyl,” is not meant to imply that the general term does not also include the specific term.


The term “cycloalkyl” as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms. Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, and the like. The term “heterocycloalkyl” is a type of cycloalkyl group as defined above, and is included within the meaning of the term “cycloalkyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkyl group and heterocycloalkyl group can be substituted or unsubstituted. The cycloalkyl group and heterocycloalkyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol as described herein.


The terms “‘alkoxy’” and “alkoxyl” as used herein to refer to an alkyl or cycloalkyl group bonded through an ether linkage; that is, an “alkoxy” group can be defined as —OA1 where A1 is alkyl or cycloalkyl as defined above. “Alkoxy” also includes polymers of alkoxy groups as just described; that is, an alkoxy can be a polyether such as —OA1—OA2 or —OA1—(OA2)a—OA3, where “a” is an integer of from 1 to 200 and A1, A2, and A3 are alkyl and/or cycloalkyl groups.


The term “alkenyl” as used herein is a hydrocarbon group of from 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon double bond. Asymmetric structures such as (A1A2)C═C(A3A4) are intended to include both the E and Z isomers. This can be presumed in structural formulae herein wherein an asymmetric alkene is present, or it can be explicitly indicated by the bond symbol C═C. The alkenyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkene 1l, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol, as described herein.


The term “cycloalkenyl” as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms and containing at least one carbon-carbon double bound, i.e., C═C. Examples of cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, norbornenyl, and the like. The term “heterocycloalkenyl” is a type of cycloalkenyl group as defined above, and is included within the meaning of the term “cycloalkenyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkenyl group and heterocycloalkenyl group can be substituted or unsubstituted. The cycloalkenyl group and heterocycloalkenyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.


The term “alkynyl” as used herein is a hydrocarbon group of 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon triple bond. The alkynyl group can be unsubstituted or substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol, as described herein.


The term “cycloalkynyl” as used herein is a non-aromatic carbon-based ring composed of at least seven carbon atoms and containing at least one carbon-carbon triple bound. Examples of cycloalkynyl groups include, but are not limited to, cycloheptenyl, cyclooctynyl, cyclononynyl, and the like. The term “heterocycloalkynyl” is a type of cycloalkenyl group as defined above, and is included within the meaning of the term “cycloalkynyl.” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkynyl group and heterocycloalkynyl group can be substituted or unsubstituted. The cycloalkynyl group and heterocycloalkynyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.


The term “aryl” as used herein is a group that contains any carbon-based aromatic group including, but not limited to, benzene, naphthalene, phenyl, biphenyl, phenoxybenzene, and the like. The term “aryl” also includes “heteroaryl,” which is defined as a group that contains an aromatic group that has at least one heteroatom incorporated within the ring of the aromatic group. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorus. Likewise, the term “non-heteroaryl.” which is also included in the term “aryl,” defines a group that contains an aromatic group that does not contain a heteroatom. The aryl group can be substituted or unsubstituted. The aryl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein. The term “biaryl” is a specific type of aryl group and is included in the definition of “aryl.” Biaryl refers to two aryl groups that are bound together via a fused ring structure, as in naphthalene, or are attached via one or more carbon-carbon bonds, as in biphenyl.


The term “aldehyde” as used herein is represented by the formula —C(O)H. Throughout this specification “C(O)” is a short hand notation for a carbonyl group, i.e., C═O.


The terms “amine” or “amino” as used herein are represented by the formula —NA1A2, where A1 and A2 can be, independently, hydrogen or alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “alkylamino” as used herein is represented by the formula —NH(-alkyl) where alkyl is a described herein. Representative examples include, but are not limited to, methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, (sec-butyl)amino group, (tert-butyl)amino group, pentylamino group, isopentylamino group, (tert-pentyl)amino group, hexylamino group, and the like.


The term “dialkylamino” as used herein is represented by the formula —N(-alkyl)2 where alkyl is a described herein. Representative examples include, but are not limited to, dimethylamino group, diethylamino group, dipropylamino group, diisopropylamino group, dibutylamino group, diisobutylamino group, di(sec-butyl)amino group, di(tert-butyl)amino group, dipentylamino group, diisopentylamino group, di(tert-pentyl)amino group, dihexylamino group, N-ethyl-N-methylamino group, N-methyl-N-propylamino group, N-ethyl-N-propylamino group and the like.


The term “carboxylic acid” as used herein is represented by the formula —C(O)OH.


The term “ester” as used herein is represented by the formula —OC(O)A1 or —C(O)OA1, where A1 can be alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “polyester” as used herein is represented by the formula —(A1O(O)C-A2—C(O)O)a— or —(A1O(O)C-A2—OC(O))a—, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein and “a” is an integer from 1 to 500. “Polyester” is as the term used to describe a group that is produced by the reaction between a compound having at least two carboxylic acid groups with a compound having at least two hydroxyl groups.


The term “ether” as used herein is represented by the formula A1OA2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein. The term “polyether” as used herein is represented by the formula —(A1O-A2O)a—, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein and “a” is an integer of from 1 to 500. Examples of polyether groups include polyethylene oxide, polypropylene oxide, and polybutylene oxide.


The term “halide” or “halo” as used herein refers to the halogens fluorine, chlorine, bromine, and iodine.


The term “heterocyclyl,” as used herein refers to single and multi-cyclic non-aromatic ring systems and “heteroaryl as used herein refers to single and multi-cyclic aromatic ring systems; in which at least one of the ring members is other than carbon. The terms includes azetidine, dioxane, furan, imidazole, isothiazole, isoxazole, morpholine, oxazole, oxazole, including, 1,2,3-oxadiazole, 1,2,5-oxadiazole and 1,3,4-oxadiazole, piperazine, piperidine, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, tetrahydrofuran, tetrahydropyran, tetrazine, including 1,2,4,5-tetrazine, tetrazole, including 1,2,3,4-tetrazole and 1,2,4,5-tetrazole, thiadiazole, including, 1,2,3-thiadiazole, 1,2,5-thiadiazole, and 1,3,4-thiadiazole, thiazole, thiophene, triazine, including 1,3,5-triazine and 1,2,4-triazine, triazole, including, 1,2,3-triazole, 1,3,4-triazole, and the like.


The term “hydroxyl” as used herein is represented by the formula —OH.


The term “ketone” as used herein is represented by the formula A1C(O)A2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “azide” as used herein is represented by the formula —N3.


The term “nitro” as used herein is represented by the formula —NO2.


The term “cyanide” as used herein is represented by the formula —CN.


The term “silyl” as used herein is represented by the formula —SiA1A2A3, where A1, A2, and A3 can be, independently, hydrogen or an alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “sulfo-oxo” as used herein is represented by the formulas —S(O)A1, —S(O)2A1, —OS(O)2A1, or —OS(O)2OA1, where A1 can be hydrogen or an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. Throughout this specification “S(O)” is a short hand notation for S═O. The term “sulfonyl” is used herein to refer to the sulfo-oxo group represented by the formula —S(O)2A1, where A1 can be hydrogen or an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “sulfone” as used herein is represented by the formula A1S(O)2A2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “sulfoxide” as used herein is represented by the formula A1S(O)A2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “thiol” as used herein is represented by the formula —SH.


“R,” “R1,” “R2,” “R3,” “Rn,” where n is an integer, as used herein can, independently, possess one or more of the groups listed above. For example, if R1 is a straight chain alkyl group, one of the hydrogen atoms of the alkyl group can optionally be substituted with a hydroxyl group, an alkoxy group, an alkyl group, a halide, and the like. Depending upon the groups that are selected, a first group can be incorporated within second group or, alternatively, the first group can be pendant (i.e., attached) to the second group. For example, with the phrase “an alkyl group comprising an amino group,” the amino group can be incorporated within the backbone of the alkyl group. Alternatively, the amino group can be attached to the backbone of the alkyl group. The nature of the group(s) that is (are) selected will determine if the first group is embedded or attached to the second group.


Compounds described herein may contain “optionally substituted” moieties. In general, the term “substituted,” whether preceded by the term “optionally” or not, means that one or more hydrogens of the designated moiety are replaced with a suitable substituent. Unless otherwise indicated, an “optionally substituted” group may have a suitable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. Combinations of substituents envisioned by this disclosure are preferably those that result in the formation of stable or chemically feasible compounds. In is also contemplated that, in certain aspects, unless expressly indicated to the contrary, individual substituents can be further optionally substituted (i.e., further substituted or unsubstituted).


In some aspects, a structure of a compound can be represented by a formula:




embedded image



which is understood to be equivalent to a formula:




embedded image



wherein n is typically an integer. That is, Rn is understood to represent five independent substituents, Rn(a), Rn(b), Rn(c), Rn(d), Rn(e). By “independent substituents,” it is meant that each R substituent can be independently defined. For example, if in one instance Rn(a) is halogen, then Rn(b) is not necessarily halogen in that instance. In a case where there is a single Rn (e.g., only Rn(a), Rn is referred to as a “single substituent.” In a case where there are two or more Rn (e.g., at least Rn(a) and Rn(b)) Rn is referred to as a “multiple substituents.”


Several references to R, R1, R2, R3, R4, R5, R6, etc. are made in chemical structures and moieties disclosed and described herein. Any description of R, R1, R2, R3, R4, R5, R6, etc. in the specification is applicable to any structure or moiety reciting R, R1, R2, R3, R4, R5, R6, etc. respectively.


The compounds disclosed herein are suited for use in a wide variety of devices, including, for example, organic light emitting diodes (OLEDs) for full color displays and lighting applications.


Also disclosed herein are compositions including one or more compounds disclosed herein. The present disclosure provides light emitting device that include one or more compositions described herein. The present disclosure also provides a photovoltaic device comprising one or more complexes or compositions described herein. Further, the present disclosure also provides a luminescent display device comprising one or more compounds described herein.


Compounds described herein can be used in a light emitting device such as an OLED. FIG. 1 depicts a cross-sectional view of an OLED 100. OLED 100 includes substrate 102, anode 104, hole-transporting material(s) (HTL) 106, light processing material 108, electron-transporting material(s) (ETL) 110, and a metal cathode layer 112. Anode 104 is typically a transparent material, such as indium tin oxide. Light processing material 108 may be an emissive material (EML) including an emitter and a host.


In various aspects, any of the one or more layers depicted in FIG. 1 may include indium tin oxide (ITO), poly(3,4-ethylenedioxythiophene) (PEDOT), polystyrene sulfonate (PSS), N,N′-di-1-naphthyl-N,N-diphenyl-1,1′-biphenyl-4,4′diamine (NPD), 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC), 2,6-Bis(N-carbazolyl)pyridine (mCpy), 2,8-bis(diphenylphosphoryl)dibenzothiophene (PO15), LiF, Al, or a combination thereof.


Light processing material 108 may include one or more compounds of the present disclosure optionally together with a host material. The host material can be any suitable host material known in the art. The emission color of an OLED is determined by the emission energy (optical energy gap) of the light processing material 108, which can be tuned by tuning the electronic structure of the emitting compounds, the host material, or both. Both the hole-transporting material in the HTL layer 106 and the electron-transporting material(s) in the ETL layer 110 may include any suitable hole-transporter known in the art.


EXAMPLES

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary and are not intended to be limiting in scope. Some of these synthetic examples have been performed. Others are based on an understanding of related synthetic procedures and are predictive in nature. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.), but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in ° C. or is at ambient temperature, and pressure is at or near atmospheric.


Various methods for the preparation method of the compounds described herein are recited in the examples. These methods are provided to illustrate various methods of preparation, but are not intended to limit any of the methods recited herein. Accordingly, one of skill in the art in possession of this disclosure could readily modify a recited method or utilize a different method to prepare one or more of the compounds described herein. The following aspects are only exemplary and are not intended to be limiting in scope. Temperatures, catalysts, concentrations, reactant compositions, and other process conditions can vary, and one of skill in the art, in possession of this disclosure, could readily select appropriate reactants and conditions for a desired complex.


Examples of General Formulas I-XIII


Example 1



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (284.3 mg, 1 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L1 in 30%˜70% yield.




embedded image


L1 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC1 in 10%˜50% yield.


Example 2



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,8]naphthyridin-7-ol (285 mg, 1 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90, ° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L2 in 30%˜70% yield.




embedded image


L2 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC2 in 10%˜50% yield.


Example 3



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,5]naphthyridin-7-ol (100 mg, 0.35 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (136 mg, 0.42 mmol, 1.2 eq), CuI (13 mg, 0.07 mmol, 0.2 eq), picolinic acid (9 mg, 0.07 mmol, 0.2 eq) and K3PO4 (149 mg, 0.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90) C for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L3 as an orange yellow solid 105 mg in 57% yield.




embedded image


L3 (95 mg, 0.18 mmol, 1.0 eq), Pd(OAc)2 (43 mg, 0.19 mmol, 1.1 eq) and n-Bu4NBr (6 mg, 0.018 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (11 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC3 as a white solid 100 mg in 86% yield. FIG. 2 shows an emission spectrum of MC3 in tetrahydro-2-methylfuran at 77K.


Example 4



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,7]naphthyridin-7-ol (100 mg, 0.35 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (136 mg, 0.42 mmol, 1.2 eq), CuI (13 mg, 0.07 mmol, 0.2 eq), picolinic acid (91 ng, 0.07 mmol, 0.2 eq) and K3PO4 (149 mg, 0.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L4 in 40%˜70% yield.




embedded image


L4 (95 mg, 0.18 mmol, 1.0 eq), Pd(OAc)2 (43 mg, 0.19 mmol, 1.1 eq) and n-Bu4NBr (6 mg, 0.018 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (11 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC4 in 10%-50% yield.


Example 5



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,6]naphthyridin-7-ol (100 mg, 0.35 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (136 mg, 0.42 mmol, 1.2 eq), CuI (13 mg, 0.07 mmol, 0.2 eq), picolinic acid (9 mg, 0.07 mmol, 0.2 eq) and K3PO4 (149 mg, 0.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L5 in 40%˜70% yield




embedded image


L5 (95 mg, 0.18 mmol, 1.0 eq), Pd(OAc)2 (43 mg, 0.19 mmol, 1.1 eq) and n-Bu4NBr (6 mg, 0.018 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (11 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC5 in 10%˜50% yield.


Example 6



embedded image


Benzo[4,5]imidazo[2,1-a]pyrazino[2,3-c]isoquinolin-7-ol (286 mg, 1 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 9° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L6 in 30%˜70% yield.




embedded image


L6 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC6 in 10%˜50% yield.


Example 7



embedded image


Benzo[4,5]imidazo[2,1-a]pyrimido[4,5-c]isoquinolin-7-ol (286 mg, 1 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L7 in 30%˜70% yield.




embedded image


L7 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC7 in 10%˜50% yield.


Example 8



embedded image


embedded image



7-hydroxybenzo[4,5]imidazo[1,2-f]phenanthridine-2,3-dicarbonitrile (334 mg 1 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L8 in 30%˜70% yield.




embedded image


L8 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC8 in 10%˜50% yield.


Example 9



embedded image


embedded image


Benzo[b]benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (217 mg, 0.65 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (252 mg, 0.78 mmol, 1.2 eq), CuI (25 mg, 0.13 mmol, 0.2 eq), picolinic acid (16 mg, 0.13 mmol, 0.2 eq) and K3PO4 (275 mg, 1.3 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane ethyl acetate as eluent to obtain the desired product ligand L9 as a white solid 100 mg in 27% yield




embedded image


7-((9-(pyridin-2-yl)-9H-carbazol-2-yl)oxy)benzo[b]benzo[4,5]imidazo[1,2-f]phenanthridine (80 mg, 0.14 mmol, 1.0 eq), Pd(OAc)2 (37 mg, 0.17 mmol, 1.2 eq) and n-Bu4NBr (5 mg, 0.014 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (9 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC9 as a white solid 60 mg in 63° % yield.


Example 10



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,8]naphthyridin-7-ol (145 mg, 0.51 mmol, 1.0 eq), 2-bromo-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole (231 mg, 0.61 mmol, 1.2 eq), CuI (20 mg, 0.10 mmol, 0.2 eq), picolinic acid (13 mg, 0.10 mmol, 0.2 eq) and K3PO4 (217 mg, 1.02 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L10 as an orange yellow solid 185 mg in 63% yield.




embedded image


L10 (175 mg, 0.3 mmol, 1.0 eq), Pd(OAc)2 (74 mg, 0.33 mmol, 1.1 eq) and n-Bu4NBr (10 mg, 0.03 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (19 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC10 in 10%˜50% yield.


Example 11



embedded image


Dibenzo[a,c]benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (384.4 mg, 1 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (281 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L11 as a white solid 350 mg in 65% yield.




embedded image


L11 (107.6 mg, 0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC11 as a white solid 58 mg in 45% yield.


Example 12



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (284.3 mg, 1 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (281 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2.1) as eluent to obtain the desired product ligand L12 as a white solid 306 mg in 70% yield.




embedded image


LC12 (87.4 mg, 0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC12 as a white solid 43 mg in 40% yield. FIG. 3 shows an emission spectrum of MC12 in tetrahydro-2-methylfuran at 77K.


Example 13



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (355 mg, 1.03 mmol, 1.0 eq), 2-(3-bromo-5-(tert-butyl)phenyl)-4-(tert-butyl)pyridine (350 mg, 1.23 mmol, 1.2 eq), CuI (40 mg, 0.21 mmol, 0.2 eq), picolinic acid (25 mg, 0.21 mmol, 0.2 eq) and K3PO4 (437 mg, 2.06 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L13 as an orange yellow solid 310 mg in 55% yield.




embedded image


L13 (66 mg, 0.12 mmol, 1.0 eq), Pd(OAc)2 (32 mg, 0.14 mmol, 1.2 eq) and n-Bu4NBr (4 mg, 0.012 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (8 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC13 in 10%˜50% yield.


Example 14



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,5]naphthyridin-7-ol (100 mg, 0.35 mmol, 1.0 eq), 9-(3-bromophenyl)-9H-pyrido[2,3-b]indole (136 mg, 0.42 mmol, 1.2 eq), CuI (13 mg, 0.07 mmol, 0.2 eq), picolinic acid (9 mg, 0.07 mmol, 0.2 eq) and K3PO4 (149 mg, 0.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L14 in 30%˜70% yield.




embedded image


L14 (95 mg, 0.18 mmol, 1.0 eq), Pd(OAc)2 (43 mg, 0.19 mmol, 1.1 eq) and n-Bu4NBr (6 mg, 0.018 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (11 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC14 in 10%˜50% yield.


Example 15



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,5]naphthyridin-7-ol (100 mg, 0.35 mmol, 1.0 eq), 2-bromo-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole (159 mg, 0.42 mmol, 1.2 eq), CuI (13 mg, 0.07 mmol, 0.2 eq), picolinic acid (9 mg, 0.07 mmol, 0.2 eq) and K3PO4 (149 mg, 0.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L15 in 30%˜70% yield.




embedded image


L15 (0.18 mmol, 1.0 eq), Pd(OAc)2 (43 mg, 0.19 mmol, 1.1 eq) and n-Bu4NBr (6 mg, 0.018 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (11 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC15 in 10%˜50% yield.


Example 16



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (284.3 mg, 1 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as and eluent to obtain the desired product ligand L16 as a white solid 316 mg in 60% yield




embedded image


L16 (105.4 mg, 0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC16 as a white solid 52 mg in 40% yield.


Example 17



embedded image


Dibenzo[a,c]benzo[4,5]imidazo[1,2-t]phenanthridin-7-ol (384.3 mg, 1 mmol, 1.0 eq), 9-(3-bromophenyl)-9H-pyrido[2,3-b]indole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2.1) as eluent to obtain the desired product ligand L17 as a white solid 352 mg in 56% yield.




embedded image


L17 (125.4 mg, 0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC17 as a white solid 66 mg in 45% yield.


Example 18



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (1 mmol, 1.0 eq), 7-bromobenzo[4,5]imidazo[1,2-f]phenanthridine (1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L18 as a white solid in 40%˜70% yield.




embedded image


L18 (0.20 mmol, 1.0 eq), Pd(OAc)2 (0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC18 as a white solid in 10%˜50% yield.


Example 19



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,8]naphthyridin-7-ol (1 mmol, 1.0 eq), 7-bromobenzo[c]benzo[4,5]imidazo[1,2-a][1,8]naphthyridine (1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L19 as a white solid in 40%˜70% yield.




embedded image


L19 (0.20 mmol, 1.0 eq), Pd(OAc)2 (0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC19 as a white solid in 10%˜50% yield.


Example 20



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,5]naphthyridin-7-ol (1 mmol, 1.0 eq), 7-bromobenzo[c]benzo[4,5]imidazo[1,2-a][1,5]naphthyridine (1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L20 as a white solid in 40%˜70% yield.




embedded image


L20 (0.20 mmol, 1.0 eq), Pd(OAc)2 (0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC20 as a white solid in 10%˜50% yield.


Example 21



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,7]naphthyridin-7-ol (1 mmol, 1.0 eq), 7-bromobenzo[c]benzo[4,5]imidazo[1,2-a][1,7]naphthyridine (1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L21 as a white solid in 40%˜70% yield.




embedded image


L21 (0.20 mmol, 1.0 eq), Pd(OAc)2 (0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC21 as a white solid in 100%50% yield.


Example 22



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,6]naphthyridin-7-ol (1 mmol, 1.0 eq), 7-bromobenzo[c]benzo[4,5]imidazo[1,2-a][1,6]naphthyridine (1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L22 as a white solid in 40%˜70% yield.




embedded image


L22 (0.20 mmol, 1.0 eq), Pd(OAc)2 (0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC22 as a white solid in 10%˜50% yield.


Example 23



embedded image


Benzo[4,5]imidazo[2,1-a]pyrazino[2,3-c]isoquinolin-7-ol (1 mmol, 1.0 eq), 7-bromobenzo[4,5]imidazo[2,1-a]pyrazino[2,3-c]isoquinoline (1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L23 as a white solid in 40%˜70% yield.




embedded image


L23 (0.20 mmol, 1.0 eq), Pd(OAc)2 (0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC23 as a white solid in 10%˜50% yield.


Example 24



embedded image


7-hydroxybenzo[4,5]imidazo[1,2-f]phenanthridine-2,3-dicarbonitrile (1 mmol, 1.0 eq), 7-bromobenzo[4,5]imidazo[1,2-f]phenanthridine-2,3-dicarbonitrile (1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L24 as a white solid in 400%˜70% yield.




embedded image


L24 (0.20 mmol, 1.0 eq), Pd(OAc)2 (0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC24 as a white solid in 10%˜50% yield.


Example 25



embedded image


Imidazo[1,2-f]phenanthridin-11-ol (200 mg, 0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L25 as a light orange solid 350 mg in 86% yield.




embedded image


L25 (50 mg, 0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC25 as a white solid 15 mg in 21% yield.


Example 26



embedded image


11-bromobenzo[c]imidazo[1,2-a][1,8]naphthyridine (250 mg, 0.84 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (262 mg, 1.01 mmol, 1.2 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L26 as a light orange solid 200 mg in 50% yield.




embedded image


L26 (140 mg, 0.29 mmol, 1.0 eq), K2PtCl4 (134 mg, 0.32 mmol, 1.1 eq) and n-Bu4NBr (9 mg, 0.030 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (20 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC26 as a white solid 65 mg in 33% yield.


Example 27



embedded image


Benzo[c]imidazo[1,2-a][1.5]naphthyridin-11-ol (305 mg, 1.30 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (494 mg, 1.56 mmol, 1.2 eq), CuI (50 mg, 0.26 mmol, 0.2 eq), picolinic acid (32 mg, 0.26 mmol, 0.2 eq) and K3PO4 (552 mg, 2.6 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L27 as a white solid 485 mg in 78% yield.




embedded image


L27 (485 mg, 1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC27 as a white solid 268 mg in 40% yield. FIG. 4 shows an emission spectrum of MC27 in methylene chloride at room temperature.


Example 28



embedded image


3-(2,6-diisopropylphenyl)imidazo[1,2-f]phenanthridin-11-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L28 in 50%˜80% yield.




embedded image


L28 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC28 in 10%˜50% yield.


Example 29



embedded image


3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,8]naphthyridin-11-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L29 in 50%˜80% yield.




embedded image


L29 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC29 in 10%˜50% yield.


Example 30



embedded image


3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,5]naphthyridin-11-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L30 in 50%˜80% yield.




embedded image


L30 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC30 in 10%˜50% yield.


Example 31



embedded image


embedded image


3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,7]naphthyridin-11-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L31 in 50%˜80% yield.




embedded image


L31 (1.02 mmol, 1.0 eq). K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC31 in 10%˜50% yield.


Example 32



embedded image


embedded image


3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,6]naphthyridin-11-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L32 in 50%˜80% yield.




embedded image


L32 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC32 in 10%˜50% yield.


Example 33



embedded image


embedded image


3-(2,6-diisopropylphenyl)imidazo[2,1-a]pyrazino[2,3-c]isoquinolin-1-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L33 in 50%˜80% yield.




embedded image


L33 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC33 in 10%˜50% yield.


Example 34



embedded image


embedded image


11-(2,6-diisopropylphenyl)imidazo[2,1-a]pyrimido[4,5-c]isoquinolin-7-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L34 in 50%80% yield.




embedded image


L34 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC34 in 10%˜50% yield.


Example 35



embedded image


embedded image


3-(2,6-diisopropylphenyl)-11-hydroxyimidazo[1,2-f]phenanthridine-6,7-dicarbonitrile (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L35 in 50%˜80% yield.




embedded image


L35 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC35 in 10%˜50% yield.


Example 36



embedded image


embedded image


1-(2,6-diisopropylphenyl)benzo[b]imidazo[1,2-f]phenanthridin-5-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L36 in 50%˜80% yield.




embedded image


L36 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC36 in 10%-50% yield.


Example 37



embedded image


3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,5]naphthyridin-11-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole (417 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L37 in 50%˜80%/o yield.




embedded image


L37 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC37 in 10%˜50% yield.


Example 38



embedded image


3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,5]naphthyridin-11-ol (0.85 mmol, 1.0 eq), 9-(3-bromophenyl)-9H-pyrido[2,3-b]indole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L38 in 50%˜80% yield.




embedded image


L38 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC38 in 10%˜50% yield.


Example 39



embedded image


L30 (1.02 mmol, 1.0 eq), Pd(OAc)2 (239 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC39 in 10%˜50% yield.


Example 40



embedded image


3-(2,6-dimethylphenyl)benzo[c]imidazo[1,2-a][1,5]naphthyridin-1-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L40 in 50%˜80% yield.




embedded image


L40 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC40 in 10%˜50% yield.


Example 41



embedded image


3-mesitylbenzo[c]imidazo[1,2-a][1,5]naphthyridin-11-ol (300 mg, 0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L41 in 75% yield.




embedded image


L41 (238 mg, 0.4 mmol, 1.0 eq), K2PtCl4 (174 mg, 0.42 mmol, 1.05 eq) and n-Bu4NBr (13 mg, 0.04 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC41 in 72% yield.


Example 42



embedded image


3-(2,4,6-triisopropylphenyl)benzo[c]imidazo[1,2-a][1,5]naphthyridin-11-ol (0.85 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L42 in 50%˜80% yield.




embedded image


L42 (1.02 mmol, 1.0 eq), K2PtCl4 (443 mg, 1.07 mmol, 1.05 eq) and n-Bu4NBr (33 mg, 0.102 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (60 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC42 in 10%˜50% yield.


Example 43



embedded image


Imidazo[1,2-f]phenanthridin-11-ol (1 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (281 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L43 as a white solid in 72% yield.




embedded image


L43 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC43 as a white solid in 53% yield.


Example 44



embedded image


Imidazo[1,2-f]phenanthridin-11-ol (1 mmol, 1.0 eq), 9-(3-bromophenyl)-9H-pyrido[2,3-b]indole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L44 as a white solid in 66% yield.




embedded image


L44 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC44 as a white solid in 45% yield.


Example 45



embedded image


6,7-dimethylimidazo[1,2-f]phenanthridin-11-ol (0.85 mmol, 1.0 eq), 11-bromo-6,7-dimethylimidazo[1,2-f]phenanthridine (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L45 in 30%˜70% yield.




embedded image


L45 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC45 in 10%˜50% yield.


Example 46



embedded image


3-mesitylimidazo[1,2-f]phenanthridin-11-ol (270 mg, 0.76 mmol, 1.0 eq), 11-bromoimidazo[1,2-f]phenanthridine (250 mg, 1.10 mmol, 1.3 eq), CuI (29 mg, 0.15 mmol, 0.2 eq), picolinic acid (19 mg, 0.15 mmol, 0.2 eq) and K3PO4 (323 mg, 1.5 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane ethyl acetate as eluent to obtain the desired product ligand L46 as a white solid of 300 mg in 70% yield.




embedded image



L46 (220 mg, 0.39 mmol, 1.0 eq), K2PtCl4 (190 mg, 0.46 mmol, 1.2 eq) and n-Bu4NBr (13 mg, 0.039 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (25 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC46 of 100 mg in 33% yield.



FIGS. 5A-5C show external quantum efficiency (EQE) versus luminance, EQE versus current density, and electroluminescent spectrum, respectively, for Device type 1 with MC46. Device type 1: ITO (100 nm)/HATCN (10 nm)/NPD (40 nm)/BCN34 (10 nm)/20% Pt2O2-P2M:mCBP (10 nm) 10% Pt2O2-P2M:mCBP (20 nm)/Balq (10 nm), BPyTP (40 nm) Liq (2 nm)/Al (100 nm). FIGS. 6A-6C show external quantum efficiency (EQE) versus luminance, EQE versus current density, and electroluminescent spectrum, respectively, for Device type 1 with MC46. Device type 2: ITO (100 nm)/HATCN (10 nm)/NPD (40 nm)/BCN34 (10 nm)/10% % Pt2O2-P2M:mCBP (20 nm)/Balq (10 nm)/BPyTP (40 nm)/Liq (2 nm)/AL (100 nm). In Device types 1 and 2. ITO: Indium tin oxide; HATCN: 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile; HatCN: NPD: N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4″-diamine; BCN34: 5,12-diphenyl-5,12-dihydroindolo[3,2-a]carbazole; Pt2O2-P2M: MC46; mCBP: 3,3-Di(9H-carbazol-9-yl)biphenyl; Balq: bis(2-methyl-8-quinolinolato)(biphenyl-4-olato)aluminum; BPyTP: (2,7-di(2,2′-bipyridin-5-yl)triphenylene); Liq: 8-Quinolinolato lithium; Al: aluminum.


Example 47



embedded image


3-mesitylbenzo[c]imidazo[1,2-a][1,5]naphthyridin-11-ol (0.85 mmol, 1.0 eq), 11-bromoimidazo[1,2-f]phenanthridine (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L47 in 30%˜70% yield.




embedded image


L47 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-BuNBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC47 in 10%˜50% yield.


Example 48



embedded image


Otf-48 (0.85 mmol, 1.0 eq), 11-bromo-2-mesitylimidazo[1,2-f]phenanthridine (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L48 in 30%˜70% yield.




embedded image


L48 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC48 in 10%˜50% yield.


Example 49



embedded image


3-mesitylimidazo[1,2-f]phenanthridin-11-ol (0.85 mmol, 1.0 eq), 11-bromobenzo[c]imidazo[1,2-a][1,8]naphthyridine (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane ethyl acetate as eluent to obtain the desired product ligand L49 in 30%˜70% yield.




embedded image


L49 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC49 in 10%˜50% yield.


Example 50



embedded image


3-mesitylimidazo[1,2-f]phenanthridin-11-ol (0.85 mmol, 1.0 eq), 11-bromobenzo[c]imidazo[1,2-a][1,5]naphthyridine (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90) C for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L50 in 30%˜70% yield.




embedded image


L50 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC50 in 10%˜50% yield.


Example 51



embedded image


3-mesitylimidazo[1,2-f]phenanthridin-11-ol (0.85 mmol, 1.0 eq), 11-bromobenzo[c]imidazo[1,2-a][1,7]naphthyridine (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L51 in 30%˜70% yield.




embedded image


L51 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-BuNBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC51 in 10%˜50% yield.


Example 52



embedded image


3-mesitylimidazo[1,2-f]phenanthridin-11-ol (0.85 mmol, 1.0 eq), 11-bromobenzo[c]imidazo[1,2-a][1,6]naphthyridine (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L52 in 30%˜70% yield.




embedded image


L52 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC52 in 10%˜50% yield.


Example 53



embedded image


Otf-53 (0.85 mmol, 1.0 eq), 3-(2,6-diisopropylphenyl)imidazo[1,2-f]phenanthridin-11-ol (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L53 in 30%˜70% yield.




embedded image


L53 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-BuNBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC53 in 10%˜50% yield.


Example 54



embedded image


Otf-53 (0.85 mmol, 1.0 eq), 3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,8]naphthyridin-11-ol (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L54 in 30%˜70% yield.




embedded image


L54 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC54 in 10%˜50% yield.


Example 55



embedded image


Otf-53 (0.85 mmol, 1.0 eq), 3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,5]naphthyridin-11-ol (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L55 in 30%˜70% yield.




embedded image


L55 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC55 in 10%˜50% yield.


Example 56



embedded image


Otf-53 (0.85 mmol, 1.0 eq), 3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,7]naphthyridin-11-ol (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L56 in 30%˜70% yield.




embedded image


L56 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC56 in 10%˜50% yield.


Example 57



embedded image


Otf-53 (0.85 mmol, 1.0 eq), 3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,6]naphthyridin-11-ol (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L57 in 30%˜70% yield.




embedded image


L57 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC57 in 10%˜50% yield.


Example 58



embedded image


Otf-53 (0.85 mmol, 1.0 eq), 3-(2,6-diisopropylphenyl)imidazo[2,1-a]pyrazino[2,3-c]isoquinolin-11-ol (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L58 in 30%˜70% yield.




embedded image


L58 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC58 in 10%˜50% yield.


Example 59



embedded image


Otf-53 (0.85 mmol, 1.0 eq), 3-(2,6-diisopropylphenyl)-11-hydroxyimidazo[1,2-f]phenanthridine-6,7-dicarbonitrile (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L59 in 30%˜70% yield.




embedded image


L59 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC59 in 10%˜50% yield.


Example 60



embedded image


5-bromo-2-methylbenzo[f]pyrazolo[1,5-h][1,7]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L60 in 20%-70% yield.




embedded image


L60 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC60 in 10%˜50% yield.


Example 61



embedded image


5-bromo-2-methylpyrazolo[1,5-h]pyrido[3,2-f][1,7]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq). CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and KiPO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L61 in 20%˜70% yield.




embedded image


L61 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC61 in 10%˜50% yield.


Example 62



embedded image


5-bromo-2-methylpyrazolo[1,5-a]pyrido[2,3-c][1,5]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L62 in 20%˜70% yield.




embedded image


L62 (0.11 mmol, 1.0 eq). K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC62 in 10%˜50% yield.


Example 63



embedded image


5-bromo-2-methylpyrazolo[1,5-a]pyrido[2,3-c][1,6]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L63 in 20%˜70% yield.




embedded image


L63 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC63 in 10%˜50% yield.


Example 64



embedded image


5-bromo-2-methylpyrazolo[1,5-a]pyrido[2,3-c][1,7]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L64 in 20%˜70% yield.




embedded image


L64 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC64 in 10%˜50% yield.


Example 65



embedded image


10-bromo-7-methylpyrazino[2,3-f]pyrazolo[1,5-h][1,7]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L65 in 20%˜70% yield.




embedded image


L65 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC65 in 10%˜50% yield.


Example 66



embedded image




embedded image


5-bromo-2-methylbenzo[f]pyrazolo[1,5-h][1,7]naphthyridine-9,10-dicarbonitrile (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L66 in 20%˜70% yield.




embedded image


L66 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-BuNBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC66 in 10%˜50% yield.


Example 67



embedded image


5-bromo-2-methylnaphtho[2,3-f]pyrazolo[1,5-h][1,7]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L67 in 20%˜70% yield.




embedded image


L67 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC67 in 10%50% yield.


Example 68



embedded image


5-bromo-2-methylpyrazolo[1,5-a]pyrido[2,3-c][1,5]naphthyridine (0.35 mmol, 1.0 eq), 2-bromo-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole (159 mg, 0.42 mmol, 1.2 eq), CuI (13 mg, 0.07 mmol, 0.2 eq), picolinic acid (9 mg, 0.07 mmol, 0.2 eq) and K3PO4 (149 mg, 0.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L68 in 30%˜70% yield.




embedded image


L68 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC68 in 10%˜50% yield.


Example 69



embedded image


5-bromo-2-methylpyrazolo[1,5-a]pyrido[2,3-c][1,5]naphthyridine (0.85 mmol, 1.0 eq), 3-(9H-pyrido[2,3-b]indol-9-yl)phenol (359 mg, 1.10 mmol, 1.3 eq), Cu (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L69 in 20%-70% yield




embedded image


L69 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC69 in 10%˜50% yield.


Example 70



embedded image


L62 (0.11 mmol, 1.0 eq), Pd(OAc)2 (27 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC70 in 10˜50% yield.


Example 71



embedded image


5-bromo-2-methylpyrazolo[1,5-a]pyrido[2,3-c][1,5]naphthyridine (0.85 mmol, 1.0 eq), benzo[c]imidazo[1,2-a][1,5]naphthyridin-11-ol (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L71 in 20%˜70% yield.




embedded image


L71 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-BuNBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC71 in 10%˜50% yield.


Example 72



embedded image


2-bromobenzo[f]pyrrolo[1,2-h][1.7]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L72 in 20%˜70% yield.




embedded image


L72 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC72 in 100%˜50% yield.


Example 73



embedded image


2-bromopyrido[3,2-f]pyrrolo[1,2-h][1,7]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L73 in 20%˜70% yield.




embedded image


L73 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC73 in 10%˜50% yield.


Example 74



embedded image


2-bromopyrido[2,3-c]pyrrolo[1,2-a][1,5]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L74 in 20%˜70% yield.




embedded image


L74 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC74 in 10%˜50% yield.


Example 75



embedded image


2-bromopyrido[2,3-c]pyrrolo[1,2-a][1,6]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L75 in 20%˜70% yield.




embedded image


L75 (0.11 mmol, 1.0 eq). K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC75 in 10%˜50% yield.


Example 76



embedded image


2-bromopyrido[2,3-c]pyrrolo[1,2-a][1,7]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L76 in 20%˜70% yield.




embedded image


L76 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC76 in 10%˜50% yield.


Example 77



embedded image


10-bromopyrazino[2,3-f]pyrrolo[1,2-h][1,7]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (2.1 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L77 in 20%˜70% yield.




embedded image


L77 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-BuNBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC77 in 10%˜50% yield.


Example 78



embedded image


2-bromobenzo[f]pyrrolo[1,2-h][1,7]naphthyridine-6,7-dicarbonitrile (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L78 in 20%˜70% yield.




embedded image


L78 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC78 in 10%˜50% yield.


Example 79



embedded image


3-bromonaphtho[2,3-f]pyrrolo[1,2-h][1,7]naphthyridine (0.85 mmol, 1.0 eq), 9-(pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L79 in 20%˜70% yield.




embedded image


L79 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC79 in 10%˜50% yield.


Example 80



embedded image


2-bromopyrido[2,3-c]pyrrolo[1,2-a][1,5]naphthyridine (0.85 mmol, 1.0 eq), 9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazol-2-ol (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L80 in 20%˜70% yield.




embedded image


L80 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC80 in 10%˜50% yield.


Example 81



embedded image


2-bromopyrido[2,3-c]pyrrolo[1,2-a][1,5]naphthyridine (0.85 mmol, 1.0 eq), 9-(3-bromophenyl)-9H-pyrido[2,3-b]indole (359 mg, 1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 100° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L81 in 20%˜70% yield.




embedded image


L81 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC81 in 10%˜50% yield.


Example 82



embedded image



L74 (0.11 mmol, 1.0 eq), Pd(OAc)2 (0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC82 in 10%˜50% yield.


Example 83



embedded image


Benzo[c]indolo[1,2-a][1,5]naphthyridin-6-ol (1 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K % PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L183 as a white solid in 65% yield.




embedded image


L83 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC83 as a white solid in 35% yield.


Example 84



embedded image


Benzo[c]isoindolo[2,1-a][1,5]naphthyridin-6-ol (1 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K—PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L84 as a white solid in 65% yield.




embedded image


L84 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC84 as a white solid in 35% yield.


Example 85



embedded image


Benzo[c]pyrrolo[1,2-a][1,5]naphthyridin-11-ol (1 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L85 as a white solid in 65% yield.




embedded image


L85 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC85 as a white solid in 35% yield.


Example 86



embedded image


Benzo[c]indolo[1,2-a][1,5]naphthyridin-6-ol (1 mmol, 1.0 eq), 2-bromo-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole (1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L86 as a white solid in 65% yield.




embedded image


L86 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC86 as a white solid in 35% yield.


Example 87



embedded image


Benzo[c]indolo[1,2-a][1,5]naphthyridin-6-ol (1 mmol, 1.0 eq), 9-(3-bromophenyl)-9H-pyrido[2,3-b]indole (388 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2.1) as eluent to obtain the desired product ligand L87 as a white solid in 65% yield.




embedded image


L87 (0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain to obtain the desired product MC87 as a white solid in 35% yield.


Example 88



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,5]naphthyridin-6-ol (114 mg, 0.4 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (156 mg, 0.48 mmol, 1.2 eq), CuI (15 mg, 0.08 mmol, 0.2 eq), picolinic acid (10 mg, 0.08 mmol, 0.2 eq) and K3PO4 (170 mg, 0.8 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L88 as an orange yellow solid 92 mg in 44% yield.




embedded image


L88 (52 mg, 0.09 mmol, 1.0 eq), Pd(OAc)2 (23 mg, 0.10 mmol, 1.1 eq) and n-BuNBr (3 mg, 0.01 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC88 in 10%˜50% yield.


Example 89



embedded image


Benzo[c]imidazo[1,2-a][1,5]naphthyridin-10-ol (0.4 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (156 mg, 0.48 mmol, 1.2 eq), CuI (15 mg, 0.08 mmol, 0.2 eq), picolinic acid (10 mg, 0.08 mmol, 0.2 eq) and K3P04 (170 mg, 0.8 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90) C for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L89 in 30%˜70% yield.




embedded image


L89 (0.09 mmol, 1.0 eq), Pd(OAc)2 (23 mg, 0.10 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.01 mmol, 1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC89 in 10%˜50% yield.


Example 90



embedded image


embedded image


3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,5]naphthyridin-10-ol (0.4 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole (156 mg, 0.48 mmol, 1.2 eq), CuI (15 mg, 0.08 mmol, 0.2 eq), picolinic acid (10 mg, 0.08 mmol, 0.2 eq) and K3PO4 (170 mg, 0.8 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L90 in 30%˜70% yield.




embedded image


L90 (0.09 mmol, 1.0 eq), Pd(OAc)2 (23 mg, 0.10 mmol, 1.1 eq) and n-Bu4NBr (mg, 0.01 mmol, 0.1 eq) were added to a dry pressure tube, which was taken Into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC90 in 10%˜50% yield.


Example 91



embedded image


Otf-91 (0.85 mmol, 1.0 eq), 3-(2,6-diisopropylphenyl)benzo[c]imidazo[1,2-a][1,5]naphthyridin-10-ol (1.10 mmol, 1.3 eq), CuI (32 mg, 0.17 mmol, 0.2 eq), picolinic acid (21 mg, 0.17 mmol, 0.2 eq) and K3PO4 (356 mg, 1.7 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L91 in 30%˜70% yield.




embedded image


L91 (0.11 mmol, 1.0 eq), K2PtCl4 (48 mg, 0.12 mmol, 1.1 eq) and n-Bu4NBr (3 mg, 0.011 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (7 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 3 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product MC91 in 10° %˜50% yield.


Examples of General Formulas XIV-XVII
Example 92



embedded image




embedded image


IrL1 (2.2 mmol, 2.2 eq) and IrCl3XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred m an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D1 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness wider reduced pressure. Then chlorodimer D1 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC1 in 20%˜60% yield.


Example 93



embedded image


IrL2 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D2 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D2 (1.0 mmol, 1.0 eq) and 150 mL of TI-IF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC2 in 20%˜60% yield.


Example 94



embedded image


IrL3 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D3 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D3 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC3 in 20%˜60% yield.


Example 95



embedded image


IrL4 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D4 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D4 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC4 in 20%˜60% yield.


Example 96



embedded image




embedded image


IrL5 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D5 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D5 (1.0) mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC5 in 20%˜60% yield.


Example 97



embedded image


IrL6 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D6 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D6 (1.0 mmol, 1.0 eq) and 150 mL of TI-IF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC6 in 20%˜60% yield.


Example 98



embedded image


IrL7 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30) mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D7 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D7 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC7 in 20%˜60% yield.


Example 99



embedded image



IrL8 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (1.0 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D8 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D8 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC8 in 20%˜60% yield.


Example 100



embedded image


IrL9 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D9 in 40%80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 1.00 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D9 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC9 in 20%˜60% yield.


Example 101



embedded image


IrL10 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D10 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D10 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC10 in 20%˜60% yield.


Example 102



embedded image


IrL11 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D11 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D11 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC11 in 20%˜60% yield.


Example 103



embedded image


IrL12 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D12 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D12 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC12 in 20%˜60% yield.


Example 104



embedded image


A mixture of ancillary ligand A2 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D2 (1.0 mmol, 1.0 eq) and 150 mL, of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC13 in 20%˜60% yield.


Example 105



embedded image


IrL2 (2.5 mmol, 5.0 eq) and Ir(acac)3 (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC14 in 5%˜50% yield.


Example 106



embedded image


IrL3 (2.5 mmol, 5.0 eq) and Ir(acac); (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC15 in 5%˜50% yield.


Example 107



embedded image


IrL6 (2.5 mmol, 5.0 eq) and Ir(acac)3 (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC16 in 5%˜50% yield.


Example 108



embedded image


IrL7 (2.5 mmol, 5.0 eq) and Ir(acac)3 (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC17 in 5%˜50% yield.


Example 109



embedded image


IrL18 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D18 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness wider reduced pressure. Then chlorodimer D18 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC18 in 20%˜60% yield.


Example 110



embedded image


IrL19 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D19 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness wider reduced pressure. Then chlorodimer D1.9 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC19 in 20%˜60% yield.


Example 111



embedded image


IrL20 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D20 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness wider reduced pressure. Then chlorodimer D20 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC20 in 20%˜60% yield.


Example 112



embedded image


IrL21 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D21 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness wider reduced pressure. Then chlorodimer D21 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC21 in 20%˜60% yield.


Example 113



embedded image


IrL22 (2.2 mmol, 2.2 eq) and IrCl3XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred m an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D22 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D22 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC22 in 20%˜60% yield.


Example 114



embedded image


IrL23 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D23 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D23 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC23 in 20%˜60% yield.


Example 115



embedded image


IrL24 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D24 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D24 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC24 in 20%˜60% yield.


Example 116



embedded image


A mixture of ancillary ligand A2 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D19 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC25 in 20%˜60% yield.


Example 117



embedded image


IrL19 (2.5 mmol, 5.0 eq) and Ir(acac)3 (0.5 mmol, 10 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC26 in 5%˜50% yield.


Example 118



embedded image


IrL20 (2.5 mmol, 5.0 eq) and Ir(acac) (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC27 in 5%˜50% yield.


Example 119



embedded image


IrL23 (2.5 mmol, 5.0 eq) and Ir(acac)3 (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC28 in 59%˜50% yield.


Example 120



embedded image


IrL24 (2.5 mmol, 5.0 eq) and Ir(acac); (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC29 in 5%˜50%, yield.


Example 121



embedded image


IrL30 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D30 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D30 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC30 in 20%˜60% yield.


Example 122



embedded image


IrL31 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D31 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D31 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC31 in 20%˜60% yield.


Example 123



embedded image


IrL32 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D32 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D32 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC32 in 20%˜60% yield.


Example 124



embedded image


IrL33 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D33 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D33 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC33 in 20%˜60% yield.


Example 125



embedded image


IrL34 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D34 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D34 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC34 in 20%˜60% yield.


Example 126



embedded image


A mixture of ancillary ligand A2 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D31 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC35 in 20%˜60% yield.


Example 127



embedded image


IrL31 (2.5 mmol, 5.0 eq) and Ir(acac)3 (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC36 in 5%-50% yield.


Example 128



embedded image


IrL32 (2.5 mmol, 5.0 eq) and Ir(acac)3 (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added tinder the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC37 in 5%˜50% yield.


Example 129



embedded image


IrL33 (2.5 mmol, 5.0 eq) and Ir(acac) (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC38 in 5%˜50% yield.


Example 130



embedded image


IrL34 (2.5 mmol, 5.0 eq) and Ir(acac)3 (0.5 mmol, 10 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature. 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC39 in 5%˜50% yield.


Example 131



embedded image


IrL40 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D40 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D40 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC40 in 20%˜60% yield.


Example 132



embedded image


IrL41 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D41 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D41 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC41 in 20%˜60% yield.


Example 133



embedded image


A mixture of ancillary ligand A2 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D41 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC42 in 20%˜60% yield.


Example 134



embedded image


IrL40 (2.5 mmol, 5.0 eq) and Ir(acac)3 (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC43 in 5%˜50% yield.


Example 135



embedded image


IrL41 (2.5 mmol, 5.0 eq) and Ir(acac) (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC44 in 5%˜50% yield.


Example 136



embedded image


IrL45 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D45 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D45 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC45 in 20%˜60% yield.


Example 137



embedded image


A mixture of ancillary ligand A2 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D45 (1.0 mmol, 1.0 eq) and 150 mL of TI-IF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC46 in 20%˜60% yield.


Example 138



embedded image


IrL45 (2.5 mmol, 5.0 eq) and Ir(acac) (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC47 in 5%˜50%, yield.


Example 139



embedded image


IrL48 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D48 in 40%˜80% yield.




embedded image


A mixture of ancillary, ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D48 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC48 in 20%˜60% yield.


Example 140



embedded image


IrL49 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D49 in 40%˜80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D49 (1.0 mmol, 1.0 eq) and 150 mL, of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC49 in 20%˜60% yield.


Example 141



embedded image


IrL50 (2.2 mmol, 2.2 eq) and IrCl3.XH2O (1.0 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 2-ethoxyethanol (30 mL) and H2O (10 mL) were added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 110° C. overnight and then cooled down to ambient temperature. The precipitate was filtered and washed with methanol several times to obtain the desired product chlorodimer D50 in 40%-80% yield.




embedded image


A mixture of ancillary ligand A1 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D50 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC50 in 20%˜60% yield.


Example 142



embedded image


A mixture of ancillary ligand A2 (1.5 mmol, 1.5 eq) and AgPF6 (0.75 mmol, 0.75 eq) was stirred in a solution of 100 mL of acetonitrile at room temperature for 24 h. The solvent was evaporated to dryness under reduced pressure. Then chlorodimer D50 (1.0 mmol, 1.0 eq) and 150 mL of THF were added. The reaction mixture was heated to reflux for 24 h. Then the mixture was cooled to room temperature, and the precipitate was filtered off. The filtrate was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC51 in 20%˜60% yield.


Example 143



embedded image


IrL50 (2.5 mmol, 5.0 eq) and Ir(acac)3 (0.5 mmol, 1.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then 45 mL of glycerol was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 240° C. for 3 days. After the mixture was cooled down to ambient temperature, 150 mL of 1M HCl solution was added, and the product was thrice extracted with CH2Cl2. Then the organic extracts were combined, and dried with MgSO4. The mixture was evaporated to dryness under reduced pressure, and then purified by column chromatography to obtain the emitter IrC52 in 5%˜50% yield.


Only a few implementations are described and illustrated. Variations, enhancements and improvements of the described implementations and other implementations can be made based on what is described and illustrated in this document.

Claims
  • 1. A complex represented by General Formula VI(i) or General Formula VI(ii):
  • 2. A light emitting diode comprising the complex of claim 1.
  • 3. A light emitting device comprising the light emitting diode of claim 2.
  • 4. The complex of claim 1, wherein: X1 is present or absent, and if present represents a O, S, Se, CR7R8, C═O, SiR7R8, GeR7R8, or NR7.
  • 5. A complex represented by General Formula X(i) or General Formula X(ii):
  • 6. A light emitting diode comprising the complex of claim 5.
  • 7. A light emitting device comprising the light emitting diode of claim 6.
  • 8. The complex of claim 1, wherein L1 is absent.
  • 9. The light emitting diode comprising the complex of claim 8.
  • 10. The light emitting device comprising the light emitting diode of claim 9.
  • 11. The complex of claim 5, wherein L1 is absent.
  • 12. The light emitting diode comprising the complex of claim 11.
  • 13. The light emitting device comprising the light emitting diode of claim 12.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/983,680, filed on May 18, 2018, now allowed, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 62/508,560, filed May 19, 2017 and U.S. Provisional Application Ser. No. 62/508,782, filed May 19, 2017, all of which are incorporated herein by reference in their entireties.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under DE-EE0007090 awarded by the Department of Energy. The government has certain rights in the invention.

US Referenced Citations (285)
Number Name Date Kind
4769292 Tang Sep 1988 A
5451674 Silver Sep 1995 A
5641878 Dandliker Jun 1997 A
5707745 Forrest Jan 1998 A
5844363 Gu Dec 1998 A
6200695 Arai Mar 2001 B1
6303238 Thompson Oct 2001 B1
6780528 Tsuboyama Aug 2004 B2
7002013 Chi Feb 2006 B1
7037599 Culligan May 2006 B2
7064228 Yu Jun 2006 B1
7268485 Tyan Sep 2007 B2
7279704 Walters Oct 2007 B2
7332232 Ma Feb 2008 B2
7442797 Itoh Oct 2008 B2
7501190 Ise Mar 2009 B2
7635792 Cella Dec 2009 B1
7655322 Forrest Feb 2010 B2
7854513 Quach Dec 2010 B2
7947383 Ise May 2011 B2
8106199 Jabbour Jan 2012 B2
8133597 Yasukawa Mar 2012 B2
8389725 Li Mar 2013 B2
8617723 Stoessel Dec 2013 B2
8669364 Li Mar 2014 B2
8778509 Yasukawa Jul 2014 B2
8816080 Li Aug 2014 B2
8846940 Li Sep 2014 B2
8871361 Xia Oct 2014 B2
8927713 Li Jan 2015 B2
8946417 Jian Feb 2015 B2
8987451 Tsai Mar 2015 B2
9059412 Zeng Jun 2015 B2
9076974 Li Jul 2015 B2
9082989 Li Jul 2015 B2
9203039 Li Dec 2015 B2
9221857 Li Dec 2015 B2
9224963 Li Dec 2015 B2
9238668 Li Jan 2016 B2
9312502 Li Apr 2016 B2
9312505 Brooks Apr 2016 B2
9318725 Li Apr 2016 B2
9324957 Li Apr 2016 B2
9382273 Li Jul 2016 B2
9385329 Li Jul 2016 B2
9425415 Li Aug 2016 B2
9461254 Tsai Oct 2016 B2
9493698 Beers Nov 2016 B2
9502671 Li Nov 2016 B2
9550801 Li Jan 2017 B2
9598449 Li Mar 2017 B2
9617291 Li Apr 2017 B2
9666822 Forrest May 2017 B2
9673409 Li Jun 2017 B2
9698359 Li Jul 2017 B2
9711739 Li Jul 2017 B2
9711741 Li Jul 2017 B2
9711742 Li Jul 2017 B2
9735397 Riegel Aug 2017 B2
9755163 Li Sep 2017 B2
9818959 Li Nov 2017 B2
9865825 Li Jan 2018 B2
9879039 Li Jan 2018 B2
9882150 Li Jan 2018 B2
9899614 Li Feb 2018 B2
9920242 Li Mar 2018 B2
9923155 Li Mar 2018 B2
9941479 Li Apr 2018 B2
9947881 Li Apr 2018 B2
9985224 Li May 2018 B2
10020455 Li Jul 2018 B2
10033003 Li Jul 2018 B2
10056564 Li Aug 2018 B2
10056567 Li Aug 2018 B2
10158091 Li Dec 2018 B2
10177323 Li Jan 2019 B2
10211411 Li Feb 2019 B2
10211414 Li Feb 2019 B2
10263197 Li Apr 2019 B2
10294417 Li May 2019 B2
10392387 Li Aug 2019 B2
10411202 Li Sep 2019 B2
10414785 Li Sep 2019 B2
10516117 Li Dec 2019 B2
10566553 Li Feb 2020 B2
10566554 Li Feb 2020 B2
20010019782 Igarashi Sep 2001 A1
20020068190 Tsuboyama Jun 2002 A1
20030062519 Yamazaki Apr 2003 A1
20030186077 Chen Oct 2003 A1
20040230061 Seo Nov 2004 A1
20050037232 Tyan Feb 2005 A1
20050139810 Kuehl Jun 2005 A1
20050170207 Ma Aug 2005 A1
20050260446 MacKenzie Nov 2005 A1
20060024522 Thompson Feb 2006 A1
20060032528 Wang Feb 2006 A1
20060066228 Antoniadis Mar 2006 A1
20060073359 Ise Apr 2006 A1
20060094875 Itoh May 2006 A1
20060127696 Stossel Jun 2006 A1
20060182992 Nii Aug 2006 A1
20060202197 Nakayama Sep 2006 A1
20060210831 Sano Sep 2006 A1
20060255721 Igarashi Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060286406 Igarashi Dec 2006 A1
20070057630 Nishita Mar 2007 A1
20070059551 Yamazaki Mar 2007 A1
20070082284 Stoessel Apr 2007 A1
20070103060 Itoh May 2007 A1
20070160905 Morishita Jul 2007 A1
20070252140 Limmert Nov 2007 A1
20080001530 Ise Jan 2008 A1
20080036373 Itoh Feb 2008 A1
20080054799 Satou Mar 2008 A1
20080079358 Satou Apr 2008 A1
20080102310 Thompson May 2008 A1
20080111476 Choi May 2008 A1
20080241518 Satou Oct 2008 A1
20080241589 Fukunaga Oct 2008 A1
20080269491 Jabbour Oct 2008 A1
20080315187 Bazan Dec 2008 A1
20090026936 Satou Jan 2009 A1
20090026939 Kinoshita Jan 2009 A1
20090032989 Karim Feb 2009 A1
20090039768 Igarashi Feb 2009 A1
20090079340 Kinoshita Mar 2009 A1
20090126796 Yang May 2009 A1
20090128008 Ise May 2009 A1
20090136779 Cheng May 2009 A1
20090153045 Kinoshita Jun 2009 A1
20090167167 Aoyama Jul 2009 A1
20090205713 Mitra Aug 2009 A1
20090218561 Kitamura Sep 2009 A1
20090261721 Murakami Oct 2009 A1
20090267500 Kinoshita Oct 2009 A1
20100000606 Thompson Jan 2010 A1
20100013386 Thompson Jan 2010 A1
20100043876 Tuttle Feb 2010 A1
20100093119 Shimizu Apr 2010 A1
20100127246 Nakayama May 2010 A1
20100141127 Xia Jun 2010 A1
20100147386 Benson-Smith Jun 2010 A1
20100171111 Takada Jul 2010 A1
20100171418 Kinoshita Jul 2010 A1
20100200051 Triani Aug 2010 A1
20100204467 Lamarque Aug 2010 A1
20100270540 Chung Oct 2010 A1
20100288362 Hatwar Nov 2010 A1
20100297522 Creeth Nov 2010 A1
20100307594 Zhu Dec 2010 A1
20110028723 Li Feb 2011 A1
20110049496 Fukuzaki Mar 2011 A1
20110062858 Yersin Mar 2011 A1
20110132440 Sivarajan Jun 2011 A1
20110217544 Young Sep 2011 A1
20110227058 Masui Sep 2011 A1
20110301351 Li Dec 2011 A1
20120024383 Kaiho Feb 2012 A1
20120025588 Humbert Feb 2012 A1
20120039323 Hirano Feb 2012 A1
20120095232 Li Apr 2012 A1
20120108806 Li May 2012 A1
20120146012 Limmert Jun 2012 A1
20120181528 Takada Jul 2012 A1
20120199823 Molt Aug 2012 A1
20120202997 Parham Aug 2012 A1
20120204960 Kato Aug 2012 A1
20120215001 Li Aug 2012 A1
20120223634 Xia Sep 2012 A1
20120264938 Li Oct 2012 A1
20120273736 James Nov 2012 A1
20120302753 Li Nov 2012 A1
20130048963 Beers Feb 2013 A1
20130082245 Kottas Apr 2013 A1
20130137870 Li May 2013 A1
20130168656 Tsai Jul 2013 A1
20130172561 Tsai Jul 2013 A1
20130200340 Otsu Aug 2013 A1
20130203996 Li Aug 2013 A1
20130237706 Li Sep 2013 A1
20130341600 Lin Dec 2013 A1
20140014922 Lin Jan 2014 A1
20140014931 Riegel Jan 2014 A1
20140027733 Zeng Jan 2014 A1
20140042475 Park Feb 2014 A1
20140066628 Li Mar 2014 A1
20140073798 Li Mar 2014 A1
20140084261 Brooks Mar 2014 A1
20140114072 Li Apr 2014 A1
20140147996 Vogt May 2014 A1
20140148594 Li May 2014 A1
20140191206 Cho Jul 2014 A1
20140203248 Zhou Jul 2014 A1
20140249310 Li Sep 2014 A1
20140326960 Kim Nov 2014 A1
20140330019 Li Nov 2014 A1
20140364605 Li Dec 2014 A1
20150008419 Li Jan 2015 A1
20150018558 Li Jan 2015 A1
20150028323 Xia Jan 2015 A1
20150060804 Kanitz Mar 2015 A1
20150069334 Xia Mar 2015 A1
20150105556 Li Apr 2015 A1
20150123047 Maltenberger May 2015 A1
20150162552 Li Jun 2015 A1
20150194616 Li Jul 2015 A1
20150207086 Li Jul 2015 A1
20150228914 Li Aug 2015 A1
20150274762 Li Oct 2015 A1
20150287938 Li Oct 2015 A1
20150311456 Li Oct 2015 A1
20150318500 Li Nov 2015 A1
20150349279 Li Dec 2015 A1
20150380666 Szigethy Dec 2015 A1
20160028028 Li Jan 2016 A1
20160028029 Li Jan 2016 A1
20160043331 Li Feb 2016 A1
20160072082 Brooks Mar 2016 A1
20160133861 Li May 2016 A1
20160133862 Li May 2016 A1
20160181529 Tsai Jun 2016 A1
20160194344 Li Jul 2016 A1
20160197285 Zeng Jul 2016 A1
20160197291 Li Jul 2016 A1
20160285015 Li Sep 2016 A1
20160359120 Li Dec 2016 A1
20160359125 Li Dec 2016 A1
20170005278 Li Jan 2017 A1
20170012224 Li Jan 2017 A1
20170040555 Li Feb 2017 A1
20170047533 Li Feb 2017 A1
20170066792 Li Mar 2017 A1
20170069855 Li Mar 2017 A1
20170077420 Li Mar 2017 A1
20170125708 Li May 2017 A1
20170267923 Li Sep 2017 A1
20170271611 Li Sep 2017 A1
20170301871 Li Oct 2017 A1
20170305881 Li Oct 2017 A1
20170309943 Angell Oct 2017 A1
20170331056 Li Nov 2017 A1
20170342098 Li Nov 2017 A1
20170373260 Li Dec 2017 A1
20180006246 Li Jan 2018 A1
20180013096 Hamada Jan 2018 A1
20180053904 Li Feb 2018 A1
20180130960 Li May 2018 A1
20180138428 Li May 2018 A1
20180148464 Li May 2018 A1
20180159051 Li Jun 2018 A1
20180166655 Li Jun 2018 A1
20180175329 Li Jun 2018 A1
20180194790 Li Jul 2018 A1
20180219161 Li Aug 2018 A1
20180226592 Li Aug 2018 A1
20180226593 Li Aug 2018 A1
20180277777 Li Sep 2018 A1
20180301641 Li Oct 2018 A1
20180312750 Li Nov 2018 A1
20180331307 Li Nov 2018 A1
20180334459 Li Nov 2018 A1
20180337345 Li Nov 2018 A1
20180337349 Li Nov 2018 A1
20180337350 Li Nov 2018 A1
20190013485 Li Jan 2019 A1
20190067602 Li Feb 2019 A1
20190109288 Li Apr 2019 A1
20190119312 Chen Apr 2019 A1
20190194536 Li Jun 2019 A1
20190259963 Li Aug 2019 A1
20190276485 Li Sep 2019 A1
20190312217 Li Oct 2019 A1
20190367546 Li Dec 2019 A1
20190389893 Li Dec 2019 A1
20200006678 Li Jan 2020 A1
20200071330 Li Mar 2020 A1
20200075868 Li Mar 2020 A1
20200119288 Li Apr 2020 A1
20200119289 Lin Apr 2020 A1
20200140471 Chen May 2020 A1
20200152891 Li May 2020 A1
20200239505 Li Jul 2020 A1
20200243776 Li Jul 2020 A1
Foreign Referenced Citations (196)
Number Date Country
1680366 Oct 2005 CN
1777663 May 2006 CN
1894267 Jan 2007 CN
1894269 Jan 2007 CN
101142223 Mar 2008 CN
101667626 Mar 2010 CN
102449108 May 2012 CN
102892860 Jan 2013 CN
102971396 Mar 2013 CN
103102372 May 2013 CN
104232076 Dec 2014 CN
104377231 Feb 2015 CN
104576934 Apr 2015 CN
104693243 Jun 2015 CN
105367605 Mar 2016 CN
105418591 Mar 2016 CN
106783922 May 2017 CN
1617493 Jan 2006 EP
1808052 Jul 2007 EP
1874893 Jan 2008 EP
1874894 Jan 2008 EP
1919928 May 2008 EP
1968131 Sep 2008 EP
2020694 Feb 2009 EP
2036907 Mar 2009 EP
2096690 Sep 2009 EP
2417217 Feb 2012 EP
2112213 Jul 2012 EP
2684932 Jan 2014 EP
2711999 Mar 2014 EP
3032293 Jun 2016 EP
2002010505 Jan 2002 JP
2002105055 Apr 2002 JP
2003342284 Dec 2003 JP
2005031073 Feb 2005 JP
2005267557 Sep 2005 JP
2005310733 Nov 2005 JP
2006047240 Feb 2006 JP
2006232784 Sep 2006 JP
2006242080 Sep 2006 JP
2006242081 Sep 2006 JP
2006256999 Sep 2006 JP
2006257238 Sep 2006 JP
2006261623 Sep 2006 JP
2006290988 Oct 2006 JP
2006313796 Nov 2006 JP
2006332622 Dec 2006 JP
2006351638 Dec 2006 JP
2007019462 Jan 2007 JP
2007031678 Feb 2007 JP
2007042875 Feb 2007 JP
2007051243 Mar 2007 JP
2007053132 Mar 2007 JP
2007066581 Mar 2007 JP
2007073620 Mar 2007 JP
2007073845 Mar 2007 JP
2007073900 Mar 2007 JP
2007080593 Mar 2007 JP
2007080677 Mar 2007 JP
2007088105 Apr 2007 JP
2007088164 Apr 2007 JP
2007096259 Apr 2007 JP
2007099765 Apr 2007 JP
2007110067 Apr 2007 JP
2007110102 Apr 2007 JP
2007519614 Jul 2007 JP
2007258550 Oct 2007 JP
2007324309 Dec 2007 JP
2008010353 Jan 2008 JP
2008091860 Apr 2008 JP
2008103535 May 2008 JP
2008108617 May 2008 JP
2008109085 May 2008 JP
2008109103 May 2008 JP
2008116343 May 2008 JP
2008117545 May 2008 JP
2008160087 Jul 2008 JP
2008198801 Aug 2008 JP
2008270729 Nov 2008 JP
2008270736 Nov 2008 JP
2008310220 Dec 2008 JP
2009016184 Jan 2009 JP
2009016579 Jan 2009 JP
2009032977 Feb 2009 JP
2009032988 Feb 2009 JP
2009059997 Mar 2009 JP
2009076509 Apr 2009 JP
2009161524 Jul 2009 JP
2009247171 Oct 2009 JP
2009266943 Nov 2009 JP
2009267171 Nov 2009 JP
2009267244 Nov 2009 JP
2009272339 Nov 2009 JP
2009283891 Dec 2009 JP
2010135689 Jun 2010 JP
2010171205 Aug 2010 JP
2011071452 Apr 2011 JP
2012079895 Apr 2012 JP
2012079898 Apr 2012 JP
5604505 Sep 2012 JP
2012522843 Sep 2012 JP
2012207231 Oct 2012 JP
2012222255 Nov 2012 JP
2012231135 Nov 2012 JP
2013023500 Feb 2013 JP
2013048256 Mar 2013 JP
2013053149 Mar 2013 JP
2013525436 Jun 2013 JP
2014019701 Feb 2014 JP
2014058504 Apr 2014 JP
2014520096 Aug 2014 JP
2012709899 Nov 2014 JP
2014221807 Nov 2014 JP
2014239225 Dec 2014 JP
2015081257 Apr 2015 JP
20060011537 Feb 2006 KR
20060015371 Feb 2006 KR
1020060115371 Nov 2006 KR
20070061830 Jun 2007 KR
20070112465 Nov 2007 KR
1020130043460 Apr 2013 KR
101338250 Dec 2013 KR
20140052501 May 2014 KR
200701835 Jan 2007 TW
201249851 Dec 2012 TW
201307365 Feb 2013 TW
201710277 Mar 2017 TW
2000070655 Nov 2000 WO
2004003108 Jan 2004 WO
2004070655 Aug 2004 WO
2004085450 Oct 2004 WO
2004108857 Dec 2004 WO
2005042444 May 2005 WO
2005042550 May 2005 WO
2005113704 Dec 2005 WO
2006033440 Mar 2006 WO
2006067074 Jun 2006 WO
2006081780 Aug 2006 WO
2006098505 Sep 2006 WO
2006113106 Oct 2006 WO
2006115299 Nov 2006 WO
2006115301 Nov 2006 WO
2007034985 Mar 2007 WO
2007069498 Jun 2007 WO
2008054578 May 2008 WO
2008066192 Jun 2008 WO
2008066195 Jun 2008 WO
2008066196 Jun 2008 WO
2008101842 Aug 2008 WO
2008117889 Oct 2008 WO
2008123540 Oct 2008 WO
2008131932 Nov 2008 WO
2009003455 Jan 2009 WO
2009008277 Jan 2009 WO
2009011327 Jan 2009 WO
2009017211 Feb 2009 WO
2009023667 Feb 2009 WO
2009086209 Jul 2009 WO
2009111299 Sep 2009 WO
2010007098 Jan 2010 WO
2010056669 May 2010 WO
2010093176 Aug 2010 WO
2010105141 Sep 2010 WO
2010118026 Oct 2010 WO
2011064335 Jun 2011 WO
2011070989 Jun 2011 WO
2011089163 Jul 2011 WO
2011137429 Nov 2011 WO
2011137431 Nov 2011 WO
2012074909 Jun 2012 WO
2012112853 Aug 2012 WO
2012116231 Aug 2012 WO
2012142387 Oct 2012 WO
2012162488 Nov 2012 WO
2012163471 Dec 2012 WO
2013130483 Sep 2013 WO
2014009310 Jan 2014 WO
2014016611 Jan 2014 WO
2014031977 Feb 2014 WO
2014047616 Mar 2014 WO
2014109814 Jul 2014 WO
2014208271 Dec 2014 WO
2015027060 Feb 2015 WO
2015131158 Sep 2015 WO
2016025921 Feb 2016 WO
2016029137 Feb 2016 WO
2016029186 Feb 2016 WO
2016197019 Dec 2016 WO
2017117935 Jul 2017 WO
2018071697 Apr 2018 WO
2018140765 Aug 2018 WO
2019079505 Apr 2019 WO
2019079508 Apr 2019 WO
2019079509 Apr 2019 WO
2019236541 Dec 2019 WO
2020018476 Jan 2020 WO
Non-Patent Literature Citations (160)
Entry
U.S. Appl. No. 16/668,010, filed Oct. 30, 2019.
U.S. Appl. No. 16/739,480, filed Jan. 10, 2020.
U.S. Appl. No. 16/751,561, filed Jan. 24, 2020.
Ayan Maity et al., “Room-temperature synthesis of cyclometalated iridium(III) complexes; kinetic isomers and reactive functionalities” Chem. Sci., vol. 4, pp. 1175-1181 (2013).
Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, Sep. 10, 1998, pp. 151-154.
Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Applied Physics Letters, vol. 75, No. 1, Jul. 5, 1999, pp. 4-6.
Barry O'Brien et al., “High efficiency white organic light emitting diodes employing blue and red platinum emitters,” Journal of Photonics for Energy, vol. 4, 2014, pp. 043597-1-043597-8.
Barry O'Brien et al.: White organic light emitting diodes using Pt-based red, green and blue phosphorescent dopants. Proc. SPIE, vol. 8829, pp. 1-6, Aug. 25, 2013.
Brian W. D'Andrade et al., “Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices,” Adv. Mater. , vol. 14, No. 2, Jan. 16, 2002, pp. 147-151.
Chew, S. et al.: Photoluminescence and electroluminescence of a new blue-emitting homoleptic iridium complex. Applied Phys. Letters; 2006, vol. 88, pp. 093510-1-093510-3.
Chi et al.; Transition-metal phosphors with cyclometalating ligands: fundamentals and applications, Chemical Society Reviews, vol. 39, No. 2, Feb. 2010, pp. 638-655.
Chi-Ming Che et al., “Photophysical Properties and OLED Applications of Phosphorescent Platinum(II) Schiff Base Complexes,” Chem. Eur. J., vol. 16, 2010, pp. 233-247.
Christoph Ulbricht et al., “Synthesis and Characterization of Oxetane-Functionalized Phosphorescent Ir(III)-Complexes”, Macromol. Chem. Phys. 2009, 210, pp. 531-541.
D.F. O'Brien et al., “Improved energy transfer in electrophosphorescent devices,” Appl. Phys. Lett., vol. 74, No. 3, Jan. 18, 1999, pp. 442-444.
Dan Wang et al., “Carbazole and arylamine functionalized iridium complexes for efficient electro-phosphorescent light-emitting diodes”, Inorganica Chimica Acta 370 (2011) pp. 340-345.
Dileep A. K. Vezzu et al., “Highly Luminescent Tetradentate Bis-Cyclometalated Platinum Complexes: Design, Synthesis, Structure, Photophysics, and Electroluminescence Application,” Inorg. Chem., vol. 49, 2010, pp. 5107-5119.
Electronics 9 (2008) pp. 171-182.
Eric Turner et al., “Cyclometalated Platinum Complexes with Luminescent Quantum Yields Approaching 100%,” Inorg. Chem., 2013, vol. 52, pp. 7344-7351.
Evan L. Williams et al., “Excimer-Based White Phosphorescent Organic Light Emitting Diodes with Nearly 100% Internal Quantum Efficiency,” Adv. Mater., vol. 19, 2007, pp. 197-202.
Guijie Li et al., “Modifying Emission Spectral Bandwidth of Phosphorescent Platinum(II) Complexes Through Synthetic Control,” Inorg. Chem. 2017, 56, 8244-8256.
Guijie Li et al., “Efficient and stable red organic light emitting devices from a tetradentate cyclometalated platinum complex,” Organic Electronics, 2014, vol. 15 pp. 1862-1867.
Guijie Li et al., Efficient and Stable White Organic Light-Emitting Diodes Employing a Single Emitter, Adv. Mater., 2014, vol. 26, pp. 2931-2936.
Hirohiko Fukagawa et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Diodes Using Platinum Complexes,” Adv. Mater., 2012, vol. 24, pp. 5099-5103.
Hoe-Joo Seo et al., “Blue phosphorescent iridium(III) complexes containing carbazole-functionalized phenyl pyridine for organic light-emitting diodes: energy transfer from carbazolyl moieties to iridium(III) cores”, RSC Advances, 2011, vol. 1, pp. 755-757.
Huaijun Tang et al., “Novel yellow phosphorescent iridium complexes containing a carbazoleeoxadiazole unit used in polymeric light-emitting diodes”, Dyes and Pigments 91 (2011) pp. 413-421.
Jack W. Levell et al., “Carbazole/iridium dendrimer side-chain phosphorescent copolymers for efficient light emitting devices”, New J. Chem., 2012, vol. 36, pp. 407-413.
Jan Kalinowski et al., “Light-emitting devices based on organometallic platinum complexes as emitters,” Coordination Chemistry Reviews, vol. 255, 2011, pp. 2401-2425.
Ji Hyun Seo et al., “Efficient blue-green organic light-emitting diodes based on heteroleptic tris-cyclometalated iridium (III) complexes”. Thin Solid Films, vol. 517, pp. 1807-1810 (2009).
JP2009267244, English Translation from EPO, Nov. 2009, 80 pages.
JP2010135689, English translation from EPO, Jun. 2010,95 pages.
Kai Li et al., “Light-emitting platinum(II) complexes supported by tetradentate dianionic bis(N-heterocyclic carbene) ligands: towards robust blue electrophosphors,” Chem. Sci., 2013, vol. 4, pp. 2630-2644.
Ke Feng et al., “Norbornene-Based Copolymers Containing Platinum Complexes and Bis(carbazolyl)benzene Groups in Their Side-Chains,” Macromolecules, vol. 42, 2009, pp. 6855-6864.
Kwon-Hyeon Kim et al., “Controlling Emitting Dipole Orientation with Methyl Substituents on Main Ligand of Iridium Complexes for Highly Efficient Phosphorescent Organic Light-Emitting Diodes”, Adv. Optical Mater. 2015, 3, pp. 1191-1196.
Kwon-Hyeon Kim et al., “Crystal Organic Light-Emitting Diodes with Perfectly Oriented Non-Doped Pt-Based Emitting Layer”, Adv. Mater. 2016, 28, pp. 2526-2532.
Maestri et al., “Absorption Spectra and Luminescence Properties of Isomeric Platinum (II) and Palladium (II) Complexes Containing 1,1′-Biphenyldiyl, 2-Phenylpyridine, and 2,2′-Bipyridine as Ligands,” Helvetica Chimica Acta, vol. 71, Issue 5, Aug. 10, 1988, pp. 1053-1059.
Marc Lepeltier et al., “Efficient blue green organic light-emitting devices based on a monofluorinated heteroleptic iridium(III) complex,” Synthetic Metals, vol. 199, 2015, pp. 139-146.
Matthew J. Jurow et al., “Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials”, Nature Materials, vol. 15, Jan. 2016, pp. 85-93.
Murakami; JP 2007258550, English machine translation from EPO, Oct. 4, 2007. 80 pages.
Murakami; JP 2007324309, English machine translation from EPO, Dec. 13, 2007, 89 pages.
Nicholas R. Evans et al., “Triplet Energy Back Transfer in Conjugated Polymers with Pendant Phosphorescent Iridium Complexes,” J. Am. Chem. Soc., vol. 128, 2006, pp. 6647-6656.
Pui Keong Chow et al., “Strongly Phosphorescent Palladium(II) Complexes of Tetradentate Ligands with Mixed Oxygen, Carbon, and Nitrogen Donor Atoms: Photophysics, Photochemistry, and Applications,” Angew. Chem. Int. Ed. 2013, 52, 11775-11779.
Pui-Keong Chow et al., “Highly luminescent palladium(II) complexes with sub-millisecond blue to green phosphorescent excited states. Photocatalysis and highly efficient PSF-OLEDs,” Chem. Sci., 2016, 7, 6083-6098.
Russell J. Holmes et al., “Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands,” Inorganic Chemistry, 2005, vol. 44, No. 22, pp. 7995-8003.
Shih-Chun Lo et al., “High-Triplet-Energy Dendrons: Enhancing the Luminescence of Deep Blue Phosphorescent Iridium(III) Complexes,” J. Am. Chem. Soc., vol. 131, 2009, pp. 16681-16688.
Shiro Koseki et al., “Spin-orbit coupling analyses of the geometrical effects on phosphorescence in Ir(ppy)3 and its derivatives”, J. Phys. Chem. C, vol. 117, pp. 5314-5327 (2013).
Shizuo Tokito et al., “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Applied Physics Letters, vol. 83, No. 3, Jul. 21, 2003, pp. 569-571.
Stefan Bernhard, “The First Six Years: A Report,” Department of Chemistry, Princeton University, May 2008, 11 pages.
Steven C. F. Kui et al., “Robust phosphorescent platinum(II) complexes with tetradentate OΛNΛCΛN ligands: high efficiency OLEDs with excellent efficiency stability,” Chem. Commun., 2013, vol. 49, pp. 1497-1499.
Steven C. F. Kui et al., “Robust Phosphorescent Platinum(II) Complexes Containing Tetradentate OΛNΛCΛN Ligands: Excimeric Excited State and Application in Organic White-Light-Emitting Diodes,” Chem. Eur. J., 2013, vol. 19, pp. 69-73.
Supporting Information: Xiao-Chun Hang et al., “Highly Efficient Blue-Emitting Cyclometalated Platinum(II) Complexes by Judicious Molecular Design,” Wiley-VCH 2013, 7 pages.
Sylvia Bettington et al. “Tris-Cyclometalated Iridium(III) Complexes of Carbazole(fluorenyl)pyridine Ligands: Synthesis, Redox and Photophysical Properties, and Electrophosphorescent Light-Emitting Diodes” Chemistry: A European Journal, 2007, vol. 13, pp. 1423-1431.
Tyler Fleetham et al., “Efficient Red-Emitting Platinum Complex with Long Operational Stability,” ACS Appl. Mater. Interfaces 2015, 7, 16240-16246.
Tyler Fleetham et al., “Efficient “pure” blue OLEDs employing tetradentate Pt complexes with a narrow spectral bandwidth,” Advanced Materials (Weinheim, Germany), Vo. 26, No. 41, 2014, pp. 7116-7121.
Vadim Adamovich et al., “High efficiency single dopant white electrophosphorescent light emitting diodes,” New J. Chem., 2002, 26, pp. 1171-1178.
Wong; Challenges in organometallic research—Great opportunity for solar cells and OLEDs, Journal of Organometallic Chemistry, 2009, 694, 2644-2647.
Xiao-Chu Hang et al., “Highly Efficient Blue-Emitting Cyclometalated Platinum(II) Complexes by Judicious Molecular Design,” Angewandte Chemie, International Edition, vol. 52, Issue 26, Jun. 24, 2013, pp. 6753-6756.
Xin Li et al., “Density functional theory study of photophysical properties of iridium (III) complexes with phenylisoquinoline and phenylpyridine ligands”, The Journal of Physical Chemistry C, 2011, vol. 115, No. 42, pp. 20722-20731.
Z Liu et al., “Green and blue-green phosphorescent heteroleptic iridium complexes containing carbazole-functionalized beta-diketonate for non-doped organic light-emitting diodes”, Organic.
Zhaowu Xu et al., “Synthesis and properties of iridium complexes based 1,3,4-oxadiazoles derivatives”, Tetrahedron 64 (2008) pp. 1860-1867.
Zhi-Qiang Zhu et. al.. “Efficient Cyclometalated Platinum(II) Complex with Superior Operational Stability,” Adv. Mater. 29 (2017) 1605002, pp. 1-5.
Zhi-Qiang Zhu et.al., “Harvesting All Electrogenerated Excitons through Metal Assisted Delayed Fluorescent Materials,” Adv. Mater. 27 (2015) 2533-2537.
Dorwald; “Side Reactions in Organic Synthesis: A Guide to Successful Synthesis Design,” Chapter 1, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Wienheim, 32 pages.
Satake et al., “Interconvertible Cationic and Neutral Pyridinylimidazole η3-Allylpalladium Complexes. Structural Assignment by 1H, 13C, and 15N NMR and X-ray Diffraction”, Organometallics, vol. 18, No. 24, 1999, pp. 5108-5111.
Ying Yang et al., “Induction of Circularly Polarized Electroluminescence from an Achiral Light-Emitting Polymer via a Chiral Small-Molecule Dopant,” Advanced Materials, vol. 25, Issue 18, May 14, 2013, pp. 2624-2628.
Vanessa Wood et al., “Colloidal quantum dot light-emitting devices,” Nano Reviews 1, Jul. 2010, pp. 5202.
Glauco Ponterini et al., “Comparison of Radiationless Decay Processes in Osmium and Platinum Porphyrins,” J. Am. Chem. Soc., vol. 105, No. 14, 1983, pp. 4639-4645.
Stephen R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature, vol. 428, Apr. 29, 2004, pp. 911-918.
Xiaofan Ren et al., “Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices,” Chem. Mater., vol. 16, 2004, pp. 4743-4747.
Jeonghun Kwak et al., “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Letters 12, Apr. 2, 2012, pp. 2362-2366.
U.S. Appl. No. 16/751,561, filed Jan. 24, 2020, has not yet published. Inventor: Li.
U.S. Appl. No. 16/751,586, filed Jan. 24, 2020, has not yet published. Inventor: Li et al.
Adachi, C. et al., “High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials”, Applied Physics Letters, Aug. 2000, vol. 77, No. 6, pp. 904-906 <DOI:10.1063/1.1306639>.
Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999).
Baldo et al., Very High-Efficiency Green Organic Light-Emitting Devices Based on Electrophosphorescence, Appl Phys Lett, 75(3):4-6 (1999).
Baldo, M. et al., “Excitonic singlet-triplet ratio in a semiconducting organic thin film”, Physical Review B, Nov. 1999, vol. 60, No. 20, pp. 14422-14428 <DOI:10.1103/PhysRevB.60.14422>.
Baldo, M. et al., “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer”, Nature, Feb. 2000, vol. 403, pp. 750-753.
Berson et al. (2007). “Poly(3-hexylthiophene) fibers for photovoltaic applications,” Adv. Funct. Mat., 17, 1377-84.
Bouman et al. (1994). “Chiroptical properties of regioregular chiral polythiophenes,” Mol. Cryst. Liq. Cryst., 256, 439-48.
Bronner; Dalton Trans., 2010, 39, 180-184. DOI: 10.1039/b908424j (Year: 2010).
Brooks, J. et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes”, Inorganic Chemistry, May 2002, vol. 41, No. 12, pp. 3055-3066 <DOI:10.1021/ic0255508>.
Brown, A. et al., “Optical spectroscopy of triplet excitons and charged excitations in poly(p-phenylenevinylene) light-emitting diodes”, Chemical Physics Letters, Jul. 1993, vol. 210, No. 1-3, pp. 61-66 <DOI:10.1016/0009-2614(93)89100-V>.
Burroughes, J. et al., “Light-emitting diodes based on conjugated polymers”, Nature, Oct. 1990, vol. 347, pp. 539-541.
Campbell et al. (2008). “Low-temperature control of nanoscale morphology for high performance polymer photovoltaics,” Nano Lett., 8, 3942-47.
Chen, F. et al., “High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex”, Applied Physics Letters, Apr. 2002 [available online Mar. 2002], vol. 80, No. 13, pp. 2308-2310 <10.1063/1.1462862>.
Chen, X., et al., “Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives”, Chemical Reviews, 2012 [available online Oct. 2011], vol. 112, No. 3, pp. 1910-1956 <DOI:10.1021/cr200201z>.
Chow; Angew. Chem. Int. Ed. 2013, 52, 11775-11779. DOI: 10.1002/anie.201305590 (Year: 2013).
Coakley et al. (2004). “Conjugated polymer photovoltaic cells,” Chem. Mater., 16, 4533-4542.
Colombo, M. et al., “Synthesis and high-resolution optical spectroscopy of bis[2-(2-thienyl)pyridinato-C3,N′(2,2′-bipyridine)iridium(III)”, Inorganic Chemistry, Jul. 1993, vol. 32, No. 14, pp. 3081-3087 <DOI:10.1021/ic00066a019>.
D'Andrade, B. et al., “Operational stability of electrophosphorescent devices containing p and n doped transport layers”, Applied Physics Letters, Nov. 2003, vol. 83, No. 19, pp. 3858-3860 <DOI:10.1063/1.1624473>.
Dorwald, Side Reactions in Organic Synthesis 2005, Wiley:VCH Weinheim Preface, pp. 1-15 & Chapter 1, pp. 279-308.
Dsouza, R., et al., “Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution”, Oct. 2011, vol. 111, No. 12, pp. 7941-7980 <DOI:10.1021/cr200213s>.
Finikova,M.A. et al., New Selective Synthesis of Substituted Tetrabenzoporphyris, Doklady Chemistry, 2003, vol. 391, No. 4-6, pp. 222-224.
Galanin et al. Synthesis and Properties of meso-Phenyl-Substituted Tetrabenzoazaporphines Magnesium Complexes. Russian Journal of Organic Chemistry (Translation of Zhurnal Organicheskoi Khimii) (2002), 38(8), 1200-1203.
Gong et al., Highly Selective Complexation of Metal Ions by the Self-Tuning Tetraazacalixpyridine macrocycles, Tetrahedron, 65(1): 87-92 (2009).
Gottumukkala,V. et al., Synthesis, cellular uptake and animal toxicity of a tetra carboranylphenyl N-tetrabenzoporphyr in, Bioorganic&Medicinal Chemistry, 2006, vol. 14, pp. 1871-1879.
Hansen (1969). “The universality of the solubility parameter,” I & EC Product Research and Development, 8, 2-11.
Holmes, R. et al., “Efficient, deep-blue organic electrophosphorescence by guest charge trapping”, Applied Physics Letters, Nov. 2003 [available online Oct. 2003], vol. 83, No. 18, pp. 3818-3820 <DOI:10.1063/1.1624639>.
Imre et al (1996). “Liquid-liquid demixing ffrom solutions of polystyrene. 1. A review. 2. Improved correlation with solvent properties,” J. Phys. Chem. Ref. Data, 25, 637-61.
Ivaylo Ivanov et al., “Comparison of the INDO band structures of polyacetylene, polythiophene, polyfuran, and polypyrrole,” Synthetic Metals, vol. 116, Issues 1-3, Jan. 1, 2001, pp. 111-114.
Jeong et al. (2010). “Improved efficiency of bulk heterojunction poly (3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester photovoltaic devices using discotic liquid crystal additives,” Appl. Phys. Lett.. 96, 183305. (3 pages).
Kim et al (2009). “Altering the thermodynamics of phase separation in inverted bulk-heterojunction organic solar cells,” Adv. Mater., 21, 3110-15.
Kim et al. (2005). “Device annealing effect in organic solar cells with blends of regioregular poly (3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502. (3 pages).
Kroon et al. (2008). “Small bandgap olymers for organic solar cells,” Polymer Reviews, 48, 531-82.
Kwong, R. et al., “High operational stability of electrophosphorescent devices”, Applied Physics Letters, Jul. 2002 [available online Jun. 2002], vol. 81, No. 1, pp. 162-164 <DOI:10.1063/1.1489503>.
Lamansky, S. et al., “Cyclometalated Ir complexes in polymer organic light-emitting devices”, Journal of Applied Physics, Aug. 2002 [available online Jul. 2002], vol. 92, No. 3, pp. 1570-1575 <10.1063/1.1491587>.
Lamansky, S. et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes”, Inorganic Chemistry, Mar. 2001, vol. 40, No. 7, pp. 1704-1711 <DOI:10.1021/ic0008969>.
Lee et al. (2008). “Processing additives for inproved efficiency from bulk heterojunction solar cells,” J. Am. Chem. Soc, 130, 3619-23.
Li et al. (2005). “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene),” J. Appl. Phys., 98, 043704. (5 pages).
Li et al. (2007). “Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes,” Adv. Funct. Mater, 17, 1636-44.
Li, J. et al., “Synthesis and characterization of cyclometalated Ir(III) complexes with pyrazolyl ancillary ligands”, Polyhedron, Jan. 2004, vol. 23, No. 2-3, pp. 419-428 <DOI:10.1016/j.poly.2003.11.028>.
Li, J., et al., “Synthetic Control of Excited-State Properties in Cyclometalated Ir(III) Complexes Using Ancillary Ligands”, Inorganic Chemistry, Feb. 2005, vol. 44, No. 6, pp. 1713-1727 <DOI:10.1021/ic048599h>.
Liang, et al. (2010). “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135-38.
Markham, J. et al., “High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes”, Applied Physics Lettersm Apr. 2002, vol. 80, vol. 15, pp. 2645-2647 <DOI:10.1063/1.1469218>.
Galanin et al., meso-Phenyltetrabenzoazaporphyrins and their zinc complexes. Synthesis and spectral properties, Russian Journal of General Chemistry (2005), 75(4), 651-655.
Michl, J., “Relationship of bonding to electronic spectra”, Accounts of Chemical Research, May 1990, vol. 23, No. 5, pp. 127-128 <DOI:10.1021/ar00173a001>.
Miller, R. et al., “Polysilane high polymers”, Chemical Reviews, Sep. 1989, vol. 89, No. 6, pp. 1359-1410 <DOI:10.1021/cr00096a006>.
Morana et al. (2007). “Organic field-effect devices as tool to characterize the bipolar transport in polymer-fullerene blends: the case of P3HT-PCBM,” Adv. Funct. Mat., 17, 3274-83.
Moule et al. (2008). “Controlling morphology in Polymer-Fullerene mixtures,” Adv. Mater., 20, 240-45.
Nazeeruddin, M. et al., “Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices”, Journal of the American Chemical Society, Jun. 2003, vol. 125, No. 29, pp. 8790-8797 <DOI:10.1021/ja021413y>.
Nillson et al. (2007). “Morphology and phase segregation of spin-casted films of polyfluorene/PCBM Blends,” Macromolecules, 40, 8291-8301.
Olynick et al. (2009). “The link between nanoscale feature development in a negative resist and the Hansen solubility sphere,” Journal of Polymer Science: Part B: Polymer Physics, 47, 2091-2105.
Peet et al. (2007). “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nature Materials, 6, 497-500.
Pivrikas et al. (2008). “Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives,” Organic Electronics, 9, 775-82.
Results from SciFinder Compound Search on Dec. 8, 2016. (17 pages).
Rui Zhu et al., “Color tuning based on a six-membered chelated iridium (III) complex with aza-aromatic ligand,”, Chemistry Letters, vol. 34, No. 12, 2005, pp. 1668-1669.
Sajoto, T. et al., “Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes”, Journal of the American Chemical Society, Jun. 2009, vol. 131, No. 28, pp. 9813-9822 <DOI:10.1021/ja903317w>.
Saricifci et al. (1993). “Semiconducting polymerbuckminsterfullerene heterojunctions: diodes photodiodes, and photovoltaic cells,” Appl. Phys. Lett., 62, 585-87.
Saunders et al. (2008). “Nanoparticle-polymer photovoltaic cells,” Advances in Colloid and Interface Science, 138, 1-23.
Shin et al. (2010). “Abrupt morphology change upon thermal annealing in Poly(3-hexathiophene)/soluble fullerene blend films for polymer solar cells,” Adv. Funct. Mater., 20, 748-54.
Strouse, G. et al., “Optical Spectroscopy of Single Crystal [Re(bpy)(CO)4](PF6): Mixing between Charge Transfer and Ligand Centered Excited States”, Inorganic Chemistry, Oct. 1995, vol. 34, No. 22, pp. 5578-5587 <DOI:10.1021/ic00126a031>.
Tang, C. et al., “Organic electroluminescent diodes”, Applied Physics Letters, Jul. 1987, vol. 51, No. 12, pp. 913-915 <DOI:10.1063/1.98799>.
Tsuoboyama, A. et al., “Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode”, Journal of the American Chemical Society, Sep. 2003, vol. 125, No. 42, pp. 12971-12979 <DOI:10.1021/ja034732d>.
Turro, N., “Modern Molecular Photochemistry” (Sausalito, California, University Science Books, 1991), p. 48.
V. Thamilarasan et al., “Green-emitting phosphorescent iridium(III) complex: Structural, photophysical and electrochemical properties,” Inorganica Chimica Acta, vol. 408, 2013, pp. 240-245.
Wang et al. (2010). “The development of nanoscale morphology in polymer: fullerene photovoltaic blends during solvent casting,” Soft Matter, 6, 4128-4134.
Wang et al., C(aryl)-C(alkyl) bond formation from Cu(Cl04)2-mediated oxidative cross coupling reaction between arenes and alkyllithium reagents through structurally well-defined Ar—Cu(III) intermediates, Chem Commun, 48: 9418-9420 (2012).
Williams, E. et al., “Excimer Based White Phosphorescent Organic Light Emitting Diodes with Nearly 100% Internal Quantum Efficiency”, Advanced Materials, Jan. 2007, vol. 19, No. 2, pp. 197-202 <DOI:10.1002/adma.200602174>.
Williams, E. et al., “Organic light-emitting diodes having exclusive near-infrared electrophosphorescence”, Applied Physics Letters, Aug. 2006, vol. 89, No. 8, pp. 083506-1-083506-3 <DOI:10.1063/1.2335275>.
Yakubov, L.A. et al., Synthesis and Properties of Zinc Complexes of mesoHexadecyloxy-Substituted Tetrabenzoporphyrin and Tetrabenzoazaporphyrins, Russian Journal of Organic Chemistry, 2008, vol. 44, No. 5, pp. 755-760.
Yang et al. (2005). “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett., 5, 579-83.
Yang, X. et al., “Efficient Blue and White Emitting Electrophosphorescent Devices Based on Platinum(II) [1,3 Difluoro 4,6 di(2 pyridinyl)benzene] Chloride”, Advanced Materials, Jun. 2008, vol. 20, No. 12, pp. 2405-2409 <DOI:10.1002/adma.200702940>.
Yao et al. (2008). “Effect of solvent mixture on nanoscale phase separation in polymer solar cells,” Adv. Funct. Mater.,18, 1783-89.
Yao et al., Cu(Cl04)2-Mediated Arene C—H Bond Halogenations of Azacalixaromatics Using Alkali Metal Halides as Halogen Sources, The Journal of Organic Chemistry, 77(7): 3336-3340 (2012).
Yu et al. (1995). “Polymer Photovoltaic Cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, 270, 1789-91.
Zhu, W. et al., “Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes”, Applied Physics Letters, Mar. 2002, vol. 80, No. 12, pp. 2045-2047 <DOI:10.1063/1.1461418>.
U.S. Appl. No. 61/692,937.
U.S. Appl. No. 61/719,077.
Fuchs, C. et al., “Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses”, arXiv, submitted Mar. 2015, 11 pages, arXiv:1503.01309.
Fuchs, C. et al., “Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses”, Physical Review B, Dec. 2015, vol. 92, No. 24, pp. 245306-1-245306-10 <DOI:10.1103/PhysRevB.92.245306>.
Gather, M. et al., “Recent advances in light outcoupling from white organic light-emitting diodes,” Journal of Photonics for Energy, May 2015, vol. 5, No. 1, 057607-1-057607-20 <DOI:10.1117/1.JPE.5.057607>.
Graf, A. et al., “Correlating the transition dipole moment orientation of phosphorescent emitter molecules in OLEDs with basic material properties”, Journal of Materials Chemistry C, Oct. 2014, vol. 2, No. 48, pp. 10298-10304 <DOI:10.1039/c4tc00997e>.
Hatakeyama, T. et al., “Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect”, Advanced Materials, Apr. 2016, vol. 28, No. 14, pp. 2777-2781, <DOI:10.1002/adma.201505491>.
Kim, HY. et al., “Crystal Organic Light-Emitting Diodes with Perfectly Oriented Non-Doped Pt-Based Emitting Layer”, Advanced Functional Materials, Feb. 2016, vol. 28, No. 13, pp. 2526-2532 <DOI:10.1002/adma.201504451>.
Kim, JJ., “Setting up the new efficiency limit of OLEDs; Abstract” [online], Electrical Engineering—Princeton University, Aug. 2014 [retrieved on Aug. 24, 2016], retrieved from the internet: <URL:http://ee.princeton.edu/events/setting-new-efficiency-limit-oled> 2 pages.
Kim, SY. et al., “Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter”, Advanced Functional Materials, Mar. 2013, vol. 23, No. 31, pp. 3896-3900 <DOI:10.1002/adfm.201300104 >.
Lampe, T. et al., “Dependence of Phosphorescent Emitter Orientation on Deposition Technique in Doped Organic Films”, Chemistry of Materials, Jan. 2016, vol. 28, pp. 712-715 <DOI:10.1021/acs.chemmater.5b04607>.
Li, J., “Efficient and Stable OLEDs Employing Square Planar Metal Complexes and Inorganic Nanoparticles”, in DOE SSL R&D Workshop (Raleigh, North Carolina, 2016), Feb. 2016, 15 pages.
Lin, TA et al., “Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid”, Advanced Materials, Aug. 2016, vol. 28, No. 32, pp. 6876-6983 <DOI:10.1002/adma.201601675>.
Sakai, Y. et al., “Simple model-free estimation of orientation order parameters of vacuum-deposited and spin-coated amorphous films used in organic light-emitting diodes”, Applied Physics Express, Aug. 2015, vol. 8, No. 9, pp. 096601-1-096601-4 <DOI:10.7567/APEX.8.096601>.
Senes, A. et al., “Transition dipole moment orientation in films of solution processed fluorescent oligomers: investigating the influence of molecular anisotropy”, Journal of Materials Chemistry C, Jun. 2016, vol. 4, No. 26, pp. 6302-6308 <DOI:10.1039/c5tc03481g>.
Related Publications (1)
Number Date Country
20200119288 A1 Apr 2020 US
Provisional Applications (2)
Number Date Country
62508560 May 2017 US
62508782 May 2017 US
Continuations (1)
Number Date Country
Parent 15983680 May 2018 US
Child 16668010 US