This invention relates to metal-containing nanoparticles, their synthesis and their use.
Metal-containing nanoparticles are particles that contain a metal or a metal alloy and have an average particle size from 1 nanometer to less than 1000 nanometers. Such particles have a wide variety of potential uses, such as, in the production of electrical conductors for electronic devices where, for example, silver nanoparticles can be applied to a substrate, such as by ink jet printing, and then sintered at a temperature significantly below the melting point of bulk silver to produce the desired conductor.
Although nano-sized metal particles have significant utility without modification, their properties frequently can be enhanced by the addition of a surface coating, either of a polymeric material or a ceramic material, such as a metal oxide. For example, uncoated metal nanoparticles frequently suffer from the problem that they tend to agglomerate into larger micron scale aggregates that may, for example, no longer be suitable for ink jet printing. Provision of a surface coating on the particles may, however, assist in minimizing the problem of agglomeration. Coatings can also assist in passivating the surface of the particles against oxidation as well as provide a basis for the addition of functional groups to the particles, thereby extending their range of chemical properties.
Until recently, methods of forming metal-containing nanoparticles and particularly coated metal-containing nanoparticles have involved traditional “wet” chemical routes. In these processes, metal nanoparticles are initially precipitated from solution generally by reduction of a dissolved precursor salt and frequently in the presence of an organic polymer capable of coating the particles to passivate the particles and/or resist their agglomeration. An example of such a process is the so-called “polyol process” described in, for example, U.S. Pat. No. 4,539,041. The polyol process produces metal nanoparticles that are small in size, for example between 1 and 100 nanometers, and can have a narrow particle size distribution. However, the overall synthesis is complex, time consuming and scale-limited and produces nanoparticles, in which the metal core is poorly crystalline and the surface coating layer tends to contain covalently bonded carbon (directly bonded or through other metals) remaining from the organic species used in the synthesis or used to stabilize the metal particles.
More recently, aerosol pyrolysis methods have been proposed for producing metal-containing nanoparticles. For example, US Published Patent Application No. 2005/0061107, published Mar. 24, 2005, discloses a process for producing coated silver-containing particles, wherein the method comprises preparing silver-containing particles in a flowing aerosol stream; and after the preparing, processing the silver-containing particles in the aerosol stream to make the coated silver-containing particles in the aerosol stream; wherein the processing comprises, while the silver-containing particles are in the aerosol stream, coating the silver-containing particles with a coating material that is substantially free of silver. The silver-containing particles are prepared by heating the aerosol stream in a thermal reactor, which typically is a furnace but can be a flame or plasma reactor.
In addition, US Published Patent Application No. 2005/0100666, published May 12, 2005, discloses a method for making coated particles by preparing particles of a first material phase dispersed in a flowing aerosol stream and, while the particles are in the aerosol stream, coating the particles with a second material phase. The coated particles have a weight average particle size of smaller than 4 microns and comprise a core of the first material phase and a coating layer of the second material phase, typically having thickness of 10 nanometers to 25 nanometers. Both the first material phase and the second material phase can be metallic or nonmetallic and the particles of the first material phase can be produced in a thermal reactor, such as a furnace or a plasma or flame reactor. The coating of the second material phase can be formed by chemical or physical vapor deposition of the second material phase on the particles of the first material phase. Alternatively, precursors for both the first material phase and the second material phase can be dispersed in a liquid feed and the resultant feed atomized to produce the aerosol stream which is then converted to particles in a thermal reactor.
Further, US Published Patent Application No. 2006/0087062, published Apr. 27, 2006, discloses a flame spray process for the modification of particles comprising metal oxide and mixed metal oxides having a number average particle size of less than 100 μm, comprising: a) injecting preformed particles through a high temperature zone having a temperature greater than 400° C. and less than 2000° C.; b) optionally coinjecting a liquid composition comprising one or more metal oxide precursor compounds; c) rapidly quenching the particles to obtain product particles or coatings of product particles wherein at least one of composition, phase, morphology, particle size, or particle size distribution is altered.
According to the present invention, it has now been found that metal-containing nanoparticles having a thin ceramic coating (typically less than 10 nanometers) can be produced in a single-stage, high temperature (greater than 1250° C.) vapor phase process. Although the mechanism of the process is not fully understood, it is believed that at least in some cases the ceramic material normally condenses from the vapor before the metal component and that the metal component then condenses as metal nanoclusters on the already-formed ceramic particles. In previously disclosed processes, after their nucleation the metal nanoclusters remain substantially fixed to the surface of the ceramic particles resulting in production of ceramic particles decorated with small metal nanoparticles. Due to high ratio of metal to ceramic material and the high temperatures involved in the present process, it is believed that the metal is highly mobile and the particles rearrange to the thermodynamically preferred form in which the lower surface energy ceramic component is present as an external coating on metal nanoparticles. The resultant product is composed of crystalline metal particles having a weight average particle size of from 10 nanometers to less than 100 nanometers present either as discrete particles coated with ceramic or as aggregates of a small number (less than 20) of particles within a ceramic matrix. Because of their small size, typically less than 300 nanometers, even the aggregates are ink-jettable without comminution; that is, without having to break up the aggregates.
In one aspect, the present invention resides in a powder batch comprising crystalline metal-containing particles having a crystal size of less than 50 nm as measured by X-ray diffraction and having a weight average particle size of from about 10 nanometers to less than 100 nanometers as measured by transmission electron microscopy and including a continuous or non-continuous coating of a ceramic material.
Conveniently, said metal-containing particles have a weight average particle size of from about 10 nanometers to about 80 nanometers, such as from about 20 nanometers to about 60 nanometers, for example from about 30 nanometers to about 50 nanometers. Typically, said metal-containing particles have a particle size distribution such at least 80 weight percent, preferably at least 90 weight percent of the particles, have a size of less than 500 nanometers.
Conveniently, the volume ratio of metal to ceramic material for each particle is at least 9:1, such as at least 19:1, for example at least 98:1.
In a further aspect, the present invention resides in a powder batch comprising aggregates of metal-containing particles within a matrix of a ceramic material, said aggregates having a weight average particle size of less than 500 nanometers and each aggregate comprising a plurality of metal-containing particles having a weight average particle size of less than 100 nanometers. In some embodiments, the powder batch comprises aggregates of metal-containing particles within a matrix of a ceramic material, said aggregates having a weight average particle size of from about 600 nm to about 800 nm.
Conveniently, said aggregates have a weight average particle size of less than 300 nanometers, such as less than 200 nanometers, for example less than 100 nanometers, in some cases less than 50 nanometers. Typically, each aggregate comprises less than 20, for example less than 10, such as less than 5, of said metal-containing particles.
Conveniently, said metal is selected from silver, copper, gold, palladium, platinum, nickel, cobalt, zinc, molybdenum, tungsten, and alloys thereof, whereas said ceramic material comprises an oxide of at least one element selected from silicon, zinc, tin, zirconium, aluminum, titanium, ruthenium, tin and cerium.
Preferably, said metal is silver and said ceramic material is silica.
In yet a further aspect, the present invention resides in a process for producing metal-containing particles, the process comprising:
(a) contacting in the vapor phase a metal or metal alloy component and a ceramic component and
(b) condensing from the vapor phase particles comprising said metal or metal alloy coated with said ceramic material, wherein said metal or metal alloy particles have a crystal size of less than 50 nm as measured by X-ray diffraction and have a weight average particle size of less than 100 nanometers as measured by transmission electron microscopy.
Conveniently, said contacting (a) is conducted in a flame spray reactor, a plasma reactor or a laser reactor at a temperature of at least 1000° C., more preferably at least 1500° C. and even more preferably above 2000° C.
The present invention provides a powder batch of ceramic-coated, metal-containing nanoparticles and a single step vapor phase process for producing the same. Depending on the metal and ceramic employed, the particles have a wide variety of potential uses including in optical, electronic and fuel cell applications. For example, in one preferred embodiment, in which the metal is silver or a silver alloy and the ceramic is an oxide, such as silica, the particles are useful in producing reflective and/or conductive coatings.
The particles in the present powder batch have a core/shell configuration, in which the core is composed of a metal or metal alloy and shell is composed of a ceramic material. The particles may be present in the batch as individual metal-containing particles, each having a discrete continuous or non-continuous coating of the ceramic material and/or the particles may be present as aggregates of multiple metal-containing particles within a common matrix of the ceramic material. As will be discussed in more detail below, the nature of the powder batch, as aggregates and/or as individual particles, will depend upon the relative amounts of metal and ceramic precursors in the input to the vapor phase synthesis process.
The metal in the particles may include virtually any type of metal and can include both single metals and metal alloys. Particularly preferred metals include at least one of palladium (Pd), silver (Ag), nickel (Ni), cobalt (Co), copper (Cu), gold (Au), platinum (Pt), molybdenum (Mo), tungsten (W), and the like. Typical alloys include a Ag/Pd alloy, such as one having a Ag:Pd ratio of about 70:30, as well as Cu/Ni, Cu/Zn, and Pd/Pt alloys. Preferred are metal-containing powders including at least one of palladium, silver, nickel, copper, gold and platinum, and even more particularly those including at least one of palladium, silver, nickel and copper. Most preferably, the metal is silver or a silver alloy.
Similarly, the choice of ceramic material is not narrowly limited, although in the usual case, where the ceramic material condenses at a higher temperature than the metal in the vapor phase synthesis process, the relative surface wetting properties of the metal and the ceramic should be such as to allow redistribution of the metal, as it condenses on the ceramic, to form a surface layer to the core of the final particle. Typically the ceramic shell material includes an oxide, such as an oxide of at least one of silicon, zirconium, titanium, aluminum, cerium, zinc, tin, bismuth, molybdenum, manganese, vanadium, niobium, tantalum, tungsten, iron, chromium, cobalt, nickel, copper, yttrium, bismuth, magnesium, thorium and gadolinium. Some preferred oxides are silica, titania, zirconia, ceria, and tin oxide, with silica being particularly preferred. In all cases, these oxides can be doped with low or high amounts of dopant elements, where high doping concentration can result in formation of distinct mixed metal oxide phases. In some cases, the oxide or oxides used as the ceramic material can produce a glass-like shell on the particles. The oxide can be a complex oxide consisting of two or more elements, e.g. Y—Yb—O, Ba—Ti—O, Zn—Si—B—O and others. Furthermore, a variety of other ceramic materials may be used to produce the particle shell, such as carbides, for example silicon or titanium carbides; borides, for example titanium boride; and nitrides, including silicon or titanium nitrides; silicides, for example titanium silicide; oxynitrides; oxysulfides; and oxycarbides.
Depending on the specific materials chosen for the metal core and ceramic shell, the final particles may exhibit enhanced or additional functionality as compared with nanoparticles of the uncoated metal. For example, the oxide layer can be a partially transparent color layer, in which case the final metal/metal oxide particle may exhibit metallic reflectivity combined with color. In addition, if SiO2 is employed as the shell material, various known methods for treating silica surfaces (such as silanation, imparting of hydrophobic or hydrophilic properties, addition of different ligands to the silica surface, modification of surface acidity, and others) can be employed to provide the particles with functionalities such as enhanced adhesion, improved wear and environmental resistance, and reduced curing time.
Whether present in the powder batch as aggregates or as individual coated particles, the metal or metal alloy is in the form of small crystal domains having a size of less than 50 nm as measured by X-ray diffraction (XRD) and having a weight average particle size as measured by transmission electron microscopy (TEM) of from about 10 nanometers to less than 100 nanometers, typically from about 10 nanometers to about 80 nanometers, such as from about 20 nanometers to about 60 nanometers, for example from about 30 nanometers to about 50 nanometers.
In addition, whether present as aggregates or individual coated particles, the metal or metal alloy domains tend to exhibit a narrow particle size distribution such that at least 80 weight percent, preferably at least 90 weight percent of the particles, have a size of less than 500 nanometers, wherein the particle size distribution is measured using quasi-electric light scattering (QELS).
When the metal-containing particles are present in the powder batch as aggregates, the aggregates generally have a weight average particle size of less than 300 nanometers, such as less than 200 nanometers, for example less than 100 nanometers, in some cases less than 50 nanometers, wherein the aggregate size is measured using quasi-electric light scattering (QELS). Because of their small size, the aggregates are normally ink-jettable without comminution. Typically, each aggregate comprises less than 20, for example less than 10, such as less than 5, of said metal-containing particles.
Whether the powder batch comprises individual coated metal-containing particles and/or aggregates of multiple metal-containing particles within a common matrix of the ceramic material, the volume ratio of metal to ceramic material in each particle is normally at least 9:1 (90 vol % metal/10 vol % ceramic), such as at least 19:1 (95 vol % metal/5 vol % ceramic), for example at least 98:1 (98 vol % metal/1 vol % ceramic). As a result, the thickness of the ceramic coating is generally very thin (typically less than 10 nanometers) so that, in the case of the preferred embodiment of a silica-coated silver particles, although the coating serves to prevent agglomeration of the particles, thin films produced from the particles are reflective and at high silver concentration (>95% wt) the particles are conductive.
The present powder batch is produced by a single step process in which precursors to the metal/alloy core and ceramic coating of the nanoparticles are vaporized in a high temperature reaction zone to form a vapor of the ceramic and a the vapor of metal/alloy, whereafter the vapors are allowed to condense/nucleate to form the desired nanoparticles. Normally, the ceramic material has a higher boiling point than the metal/alloy and so is assumed to condense from the vapor before the metal component. Although the mechanism of the process is not fully understood, it is believed that the metal/alloy vapor then condenses as metal/alloy nanoclusters on the already-formed ceramic particles. However, at the high temperatures involved, it is believed that the metal/alloy is highly mobile and the particles rearrange to the thermodynamically preferred form in which the lower surface energy ceramic component is present as an external coating on metal-containing nanoparticles.
By the term “precursor” is meant a composition that includes at least one component for inclusion in the nanoparticulates. By “component” is meant at least some identifiable portion of the precursor that becomes a part of the nanoparticulates. For example, the component could be the entire composition of the precursor when that entire composition is included in the nanoparticulates. For example, in one embodiment, the ceramic material itself is vaporized and contacted with the vapor of the metal/alloy precursor. More often, however, the component will be something less than the entire composition of the precursor, and may be only a constituent element present in both the composition of the precursor and the nanoparticulates. For example, it is often the case that in the high temperature reaction zone the precursor decomposes, and one or more than one element in a decomposition product then becomes part of the nanoparticulates, for example the metal/alloy core or metal oxide coating, either with or without further reaction of the decomposition product.
The precursors can be any materials that will vaporize or has intermediate products that can vaporize and, if necessary, decompose to produce the desired ceramic and metal/alloy vapors in the high temperature reaction zone. In the case of the metal/alloy component, the precursor will generally be one or more metal salts that can be dissolved in the liquid vehicle. Such salts can include simple inorganic acid salts, such as nitrates and chlorides. However, in the preferred embodiment where the high temperature reaction zone is part of a flame reactor, it may be desirable to employ one or more precursors in the form of salts of organic acids, such as metal carboxylates, metal alkoxides, or other organic derivatives so that the precursors provide at least part of the fuel for the flame reactor. Similarly, organic derivatives can be employed as precursors of the ceramic shell so that, for example, where the ceramic shell is silica, a suitable precursor includes hexamethyldisiloxane.
In conducting the present synthesis process, it is found that the volume ratio of the metal precursor to the ceramic precursor is important in producing the desired nanoparticles comprising a metal core surrounded by a ceramic shell. The precise ratio is dependent on the particular metal and ceramic employed but, in general, it is found that the volume ratio of metal to ceramic in the precursor mixture should be at least 4:1, such as at least 9:1, for example at least 19:1, at least 47:1 or at least 98:1.
Generally, the precursors are introduced into the high temperature reaction zone in a nongaseous state. Rather, as introduced into the reactor, the precursor will be, or be part of, one or more of a liquid, a solid or a supercritical fluid feed to the reactor. In one convenient implementation, the precursor is contained within a nongaseous dispersed phase material, such as in droplets of liquid sprayed into the internal reactor volume
In one preferred embodiment, vaporization of the metal/alloy precursor and the ceramic precursor is achieved by dispersing the precursors in one or more liquid vehicles, atomizing the liquid vehicle(s) to produce an aerosol containing the precursors and then introducing the aerosol into a high temperature reaction zone, such as that generated by a plasma reactor or more preferably by a flame spray or laser reactor. Generally, the high temperature reaction zone is at a temperature of at least 1000° C., such as at least 1500° C., for example at least 2000° C. Generally, higher temperatures in the reaction zone favor the formation of larger nanoparticles.
The precursor to the metal/alloy core can be dispersed in the same liquid vehicle as the precursor to the ceramic shell or the precursors can be dispersed in different liquid vehicles. Moreover, each precursor can be dispersed in its liquid vehicle by partly or wholly dissolving the precursor in the vehicle or instead the precursor can be dispersed in its liquid vehicle as a slurry or emulsion of solid precursor particles so that, after atomization, the aerosol produced comprises droplets containing precursor particles.
The liquid vehicle can be organic, aqueous, or an organic/aqueous mixture. Some nonlimiting examples of organic liquid vehicles include alcohols (e.g., methanol, ethanol, isopropanol, butanol), organic acids, glycols, aldehydes, ketones, ethers, waxes, or fuel oils (e.g., kerosene or diesel oil), toluene and gasoline. In addition to or instead of the organic liquid, the liquid vehicle may include an inorganic liquid, which will typically be aqueous-based. Some non-limiting examples of such inorganic liquids include water and aqueous solutions, which may be pH neutral, acidic or basic. The liquid vehicle may include a mixture of mutually soluble liquid components, such as a mixture of mutually soluble organic liquids or a mixture of water with one or more organic liquids that are mutually soluble with water (e.g., some alcohols, ethers, ketones, aldehydes, etc.). Alternatively, liquid vehicle may contain multiple distinct liquid phases, for example, an emulsion, such as an oil-in-water or a water-in-oil emulsion.
In addition to acting as a carrier for the precursor(s), the vehicle may have a variety of other functions. For example, when the high temperature reaction zone is part of a flame spray reactor, the liquid vehicle may be or include a component that is a fuel or an oxidant for combustion in a flame of the flame reactor. Such fuel or oxidant in the liquid may be the primary or a supplemental fuel or oxidant for driving the combustion in a flame.
When the precursors are introduced into the high temperature reaction zone as an aerosol in a liquid vehicle, in one preferred embodiment the aerosol droplets are dispersed in a gas phase. The gas phase may include any combination of gas components in any concentrations. The gas phase may include only components that are inert (i.e. nonreactive) in the reactor or the gas phase may comprise one or more reactive components (i.e., decompose or otherwise react in the reactor). When the high temperature reaction zone is generated in a flame reactor, the gas phase may comprise a gaseous fuel and/or oxidant for combustion in the flame. Non-limiting examples of suitable gaseous oxidants are gaseous oxygen (which could be provided by making the gas phase from or including air) and carbon monoxide. Non-limiting examples of gaseous fuels that could be included in the gas phase include hydrogen gas and gaseous organics, such as hydrocarbons (e.g., methane, ethane, propane, butane). Often, the gas phase will include at least oxidant (normally oxygen in air) and fuel delivered separately to the flame. Alternatively, the gas phase may include both fuel and oxidant premixed for combustion in a flame. Also, the gas phase may include a gas mixture containing more than one oxidant and/or more than one fuel. Also, the gas phase may include one or more than one gaseous precursor for a material of the nanoparticulates. For example, when the ceramic shell includes an oxide material, the gaseous precursor can be an oxygen-containing gas, such as air.
Where the precursors are introduced into the high temperature reaction zone as an aerosol in a liquid vehicle, the aerosol can be produced using any suitable device that disperses liquid into droplets, such as for example, a spray nozzle. Examples of suitable spray nozzles include ultrasonic spray nozzles, multi-fluid spray nozzles and pressurized spray nozzles. One example of a suitable multi-fluid spray nozzle is shown in
Ultrasonic spray nozzles generate droplets of liquid by using piezoelectric materials that vibrate at ultrasonic frequencies to break up a liquid into small droplets. Pressurized nozzles use pressure and a separator or screen in order to break up the liquid into droplets. In some cases, pressurized nozzles may involve use of some vapor that is generated from the liquid itself in order to pressurize and break up the liquid into droplets. One advantage of using ultrasonic and pressurized nozzles is that an additional fluid is not required to generate liquid droplets. This may be useful in situations where the precursor dissolved in the liquid vehicle is sensitive and/or incompatible with other common fluids used in multi-fluid spray nozzles.
In addition to the use of a spray nozzle for dispersing the liquid medium, any other suitable device or apparatus for generating disperse droplets of liquid may be used in the generating step. One example of a device that is useful in generating droplets of liquid is an ultrasonic generator. An ultrasonic generator uses transducers to vibrate liquids at very high frequencies which break up the liquid into droplets. One example of an ultrasonic generator that is useful with the present invention is disclosed in U.S. Pat. No. 6,338,809, incorporated herein by reference in its entirety. Another example of a device that is useful in generating droplets of liquid is a high energy atomizer such as those used in carbon black production.
In one preferred embodiment, the coated nanoparticles are produced using a flame reactor. By a “flame reactor” is meant a reactor having an internal reactor volume directly heated by one or more than one flame when the reactor is operated. By “directly heated” is meant that the hot discharge of a flame flows into the internal reactor volume. By the term “flame” is meant a luminous combustion zone.
Each flame of the flame reactor will typically be generated by a burner, through which oxidant and fuel are fed to the flame for combustion. The burner may be of any suitable design for use in generating a flame, although the geometry and other properties of the flame will be influenced by the burner design. Some exemplary burner designs that may be used to generate a flame for the flame reactor are discussed in detail in U.S. patent application Ser. No. 11/335,727 filed Jan. 20, 2006 (Attorney Docket No. 2005A004.2), the entirety of which is incorporated herein by reference. Each flame of the flame reactor may be oriented in any desired way. Some non-limiting examples of orientations for the flame include horizontally extending, vertically extending or extending at some intermediate angle between vertical and horizontal. When the flame reactor has a plurality of flames, some or all of the flames may have the same or different orientations.
Each flame of the flame reactor will often be associated with an ignition source that ignites the oxidant and fuel to generate the flame. In some instances, the ignition source will be one or more pilot flames that in addition to providing an initial ignition source to start the combustion of the oxidant and the fuel, may also provide a continual ignition/energy source that sustains the flame of the flame reactor. The pilot flame may be generated from the same oxidant and fuel used to generate the main flame, or from a different fuel and/or oxidant. For example, when using the same fuel, a pilot flame may be generated using a small stream of fuel flowing through one channel of a multi-channel burner used to generate a flame of the flame reactor. The small stream of fuel may be premixed with an oxidant or may consume oxygen from the ambient environment to generate the pilot flame. The ignition source is not limited to pilot flames and, in some cases, the ignition source may be a spark or other ignition source.
Also, each flame has a variety of properties (e.g., flame geometry, temperature profile, flame uniformity, flame stability), which are influenced by factors such as the burner design, properties of feeds to the burner, and the geometry of the enclosure in which the flame is situated.
One important aspect of a flame is its geometry, or the shape of the flame. Some geometries tend to provide more uniform flame characteristics, which promotes manufacture of the nanoparticulates with relatively uniform properties. One geometric parameter of the flame is its cross-sectional shape at the base of the flame perpendicular to the direction of flow through the flame. This cross-sectional shape is largely influenced by the burner design, although the shape may also be influenced by other factors, such as the geometry of the enclosure and fluid flows in and around the flame. Other geometric parameters include the length and width characteristics of the flame. In this context the flame length refers to the longest dimension of the flame longitudinally in the direction of flow and flame width refers to the longest dimension across the flame perpendicular to the direction of flow. With respect to flame length and width, a wider, larger area flame, has potential for more uniform temperatures across the flame, because edge effects at the perimeter of the flame are reduced relative to the total area of the flame.
In addition to the shape of the flame(s), which may help control temperature profiles, it is also possible to control the feeds introduced into the flame. One example of an important control parameter is the ratio of fuel (e.g., liquid vehicle) to oxidant that is fed to the flame. In some embodiments, a precursor introduced into a flame may be easily oxidized, and it may be desirable to maintain the fuel to oxidant ratio at a fuel rich ratio to ensure that no excess oxygen is introduced into the flame. The fuel rich environment ensures that all of the oxygen that is introduced into the flame will be combusted and there will be no excess oxygen available in the flame reactor to oxidize the nanoparticles or precursors. In other words, there is a stoichiometric amount of oxygen in the feed that promotes the complete combustion of all the fuel present, thereby leaving no excess oxygen. In other embodiments, it may be desirable to have a fuel to oxidant ratio that is rich in oxygen. For example, when making metal oxide ceramics, it may be desirable to maintain the environment within a flame and in the flame reactor with excess oxygen.
In addition to the environment within the flame and the flame reactor, the fuel to oxidant ratio controls other aspects of the flame, such as flame temperature. If the fuel to oxidant ratio is at a fuel rich ratio then the flame reactor will contain fuel that is uncombusted. Unreacted fuel generates a flame that is at a lower temperature than if all of the fuel that is provided to the flame reactor is combusted. Uncombusted fuel can also introduce carbon contamination in the product particles. Thus, in those situations in which it is desirable to have all of the fuel combusted in order to maintain the temperature of a flame at a high temperature, it will be desirable to provide to the flame reactor excess oxidant to ensure that all of the fuel provided to the flame or flame reactor is combusted. However, if it is desirable to maintain the temperature of the flame at a lower temperature, then the fuel to oxidant ratio may be fuel rich so that only an amount of fuel is combusted so that the flame does not exceed a desired temperature.
The total amount of fuel and oxidant fed into the flame determines the velocity of the combusted gases, which, in turn, controls the residence time of the primary particles formed in the flame. The residence time in the flame of the primary particles determine the product particle size and in some cases the morphology of the product particles. The relative ratio of oxygen to fuel also determines the concentration of particles in the flame which, in turn, determines the final product particle size and morphology. More dilute flames will make smaller or less aggregated particles.
The specific type of fuel will also affect the temperature of the flame. In addition to the temperature of the flame, the selection of a fuel may involve other considerations. Fuels that are used to combust and create the flame may be gaseous or nongaseous. The nongaseous fuels may be a liquid, solid or a combination of the two. In some cases, the fuel combusted to form the flame may also function as a solvent for a precursor. The advantage of this is that the precursor is surrounded by fuel in each droplet which upon combustion provides optimum conditions for precursor conversion. In other embodiments, the liquid fuel may be useful as a solvent for the precursor but not contain enough energy to generate the required heat within the flame reactor for all of the necessary reactions. In this case, the liquid fuel may be supplemented with another liquid fuel and/or a gaseous fuel, which are combusted to contribute additional heat to the flame reactor. Nonlimiting examples of gaseous fuels that may be used with the method of the present invention include methane, propane, butane, hydrogen and acetylene. Some nonlimiting examples of liquid fuels that may be used with the method of the present invention include alcohols, toluene, acetone, isooctane, acids and heavier hydrocarbons such as kerosene and diesel oil.
One criterion that may be employed for the selection of gaseous and nongaseous fuels is the enthalpy of combustion of the fuel. The enthalpy of combustion of a fuel determines the temperature of the flame, the associated flame speed (which affects flame stability) and the ability of the fuel to burn cleanly without forming carbon particles. In general higher enthalpy fuels produce higher temperature flames that favor the formation of larger nanoparticles.
In some cases the fuel will be a combination of liquids, which can be desirable to dissolve when the precursors are soluble in liquids that are low energy fuels. In this case, the low energy fuel (e.g., the liquid vehicle) may be used to dissolve the precursors, while an additional higher energy fuel may supplement the low energy fuel to generate the necessary heat within the flame reactor. In some instances, the two liquid fuels may not be completely soluble in one another, in which case the liquid will be a multiphase liquid with two phases (i.e., an emulsion). Alternatively, the two liquid fuels may be introduced separately into the flame from separate conduits (e.g., in a multi-fluid nozzle case). In other instances the two liquids may be mutually soluble in each other and form a single phase. It should be noted that in other cases there may be more than two liquid fuels introduced into the flame, the liquids may be completely soluble in one another or may be in the form of an emulsion.
The oxidant used to combust the fuel to form the flame may be a gaseous oxidant or a nongaseous oxidant. The nongaseous oxidant may be a liquid, a solid or a combination of the two. However, preferably the oxidant is a gaseous oxidant and will optionally comprise oxygen. The oxygen may be introduced into the flame reactor substantially free of other gases such as a stream of substantially pure oxygen gas. In other cases, the oxygen will be introduced into the flame reactor with a mixture of other gases such as nitrogen, as is the case when using air. Although it is preferable to have a gaseous oxidant, in some cases the oxidant may be a liquid. Some examples of liquids that may be used as oxidants include inorganic acids. Also, the oxidant that is introduced into the flame reactor may be a combination of a gaseous oxidant or a liquid oxidant. This may be the case when it is desirable to have the nongaseous precursor dissolved in a liquid to disperse it, and it also desirable to have the oxidant located very close to the nongaseous precursor when in the flame reactor. In this case, the precursor may be dissolved in a liquid solvent that functions as an oxidant.
Discharge from each flame of the flame reactor flows through a flow path, or the interior pathway of a conduit, through the flame reactor. As used herein, “conduit” refers to a confined passage for conveyance of fluid through the flame reactor. When the flame reactor comprises multiple flames, discharge from any given flame may flow into a separate conduit for that flame or a common conduit for discharge from more than one of the flames. Ultimately, however, streams flowing from each of the flames generally combine in a single conduit prior to discharge from the flame reactor.
A conduit through the flame reactor may have a variety of cross-sectional shapes and areas available for fluid flow, with some nonlimiting examples including circular, elliptical, square or rectangular. In most instances, however, conduits having circular cross-section are preferred, since the presence of sharp corners or angles may create unwanted currents or flow disturbances that can promote deposition on conduit surfaces. Walls of the conduit may be made of any material suitable to withstand the temperature and pressure conditions within the flame reactor. The nature of the fluids flowing through the flame reactor may also affect the choice of materials of construction used at any location within the flame reactor. Temperature is, however, generally the most important variable affecting the choice of conduit wall material. For example, quartz may be a suitable material for temperatures up to about 1200° C., whereas, for temperatures up to about 1500° C., possible materials for the conduit include alumina, mullite and silicon carbide. As yet another example, for processing temperatures up to about 1700° C., graphite or graphitized ceramic might be used for conduit material.
The precursors are introduced into the flame reactor in a very hot zone, also referred to herein as a primary zone, that is sufficiently hot that substantially all of materials flowing through that portion of the primary zone are in the vapor phase. The precursors may enter the vapor phase by any mechanism. For example, the precursors may simply vaporize, or one or more precursors may decompose to produce a component of the final nanoparticles, which component enters the gas phase as part of a decomposition product. Eventually, however, the component leaves the gas phase as particle nucleation and growth occurs. Removal of the component from the gas phase may involve simple condensation as the temperature decreases or may include additional reactions. For example, remaining vaporized precursor may react on the surface of the already nucleated monomers by any surface reaction mechanism.
The growing step commences with particle nucleation and continues due to collision and agglomeration and sintering of smaller particles into larger particles or through addition of additional material into the flame reactor for addition to the growing nanoparticles. The growth of the nanoparticles may involve added material of the same type as that already present in the nanoparticles or addition of a different material, such as a flux to promote fusing, sintering and/or coalescing of the nanoparticles. Depending on the temperature and the residence time in the primary zone of the reactor, the particles may completely fuse upon coagulation to faun individual spheres or they can partially fuse to form hard fractal-like aggregates. In general, increasing the temperature and the residence time in the flame reactor increases the particle size of the nanoparticles. Similarly, increasing the concentration of the precursors in the liquid vehicle tens to result in increased size of the nanoparticles.
When making extremely small particles, the growing step may mostly or entirely occur within the primary zone of the flame reactor immediately after the flame. However, when larger particle sizes are desired, processing may be required in addition to that occurring in the primary zone of the flame reactor. As used herein, “growing” the nanoparticles refers to increasing the weight average particle size of the nanoparticles. At least a portion of the growing step will optionally be performed in a volume of the flame reactor downstream from the primary zone that is better suited for controllably growing nanoparticles to within the desired weight average particle size range. This downstream portion of the flame reactor is referred to herein as a secondary zone to conveniently distinguish it from the primary zone discussed above. In most instances, the primary zone will be the hottest portion within the flame reactor.
The residence time of the stream of growing nanoparticles in the secondary zone may be longer than the residence time in the primary, or hot zone. By the term “residence time” it is meant the length of time that the flowing stream, remains within a particular zone (e.g., primary zone or secondary zone) based on the average stream velocity through the zone and the geometry of the zone. For example, the flowing stream typically has a residence time in the primary zone (and also the flame) in a range having a lower limit selected from the group consisting of 1 ms, 10 ms, 100 ms, and 250 ms and an upper limit selected from the group consisting of 500 ms, 400 ms, 300 ms, 200 ms and 100 ms. In one embodiment, the residence time of the flowing stream in the secondary zone is at least twice as long, four times as long, six times or ten times as long as the residence time in the primary zone. Thus the residence time of the flowing stream in the secondary zone is often in a range having a lower limit selected from the group consisting of 50 ms, 100 ms, 500 ms, 1 second and 2 seconds and an upper limit selected from the group consisting of 1 second, 2 seconds, 3 seconds, 5 seconds and 10 seconds. In one embodiment, the total residence time for both the primary zone and the secondary zone is in a range having a lower limit selected from the group consisting of 100 ms, 200 ms, 300 ms, 500 ms and 1 second and an upper limit selected from the group consisting of 1 second, 2 seconds, 3 seconds, 5 seconds and 10 seconds.
In determining an appropriate residence time of the nanoparticles in the secondary zone there are several factors to be considered including the desired weight average particle size, the melting temperature (and sintering temperature) of materials in the nanoparticles, the temperature within the secondary zone, and the number concentration of the nanoparticulates in the flowing stream (i.e., number of nanoparticles per unit volume of the flowing stream).
With respect to the number concentration of nanoparticles flowing through the secondary zone, if such number concentration is sufficiently large, then the nanoparticles will tend to collide more frequently providing greater opportunity for particle growth more quickly, requiring less residence time within the secondary zone to achieve a desired weight average particle size. Conversely, if the nanoparticulate concentration within the secondary zone is small, the collisions between nanoparticles will be less frequent and particle growth will necessarily proceed more slowly. Moreover, there is a particular number concentration of nanoparticles, referred to herein as a “characteristic number concentration,” below which particle collisions become so infrequent that for practical purposes the nanoparticles effectively stop growing due to particle collisions. The characteristic number concentration will be different for different weight average particle sizes.
If the temperature within the secondary zone is set to promote the growth of the nanoparticles through collisions of the nanoparticles (i.e. high enough for colliding particles to fuse to form a single nanoparticulate), then control of the number concentration of the nanoparticles and residence time in the secondary zone are two important control variables. Thus, if the number concentration of nanoparticles in the secondary zone is maintained at a specific concentration, then the residence time within the secondary zone can be changed in order to achieve the desired extent of collisions to achieve a weight average particle size in a desired range. However, if the residence time is set, then the number concentration of nanoparticles within the secondary zone may be controlled so that the desired weight average particle size is achieved within the set residence time. Control of the weight average particle size may be achieved for example by changing the temperature in the secondary zone and changing the concentration of the precursor in feed to the primary zone, or a combination of the two, or by changing the reactor cross-sectional area and/or the cross-sectional area of the flame at its broadest point. In one embodiment, the ratio of the cross-sectional area of the flame at its broadest point to the cross-sectional area of the reactor at that same point is preferably 0.01 to 0.25. Conversely, for a set residence time and temperature profile in the secondary zone, the concentration of nongaseous precursors (and other precursors) fed to the primary zone may be adjusted to achieve a desired volume concentration in the secondary zone to achieve at least the characteristic volume concentration for a desired weight average particle size.
Temperature control in the secondary zone of the flame reactor is very important. Maintaining the temperature of the secondary zone within a specific elevated temperature range may include retaining heat already present in the flowing stream (e.g., residual heat from the flame in the primary zone). This may be accomplished, for example, by insulating all or a portion of the conduit through the secondary zone to reduce heat losses and retain a higher temperature through the secondary zone. In addition to or instead of insulating the secondary zone, heat may be added to the secondary zone to maintain the desired temperature profile in the secondary zone.
The temperature in the secondary zone is maintained below a temperature at which materials of the nanoparticles would vaporize or thermally decompose, but above a sintering temperature of the metal and/or ceramic component of the nanoparticles. By “sintering temperature” it is meant a minimum temperature, at which colliding nanoparticles sticking together will fuse to form a new primary particle within the residence time of the secondary zone. The sintering temperature of the nanoparticles will, therefore, depend upon the materials in the nanoparticles and the residence time of the nanoparticles in the secondary zone as well as the size of the nanoparticles. In those embodiments where the growing of the nanoparticles includes significant growth through particle collisions, the nanoparticles should be maintained at, and preferably above, the sintering temperature in the secondary zone.
In some cases, it may be preferable to contact the flowing stream containing the nanoparticles with a quench medium to reduce the temperature of the flowing stream before it enters the secondary zone. The quench medium is at a lower temperature than the flowing stream, and when mixed with the flowing stream it reduces the temperature of the flowing stream, and consequently also the nanoparticles in the flowing stream. The quenching step may reduce the temperature of the nanoparticles by any desired amount. For example, the temperature of the flowing stream may be reduced at a rate of from about 500° C./s to about 40,000° C./s. In some applications, the temperature of the flowing stream may be reduced at a rate of about 30,000° C./s, or about 20,000° C./s, or about 10,000° C./s, or about 5,000° C./s or about 1,000° C./s.
The quench medium preferably comprises a quench gas. The quench gas may be non-reactive after introduction in the flame reactor and be introduced solely for the purpose of reducing the temperature of the flowing stream. This might be the case for example, when it is desired to stop the growth of the nanoparticles through further collisions. The quenching step helps to stop further growth by diluting the flowing stream, thereby decreasing the frequency of particle collisions, and reducing the temperature, thereby reducing the likelihood that colliding particles will fuse together to form a new primary particle. When it is desired to stop further particle growth, the cooled stream exiting the quenching step should preferably be below the sintering temperature of the nanoparticulates. The cooled nanoparticles may then be collected—i.e., separated from the gas phase of the flowing stream.
The quenching step may also be useful in retaining a particular property of the nanoparticles as they have formed and nucleated in the flowing stream. For example, if the nanoparticles have nucleated and formed with a particular phase that is desirable for use in a final application, the quenching step may help to retain the desirable phase that would otherwise recrystallize or transform to a different crystalline phase if not quenched. In other words, the quenching step may be useful to stop recrystallization of the nanoparticles if it is desirable to retain a particular crystal structure that the nanoparticles have nucleated and formed with. Alternatively, the quench gas may be non-reactive, but is not intended to stop nanoparticulate growth, but instead to only reduce the temperature to accommodate some further processing to occur at a lower temperature.
As another alternative, the quench gas may be reactive in that it includes one or more components that is or becomes reactive in the flame reactor, such as reactive with material of the nanoparticles or with some component in the gas phase of the flowing stream in the flame reactor. As one example, the quench gas may contain a precursor for additional material to be added to the nanoparticles. The precursor may undergo reaction in the quench zone prior to contributing a material to the nanoparticulate, or may not undergo any reactions. In one specific example, the quench gas may contain oxygen, which reacts with a metal in the nanoparticles to promote production of a metal oxide in the nanoparticles or it may react with carbon contained in the nanoparticles to convert it to CO2. The quenching may also help in production of metastable phases by kinetically controlling and producing a phase that is not preferred thermodynamically.
The quench medium is normally introduced into the flame reactor in a quench zone immediately downstream of the primary zone. However, the quench medium can also be introduced into the primary zone by, for example, introducing the quenching medium through the burner and around the precursor jet by properly designing the spray nozzle. This provides a cooling “envelope” that surrounds the main jet flame. Alternatively, the quenching medium can be introduced into the center of the burner and may be surrounded by the flame. This allows quenching of the flame from its core. Finally, a combination of the above two approaches can be used to cool the flame internally and externally.
In other embodiments, it may be desirable to provide a sheathing medium that at least partly surrounds the flame produced by the flame spray reactor to effect at least one of (a) cooling the flame; (b) facilitating the flow of the product nanoparticles through the flame spray system; (c) cooling any metal surfaces located around the flame; (d) preventing the formation of areas of turbulence within the internal reactor volume surrounding the burner and/or the flame; and (e) allowing the introduction of additional materials, e.g., oxidant or additional precursor medium, to the flame and/or the internal reactor volume. Typically, the sheathing medium comprises a gas, such as oxygen, nitrogen, air, off gas recycle, or water vapor. In another embodiment, the sheathing medium further comprises atomized water. If the sheathing medium comprises atomized water, the sheath medium optionally comprises the atomized water in an amount ranging from about 10 to about 100 percent by volume, e.g., from about 50 to about 100 percent or from about 90 to about 100 percent, based on the total volume sheathing medium.
The size and agglomeration of the metal particles can be controlled by controlling the size of the ceramic particles that are initially formed in the flame. Due to the high vapor pressure of the metal and much lower vapor pressure of the ceramic, it is postulated that the ceramic vapor that forms in the flame precipitates to form the solid particle of the ceramic while the metal is still in the vapor form. The ceramic particles will grow through collision and agglomeration to form primary or aggregate particles with morphology and size determined by the parameters mentioned above. At some point in space and time, metal vapor will start nucleating on the surface of the already present ceramic particles, which results in formation of metal particles within or on the surface of ceramic particle/aggregate. Due to high mobility of the metal at high temperature, inter-diffusion of metal/ceramic, and metal/ceramic wetting properties, the metal rearranges itself in such a way that the metal moves to the core and metal oxide moves to the outside of the new composite particle, forming coated particle. The size of the metal particle encapsulated in the ceramic depends on the size of the original ceramic particle/aggregate and the concentration of the metal in the reactor. While the inter-diffusion of metal within the original ceramic particle is vigorous at high temperature, the diffusion of metal between separate ceramic particles/agglomerates is very limited (or non-existent) due to the presence of ceramic on the outside of the aggregate. Each ceramic particle/aggregate is a separate domain in space within which metal can diffuse to form spherical metal particles. At the same time, the ceramic particles/domains serve as a barrier for diffusion of metal between different aggregates which would otherwise result in the formation of much larger metal particles.
Desirably, the flame spray process of the present invention occurs in an enclosed flame spray system, by which is meant that the flame spray system separates the flame from its surroundings and enables controlled input of, e.g., fuel/oxidant, precursors and liquid vehicle, such that the process can be metered and precisely controlled.
Referring to the drawings, one embodiment of an enclosed flame spray system is shown in
The flame reactor 106 also has a secondary zone 134 for aiding growth of the nanoparticles to attain a weight average particle size within the desired range. As shown in
Optionally, an insulating material (not shown) surrounds and insulates the portion of the conduit 108 that includes the secondary zone 134. Additionally or alternatively, the secondary zone 134, or a portion thereof, is surrounded by a heater (not shown), which is used to input heat into the flowing stream while the flowing stream is within the secondary zone. The additional heat added to the secondary zone 134 by the heater, provides control to maintain the nanoparticles at an elevated temperature in the secondary zone that is higher than would be the case if the heater were not used. The heater may be any device or combination of devices that provides heat to the flowing stream in the secondary zone. For example, the heater may include one or more flames or may be heated by a flame or a circulating heat transfer fluid. In one embodiment, the heater includes independently controllable heating zones along the length of the secondary zone 134, so that different subzones within the secondary zone 134 may be heated independently. This could be the case for example, when the secondary zone is a hot wall tubular furnace including multiple independently controllable heating zones.
During operation of the flame spray system shown in
Referring now to
As shown in
The value of δ controls (i) the size of the precursor medium droplets that flow out of the precursor medium feed conduit; and (ii) the amount of precursor medium that may be flame sprayed (i.e., throughput) according to the processes of the invention. The value of γ controls the amount of atomizing medium that may flow out of the atomizing medium conduit. The value of ∈ controls the volume and velocity of the fuel/oxidant that flows out of the fuel/oxidant conduit.
In operation, fuel/oxidant 916 is fed to the fuel/oxidant conduits 909 and flows from the proximal end 924 to the distal end 923 of the nozzle assembly. The fuel/oxidant is ignited, e.g., with an additional pilot flame, as it exits the fuel/oxidant conduits 909 at the distal end 923, thereby forming a flame that directly heats the internal reactor volume 921. At the same time, atomizing medium 917 and precursor medium 918 are fed to atomizing medium conduit 908 and precursor medium conduit 907, respectively, and flow through, under pressure, from the proximal end 924 to the distal end 923 of the nozzle assembly. As the atomizing medium and the precursor medium exit the distal end of the nozzle assembly 923, the atomizing medium causes the precursor medium to atomize to form droplets as the precursor medium is introduced into the internal reactor volume 921. The atomized precursor medium is subsequently ignited by the burning fuel/oxidant mixture exiting the conduits 909.
In one embodiment, the atomizing feed nozzle 900 is surrounded by, and is in direct contact with, a sheath medium nozzle support structure 919 defined by an inner wall 912 and an outer wall 913. The sheath medium nozzle support structure comprises a plurality of substantially longitudinally extending sheath medium nozzles 915. As shown, the sheath medium nozzle support structure is formed of an annular plate with holes in it defining the sheath medium nozzles 915. The sheath medium nozzles 915 are in fluid communication with a sheath medium plenum 920, via sheath medium inlet 922. The sheath medium nozzle also comprises a sheath medium outlet 933 from which the sheath medium can flow into the internal reactor volume. Sheath medium plenum 920 is housed within a sheath medium plenum housing 927 comprising inner wall 926 and outer wall 925. Sheath medium feed 929 feeds into the plenum 920 via inlet 928 in the housing 927.
As shown in
Depending on the metal and ceramic employed, the coated particles described herein have a wide variety of potential uses including in optical, electronic and fuel cell applications.
In one embodiment, non-limiting uses for the coated particles of the invention include anti-counterfeiting and graphic applications such as those described in U.S. Ser. No. 11/331,233 filed Jan. 13, 2006, U.S. Ser. No. 11/443,248 filed May 31, 2006, U.S. Ser. No. 11/443,264 filed May 31, 2006, U.S. Ser. No. 11/443,303 filed May 31, 2006, and U.S. Ser. No. 11/443,304 filed May 31, 2006, all of which are fully incorporated herein by reference.
In another embodiment, non-limiting uses for the coated particles of the invention include their use in electronic and printable electronic and display applications such as in conductors, resistors, dielectrics, capacitors, and the like, in for example various circuits, solar panels, plasma televisions, cell phones, laptops, and the like, as described in for example, U.S. Ser. No. 11/443,131 filed May 31, 2006, U.S. Ser. No. 11/331,231 filed Jan. 13, 2006, U.S. Ser. No. 11/331,186 filed Jan. 13, 2006, U.S. Ser. No. 11/331,237 filed Jan. 13, 2006, U.S. Ser. No. 11/331,190 filed Jan. 13, 2006, U.S. Ser. No. 11/331,239 filed Jan. 13, 2006, U.S. Ser. No. 11/331,187 filed Jan. 13, 2006 and U.S. Ser. No. 10/265,179 filed Oct. 4, 2002, all of which are fully incorporated herein by reference.
In yet another embodiment, non-limiting uses for the coated particles of the invention include their use as electrocatalysts for use in fuel cell applications such as for example those described in U.S. Ser. No. 11/328,147, filed Jan. 10, 2006, U.S. Ser. No. 10/417,417 filed Apr. 16, 2003, U.S. Ser. No. 11/081,768 filed Mar. 15, 2005, and U.S. Ser. No. 11/081,765 filed Mar. 15, 2005, and U.S. Pat. Nos. 6,103,393, 6,660,680, and 6,967,183, all of which are fully incorporated herein by reference.
The present invention will now be further described with reference to the following non-limiting Examples.
Silver neodecanoate and hexamethyldisiloxane (HMDS) are premixed in toluene in differing amounts to produce test solutions having various Ag/SiO2 weight ratios between 5/95 and 98/2 (see Table 1 below). Each solution is dispersed in an oxygen dispersion gas flowing at 40 slpm and supplied to a flame spray reactor similar to that shown in
The resulting product is collected on a baghouse filter and analyzed using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), quasi-electric light scattering (QELS) and other analytical measurements. The results of the TEM and STEM analyses for the products of Examples 4 to 8 are shown in
It is also found that the thickness of SiO2 coating and size of Ag particles can be controlled by adjusting the Ag/SiO2 ratio and processing conditions. The relationship between coating layer thickness and required amount of SiO2 coating material is shown in
Each of the powder products is formulated in a water-based ink that can be easily ink-jetted to produce printed features having the reflectivity indicated in Table 1.
Particles with Ag:SiO2 weight ratios of 90:10, 98:2, 99:1, and 99.5:0.5 are produced using the same procedure as in Examples 1-8 above. The first three materials (90:10, 98:2, 99:1) are easily dispersible in water and QEL's measurements indicate a mean particle size of ˜100 nm. However, 99.5:0.5 material is not easily dispersible and QELS measurements indicate the presence of particles that are greater than 100 microns as well as a population of particles around 100 nm. This suggests that some of the silver particles produced in the process are coated by SiO2 which prevents their aggregation. However, other Ag particles are insufficiently (or not at all) coated with SiO2 which results in their aggregation or agglomeration into larger particles that rapidly settle when dispersed.
The following example describes two metal/metal oxide material systems that do not result in production of coated metal particles. Silver neodecanoate and zinc ethylhexanoate precursors are premixed in toluene in differing amounts to produce test solutions having various Ag/ZnO weight ratios between 90/10 and 95/5. Each solution is dispersed in an oxygen dispersion gas flowing at 40 slpm and supplied to a flame spray reactor similar to that shown in
The resulting product is collected on a baghouse filter and analyzed using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), quasi-electric light scattering (QELS) and other analytical measurements. The results of the TEM analyses for the Ag/ZnO=90:10 products are shown in
This example describes production of Ag/SiO2 particles from inexpensive and readily available precursors. Ag nitrate and hexamethyldisiloxane (HMDS) are premixed in mixture of ethanol and ethylene glycol to produce solutions having various Ag/SiO2 weight ratios between 95:5 and 99:1 and 98/2. Each solution is dispersed in an oxygen dispersion gas flowing at 40 slpm and supplied to a flame spray reactor similar to that shown in
The resulting product is collected on a baghouse filter and analyzed using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), quasi-electric light scattering (QELS) and other analytical measurements. The results of the TEM analyses are shown in
While the present invention has been described and illustrated by reference to particular embodiments, those of ordinary skill in the art will appreciate that the invention lends itself to variations not necessarily illustrated herein. For this reason, then, reference should be made solely to the appended claims for purposes of determining the true scope of the present invention.
This application claims priority to Provisional Patent Application Ser. No. 60/805,185, filed Jun. 19, 2006, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60805185 | Jun 2006 | US |