Metal cutting system for effective coolant delivery

Information

  • Patent Grant
  • 8057130
  • Patent Number
    8,057,130
  • Date Filed
    Thursday, October 7, 2010
    13 years ago
  • Date Issued
    Tuesday, November 15, 2011
    12 years ago
Abstract
A metal cutting system with a tool holder, a shim, an insert with a top depression, a top piece and a clamp. A rake face cooling channel for fluid delivery is formed between the top piece and the depression in the insert. A primary discharge slot at the end of the rake face cooling channel delivers fluid from below the cutting edge of the insert. A second cooling channel for delivery of fluid to the flank face is formed between the insert and the shim or is formed between the shim and the tool holder with a portion of the cooling channel passing through the shim.
Description
FIELD OF THE INVENTION

The subject invention is directed to metal cutting system and, in particular, to a metal cutting system adapted to permit effective coolant delivery to an interface between a metal cutting tool and a workpiece.


BACKGROUND OF THE INVENTION

Metal cutting tools for performing metal working operations generally comprise a cutting insert having a surface terminating at a cutting edge and a tool holder formed with a seat adapted to receive the insert. The cutting insert engages a workpiece and removes a chip therefrom. Obviously, it is desirable to lengthen the life of a cutting insert in metal cutting operations. Longer insert life leads to lower operating costs and better machine efficiency. One factor in the life of a cutting insert is the temperature of the insert during cutting operations. A higher insert temperature will result in a shorter useful life of an insert.


Many systems have been designed to lower the insert temperature during cutting. For example, coolants may be generally applied through nozzles directed at the cutting edge of the insert. The coolant serves not only to lower the temperature of the insert but also to remove the chip from the cutting area. The nozzles are often a distance of 1-12 inches away from the cutting edge. This is too far of a distance for effective cooling. The farther the coolant must be sprayed the more the coolant will mix with air and the less likely it will be to actually contact the tool-chip interface.


Some have improved cooling by directing high pressure and high volume coolant at the cutting edge as shown in U.S. Pat. No. 6,045,300 issued to Antoun. Others have designed grooves between the insert and a top plate that secures the insert in the holder to reduce the distance the coolant must be sprayed. This is shown in U.S. patent application serial number 2003/00820118 to Kraemer. Some have delivered liquid nitrogen as the coolant relatively near the cutting edge of an insert as shown in U.S. Pat. No. 5,901,623 issued to Hong. Each variation has shown limited effectiveness. Many still are positioned to far from the tool-workpiece interface. Those with grooves between the top plate and the insert get fluid closer to the tool-workpiece interface but are not close enough. The design in Kraemer is also limited in that the direction of fluid flow is almost completely limited to one plane. The liquid nitrogen system like that in Hong has shown some benefit but is cost prohibitive for most applications. It is clear there remains a need for a simple and effective assembly for insert cooling during metal cutting operations.


BRIEF SUMMARY OF THE INVENTION

The inventor(s) have recognized the problems associated with conventional cooling apparatus and have developed an insert assembly that works with a conventional coolant system to deliver coolant to a cutting insert that addresses the problems of the prior art.


In one embodiment of the invention, the assembly comprises a tool holder having a recess to accept a cutting insert and a passage for coolant delivery; a shim having a cooling channel capable of delivering coolant to a flank face or cutting edge of an insert; a cutting insert having a frusto-conical depression in the center of the insert and an orifice aligned with the coolant passage of the tool holder; a top piece with a depression in a top surface and a frusto-conical bottom aligned with the frusto-conical depression of the cutting insert to form a fluid tight seal between the insert and top piece except for a rake face cooling channel spanning from the insert orifice to a discharge slot that is in close proximity to the cutting edge or corner of the insert; and a clamp capable of sealing the cooling channels and seating the cutting insert and top pieces. The oblique relationship between the top piece-insert interface and the plane of the rake face of the insert enables coolant to be delivered from an angle below the plane of the rake face. In this way the coolant impinges the underside of a chip. Delivery of coolant to the flank of the insert combined with the rake face cooling described herein has shown to be an efficient means of cooling the insert and removing the chip. As a consequence insert life is significantly improved by using this invention.





BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the present invention, as well as the advantages derived therefrom, will become clear from the following detailed description made with reference to the drawings in which:



FIG. 1 is an exploded view of the invention with rake face cooling only;



FIG. 2 is an exploded view of the invention with rake and flank cooling;



FIG. 3 is a perspective view of the invention with rake face cooling and jets;



FIG. 4 is a perspective view of the preferred embodiment of the invention with high volume flank cooling, rake face cooling and jets;



FIG. 5 is a cross section of a perspective view of the invention with rake and flank face cooling;



FIG. 6 is a cross section of a perspective view of the invention with rake and high volume flank face cooling;



FIG. 7 is a cross-sectional perspective of the invention engaging a workpiece and forming a chip;



FIG. 8 is a cross section of a perspective view of the clamp and top piece fixed together with a slotted spring pin;



FIG. 9 is a view of the insert side of the top piece with a centering stud; and.



FIG. 10 is a perspective view of the centering stud.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1 of the invention, there is shown a tool holder 1 having a recess 29 for receiving a cutting insert 10. The tool holder 1 also has a coolant passage 2 for delivering fluid coolant to the recess 29. An indexable, cutting insert 10 is positioned in the recess 29. The cutting insert 10 has at least one flank face 12, a rake face 13 and a bottom face 14. The intersection between the flank face 12 and the rake face 13 forms a cutting edge 16. In the instance of a plurality of flank faces, the intersection between two adjacent flank faces 12 and the rake face 13 forms a cutting corner 17. It will be appreciated that a round cutting insert does not include two adjacent flank faces and therefore does not include a cutting corner. Although a round cutting insert does not include a cutting corner it will be appreciated that in any case, a cutting edge is present. An insert depression 15 is located in the rake face 13 of the insert 10. The insert depression 15 is an area within the rake face 13 that is lower than the remaining portion of the rake face 13 surrounding the insert depression 15 and including the cutting edges 16 and as appropriate, cutting corner 17. In one embodiment, the cutting edges 16 and cutting corner all lie within the same plane. It will be apparent that some of the cutting edges may also lie above or below one another in elevation. For example, this would be the case if an elliptically shaped insert with an uneven rake face were used as the insert in the metal cutting system.


The insert 10 has an insert orifice 11 that aligns with the coolant passage 2 of the tool holder 1 to receive coolant. The insert orifice 11 opens to both the rake face 13 and the bottom face 14. A top piece 18 is adjacent to insert 10. The top piece 18 has a clamp side 20 and insert side 19. Insert side 19 of top piece 18 has a shape corresponding to the insert depression 15 such that positioning the two together forms a seal. The top piece also has a reservoir 34 (shown in FIG. 5) in the insert side 19. The reservoir 34 is a pocket in the insert side 19 of the top piece 18 that aligns with the insert orifice 11. The reservoir 34 distributes coolant to the top piece 18. Top piece 18 also has at least one rake face cooling channel 21. The rake face cooling channel 21 is a groove formed in the insert side 19 of the top piece 18 that runs from the reservoir 34 to the point on the top piece 18 nearest the cutting edge 16 or cutting corner 17, as appropriate. See FIG. 5 for a view of the rake face cooling channel 21. When the top piece 18 is seated in the insert depression 15 the rake face cooling channel 21 seals against the insert depression 15 to create a coolant path to cutting edge 16 or cutting corner 17. It is also contemplated that the rake face cooling channel 21 could be formed by a groove in the insert depression 15 which seals against the insert side 19 of the top piece 18. A clamp 23 applies pressure to the top piece depression 22. The clamp 23 maintains the alignment and seal between top piece 18, insert 10 and tool holder 1. It will be appreciated that the type of clamp 23 is not limited to the style shown in the drawings. Rather, the clamp 23 can include any other suitable clamp style of a type well known in the art.


As shown in FIG. 7 when the insert 10 engages a workpiece 30 a chip 31 is lifted away from the workpiece at the cutting edge 16 or cutting corner 17. The congruent relationship between the top piece 18 and insert depression 15 creates a rake face coolant cooling channel 21 that directs coolant so that it is delivered from an angle below the intersection at the rake face 13 and the chip 31. This delivery angle causes the coolant to impinge the underside of the chip resulting in improved cooling and chip removal. The rake face cooling channel 21 spans from the reservoir 34 to a point nearest the cutting edge. A primary discharge slot 27 is formed at the end of the rake face cooling channel 21 nearest the cutting edge 16 or cutting corner 17. It is an important aspect of this invention that the primary discharge slot 27 lie below the cutting edge 16 or corner 17. In this description, “below the cutting edge” or “below the cutting corner” in this description means generally towards the recess 29 as opposed to “above the cutting edge” or “above the cutting corner” which would be generally towards the clamp. Cooling and chip removal are most efficient when the primary discharge slot 27 is within about 0.100 inches of the chip.


In another embodiment shown in FIG. 2 and FIG. 5, a shim 3 having a top side 8 and a bottom side 36 is positioned between the tool holder 1 and the insert 10. The shim 3 is oriented so that the bottom side 36 abuts the tool holder 1 and the top side abuts the insert 10. A shim pin 6 is inserted through a shim pin hole 5 and a tool holder pin hole 7. The shim pin 6 maintains the alignment of the shim 3 between the tool holder 1 and insert 10. A shim orifice 4 is formed through the center of the shim 3. The shim orifice 4 provides a path for coolant to pass from the coolant passage 2 of the tool holder 1 to the insert orifice 11. A slot forming a part of flank face cooling channel 9 is provided on the top side 8 of the shim 3. The insert bottom face 14 seals the exposed slot in the top side 8 of shim 3 to create a flank face cooling channel 9. The flank face cooling channel 9 spans from the shim orifice 4 almost to an outer portion of the shim 3 nearest the cutting edge 16 or cutting corner 17. The end of flank face cooling channel 9 nearest the cutting edge has a curved base so that coolant is directed toward the cutting edge 16 or cutting corner 17 or flank face 12 of the insert 10.


In the embodiment as shown, the insert 10 has flank faces 12 and flank edges 32 that taper inward at a shallow angle from the rake face 13 to the bottom face 14. In this manner the width of shim 3 will be less than the width of the insert bottom face 14 and less than the width of the rake face 13. Attention is drawn to the fact that this taper is meant to expose the flank faces 12 and flank edge 16 to coolant. The tapering of the insert 10 allows a portion of the flank face cooling channel 9 to be exposed creating secondary discharge hole 28, thus enabling expulsion of coolant along the flank faces of the insert 10.


A third embodiment shown in FIG. 3 adds jets 33 to the top piece 18. The jets 33 are additional coolant conduits to increase coolant flow rate and effectively direct more fluid to the tool-chip interface. The jets 33 run from the reservoir 34 to a discharge point on the clamp side 20 of the top piece 18 where the coolant can be directed at the tool-chip interface.


An alternate embodiment of the invention is shown in FIG. 4 and FIG. 6. In this embodiment, the highest coolant flow rate is achieved providing flank and rake cooling. In this assembly, a shim 3 sits in the recess 29 of tool holder 1 having a tool holder pin hole 7. The shim 3 has a shim orifice 4 and a shim pin hole 5. The shim pin 6 is threaded and extends thorough the shim pin hole 5 in to the tool holder pin hole 7 which is also threaded. This arrangement keeps the shim 3 aligned in relation to the recess 29. A high volume flank cooling channel 35 is formed between the tool holder 1 and shim 3. Part of the high volume flank cooling channel 35 is formed by a groove in the bottom side 36 of the shim 3. This groove could also be formed in the recess 29 of the tool holder 1. The groove is closed by the recess 29 of the tool holder 1 creating a passage for coolant delivery. The high volume flank cooling channel 35 extends partway along the interface between the tool holder 1 and the shim 3 starting at the shim orifice 4 then projects through the body of the shim 3 toward the flank face 12 or flank edge 32 of the insert 10 ending with a secondary discharge hole 28 at a corner of the shim 3 closest to the cutting edge 16 or cutting corner 17 of the insert 10.


The insert 10 has tapered flank faces 12 and flank edges 32 to allow for adequate coolant wash from the secondary discharge hole 28. An insert orifice 11 aligns with the shim orifice 4. The insert bottom face 14 seats against the shim 3 to create a fluid tight seal. The insert depression 15 is frusto-conical and mates to the insert side 19 of the top piece 18 to create a fluid tight seal. The insert side 19 of the top piece 18 is also frusto-conical. The reservoir is located in the central portion of the insert side 19 and is in alignment with the insert orifice 11. The alignment of the reservoir 11, insert orifice 11, shim orifice 4 and coolant passage 2 creates a chamber from which coolant can freely flow to the high volume flank coolant channel 35, rake face cooling channel 21 and jets 33. In a preferred embodiment, the rake face cooling channel 21 runs from the reservoir 34 to within about 0.100 inches of the cutting edge 16 or cutting corner 17. At the end of the rake face cooling channel 21 opposite the reservoir 34 there is a nib 42 on the insert side 19 of the top piece 18. The nib 42 is a bump protruding from the insert side that interferes with the stream of coolant as it exits the primary discharge slot 27. A view of the nib 42 is most clearly shown in FIG. 9. The nib 42 causes the coolant to spray in a wide pattern from the primary discharge slot 27 as opposed to a less desirable concentrated stream that occurs without the nib 42. The rake face cooling channel is sized to be large enough to maximize flow without permitting entry of chips into the channel. Two jets 33 run from the reservoir 34 to exit points on the clamp side 20 that direct the coolant towards the cutting edge 16 or cutting corner 17. A top piece depression 22 is present on the clamp side 20. The clamp 23 has a clamp head 24 that engages the top piece depression 22 to seat the insert 10 and maintain fluid tight seals of all the coolant ducts. In a preferred embodiment, a clamp screw 25 applies pressure to the clamp head 24 in the direction of the top piece 18. A clamp pin 26 maintains alignment of the clamp head 24. It will be appreciated that although a specific clamping assembly is shown in the FIGS. 1-6 and 8, any suitable clamping assembly capable of holding the top piece, insert 10 and shim 3 securely in the recess 29 will suffice. Many of these clamping assemblies are commercially available and well known in the art.


In the preferred embodiment, the total flow of all coolant passages should not be less than 80% of the possible flow from an unrestricted flood nozzle. It will be appreciated that some handling benefits have been seen when the top piece 18 is fixed to the clamp 23. This arrangement reduces the chance that an operator will inadvertently drop the top piece when removing or installing the assembly. The most effective means of fixing the top piece 18 to the clamp 23 is with a slotted spring pin 39. The slotted spring pin 39 is inserted into a clamp bore 40 and a top piece bore 41 which are aligned as seen in FIG. 8. Although other means of fastening the pieces together are possible, the use of a slotted spring pin 39 allows for some rotation of the top piece 18 about the main axis of the slotted spring pin 39. This arrangement allows the top piece 18 to be aligned with the differing orientations of the insert 10.


A centering stud 43 can be included between the top piece 18 and insert 10. The centering stud 43 seats into the reservoir 34 and extends into the insert orifice 11. The shape of the centering stud conforms to the boundaries of the reservoir 34 and the insert orifice 11 and in this way the centering stud 43 acts as an alignment device. The centering stud has an open interior so that coolant flow is not restricted. FIG. 9 shows a centering stud fixed in the reservoir 34 of the top piece 18 and FIG. 10 is an isolated view of a centering stud. For illustrative purposes, the insert 10 is not shown in FIG. 9.


The documents, patents and patent applications referred to herein are hereby incorporated by reference.


While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.

Claims
  • 1. A metal cutting system comprising: a tool holder having a recess with a bottom face and the tool holder further having a coolant passage for delivery of fluid;an insert at least partly within the recess, the insert including a cutting edge and a rake face, the insert having a depression in the rake face wherein the depression is lower than the remainder of the rake face and the cutting edge;a top member adjacent the rake face, the top member being spaced apart from the bottom face of the recess, the top member having an open channel surface, the open channel surface and the depression cooperatively forming a cooling channel, substantially all of the cooling channel directing fluid flow in an upward direction away from the rake face toward the cutting edge; andthe cooling channel is in communication with the coolant passage and a primary discharge opening to deliver fluid to the cutting edge.
  • 2. The metal cutting system according to claim 1, wherein the primary discharge opening is located below the at least one cutting edge.
  • 3. The metal cutting system according to claim 1 wherein at least a portion of the top member is above the remainder of the rake face and the cutting edge.
  • 4. A metal cutting system comprising: a tool holder having a recess and a coolant passage for delivery of fluid;a shim seating within the recess, an insert on the shim and at least partly within the recess;the insert including a cutting edge;the insert including a rake face, the insert having a depression in the rake face wherein the depression is lower than the remainder of the rake face and the cutting edge; anda cooling channel wherein substantially all of the cooling channel having an orientation in an upward direction to direct the fluid away from the rake face toward the cutting edge, and the depression forming in part the cooling channel.
  • 5. The metal cutting system according to claim 4, wherein the cooling channel is in communication with the coolant passage and a primary discharge opening to deliver fluid to the cutting edge.
  • 6. The metal cutting system according to claim 5, wherein the primary discharge opening is located below the at least one cutting edge.
  • 7. A metal cutting system comprising: a tool holder having a recess and a coolant passage;an indexable insert at least partly within the recess;the indexable insert including at least one cutting edge;the indexable insert including a rake face and a bottom face, the indexable insert having a radial depression in the rake face wherein the radial depression is lower than the remainder of the rake face and the at least one cutting edge, the indexable insert containing a central aperture, and the radial depression radiating outwardly from the central aperture;a top member spaced apart from the bottom face of the indexable insert and having an open channel surface, and upon the top member contacting the indexable insert the open channel surface cooperatively forming with the radial depression a cooling channel between the channel surface and the depression for delivery of fluid in an upward direction relative to the rake face and toward the at least one cutting edge; andthe cooling channel is in communication with the coolant passage and a primary discharge opening to deliver fluid to the cutting edge.
  • 8. The metal cutting system according to claim 7, wherein the primary discharge opening is located below the at least one cutting edge.
  • 9. A metal cutting system for removing material from a workpiece, the system comprising: a tool holder having a recess and a coolant passage for delivery of fluid;an insert seated within the recess, the insert including at least two cutting edges and a rake face, the insert containing at least two depressions wherein each of the depressions corresponding to one of the cutting edges, each depression being lower than the remainder of the rake face and its corresponding one of the cutting edges;when in operation, one of the cutting edges engaging the workpiece;a top piece, the top piece including a clamp side and an insert side congruently shaped to fit in an engaged one of the insert depressions corresponding to the engaged cutting edge, and the insert side cooperatively forming a cooling channel between the top piece and the engaged insert depression for delivery of fluid to the engaged cutting edge;a clamp to hold the top piece and the insert securely with respect to the tool holder, and the top piece being mediate of the insert and the clamp;wherein the cooling channel is in communication with the coolant passage and a primary discharge slot to deliver fluid to the engaged cutting edge, and wherein the primary discharge slot is located below the engaged cutting edge.
  • 10. The metal cutting system according to claim 9, wherein the primary discharge slot is within about 0.100 inches of the engaged cutting edge.
  • 11. The metal cutting system according to claim 9, wherein the top piece further comprises at least one jet for directing additional coolant at the engaged cutting edge.
  • 12. The metal cutting system according to claim 9, wherein the top piece further comprises a nib that projects from the insert side of the of the top piece and into the cooling channel at a distal end of the rake face cooling channel.
  • 13. The metal cutting system according to claim 9 wherein the top piece is separate from the clamp.
CROSS-REFERENCE TO EARLIER PATENT APPLICATION

This patent application is a continuation patent application of co-pending U.S. patent application Ser. No. 11/654,918 filed Jan. 18, 2007 for a METAL CUTTING SYSTEM FOR EFFECTIVE COOLANT DELIVERY by Paul D. Prichard, Linn R. Andras and Ted Robert Massa. Applicants hereby claim the benefit of the priority filing date of said above-referenced parent patent application (i.e., U.S. Ser. No. 11/654,918 filed Jan. 18, 2007). Further, applicants hereby incorporate by reference herein the entirety of said parent patent application (i.e., U.S. Ser. No. 11/654,918 filed Jan. 18, 2007).

US Referenced Citations (123)
Number Name Date Kind
2870523 Richard Jan 1959 A
3077802 Philip Feb 1963 A
3323195 Vanderjagt Jun 1967 A
3429700 Wiegand et al. Feb 1969 A
3486378 Carlson Dec 1969 A
3571877 Zerkle Mar 1971 A
3798726 Dudley Mar 1974 A
3889520 Stoferle et al. Jun 1975 A
3971114 Dudley Jul 1976 A
4012061 Olson Mar 1977 A
4123194 Cave Oct 1978 A
4204787 McCray et al. May 1980 A
4276085 Wisell Jun 1981 A
4437800 Araki et al. Mar 1984 A
4535216 Cassidenti Aug 1985 A
4579488 Griffin Apr 1986 A
4682916 Briese Jul 1987 A
4813831 Reinauer Mar 1989 A
4848198 Royal et al. Jul 1989 A
4861203 Bassett et al. Aug 1989 A
4880461 Lichida Nov 1989 A
4880755 Mehrotra Nov 1989 A
4881431 Bieneck Nov 1989 A
4955264 Armbrust Sep 1990 A
5024976 Mehrotra et al. Jun 1991 A
5148728 Mazurkiewicz Sep 1992 A
5163790 Vig Nov 1992 A
RE34180 Nemeth et al. Feb 1993 E
5222843 Katbi et al. Jun 1993 A
5237894 Lindeke Aug 1993 A
5252119 Nishida et al. Oct 1993 A
5265985 Boppana et al. Nov 1993 A
5275633 Johansson et al. Jan 1994 A
5288186 Kovacevic Feb 1994 A
5290135 Ball et al. Mar 1994 A
5316323 Jovanovic May 1994 A
5333520 Fischer et al. Aug 1994 A
5346335 Harpaz et al. Sep 1994 A
5388487 Danielsen Feb 1995 A
5439327 Wertheim Aug 1995 A
5516242 Andronica May 1996 A
5525134 Mehrotra Jun 1996 A
5542792 Krueger et al. Aug 1996 A
5554338 Sugihara et al. Sep 1996 A
5565156 Ingelstrom Oct 1996 A
5707185 Mizutani Jan 1998 A
5718156 Lagrolet et al. Feb 1998 A
5733075 Basteck Mar 1998 A
5761974 Wang et al. Jun 1998 A
5775854 Wertheim Jul 1998 A
5816753 Hall Oct 1998 A
5826469 Haradem Oct 1998 A
5829331 Mori Nov 1998 A
5901623 Hong May 1999 A
5955186 Grab Sep 1999 A
5975817 Komine Nov 1999 A
6010283 Heinrich et al. Jan 2000 A
6045300 Antoun Apr 2000 A
6050756 Buchholz et al. Apr 2000 A
6053669 Lagerberg Apr 2000 A
6056486 Colvin May 2000 A
6117533 Inspektor Sep 2000 A
6124040 Kolaska et al. Sep 2000 A
6164169 Goff Dec 2000 A
6287058 Arai et al. Sep 2001 B1
6287682 Grab et al. Sep 2001 B1
6299388 Slabe Oct 2001 B1
6312199 Sjoden et al. Nov 2001 B1
6322746 LaSalle et al. Nov 2001 B1
6350510 Konig et al. Feb 2002 B1
6394709 Sjoo et al. May 2002 B1
6443672 Lagerberg Sep 2002 B1
6447218 Lagerberg Sep 2002 B1
6447890 Leverenz et al. Sep 2002 B1
6450738 Ripley Sep 2002 B1
6471448 Lagerberg Oct 2002 B1
6521349 Konig et al. Feb 2003 B1
6528171 Endler et al. Mar 2003 B1
6551551 Gegel et al. Apr 2003 B1
6575672 Maier Jun 2003 B1
6595727 Arvidsson Jul 2003 B2
6634835 Smith Oct 2003 B1
6637984 Murakawa et al. Oct 2003 B2
6648565 Schweizer Nov 2003 B2
6652200 Kraemer Nov 2003 B2
6705805 Lagerberg Mar 2004 B2
6708590 Lagerberg Mar 2004 B2
6769335 Kaminski Aug 2004 B2
6860172 Hecht Mar 2005 B2
6884499 Penich et al. Apr 2005 B2
6905992 Mehrotra Jun 2005 B2
6913428 Kress et al. Jul 2005 B2
6957933 Pachao-Morbitzer et al. Oct 2005 B2
6998173 Liu et al. Feb 2006 B2
7094717 Yeckley Aug 2006 B2
7125205 Sheffler Oct 2006 B2
7125207 Craig et al. Oct 2006 B2
7160062 Tran Jan 2007 B2
7252024 Zurecki et al. Aug 2007 B2
7273331 Giannetti Sep 2007 B2
7309466 Heinrich et al. Dec 2007 B2
7396191 Fujimoto et al. Jul 2008 B2
7407348 Sjogren et al. Aug 2008 B2
7510352 Craig Mar 2009 B2
7530769 Kress et al. May 2009 B2
7621700 Jonsson et al. Nov 2009 B2
7634957 Ghosh et al. Dec 2009 B2
7641422 Berminge et al. Jan 2010 B2
7687156 Fang et al. Mar 2010 B2
20010007215 Murata et al. Jul 2001 A1
20020106250 Murakawa et al. Aug 2002 A1
20030017014 Morgulis et al. Jan 2003 A1
20030082018 Kraemer May 2003 A1
20030095841 Kraemer May 2003 A1
20040240949 Pachao-Morbitzer et al. Dec 2004 A1
20050186039 Muller et al. Aug 2005 A1
20060140728 Giannetti Jun 2006 A1
20060171837 Heinrich et al. Aug 2006 A1
20060263153 Isaksson Nov 2006 A1
20080175676 Prichard Jul 2008 A1
20080175677 Prichard et al. Jul 2008 A1
20080175678 Prichard Jul 2008 A1
20080175679 Prichard Jul 2008 A1
Foreign Referenced Citations (33)
Number Date Country
3004166 Feb 1980 DE
3429842 Feb 1986 DE
3740814 Dec 1987 DE
100376 Feb 1984 EP
0599393 Feb 1996 EP
0932460 Jun 2003 EP
1279749 Jan 1961 FR
2244590 Sep 1973 FR
5669007 Jun 1981 JP
60127904 Jul 1985 JP
04183503 Jun 1992 JP
05301104 Nov 1993 JP
06083205 Nov 1994 JP
07227702 Aug 1995 JP
07237006 Sep 1995 JP
08025111 Jan 1996 JP
08039387 Feb 1996 JP
08039387 Feb 1996 JP
09262706 Oct 1997 JP
10094904 Apr 1998 JP
2000280106 Oct 2000 JP
2001113408 Apr 2001 JP
2001239420 Sep 2001 JP
2003053622 Feb 2003 JP
2003266207 Sep 2003 JP
2003266208 Sep 2003 JP
2004122262 Apr 2004 JP
2005279900 Oct 2005 JP
06136953 Jun 2006 JP
1020060027154 Mar 2006 KR
1020060054916 May 2006 KR
0076697 Dec 2000 WO
0158632 Aug 2001 WO
Related Publications (1)
Number Date Country
20110020075 A1 Jan 2011 US
Continuations (1)
Number Date Country
Parent 11654918 Jan 2007 US
Child 12899794 US