The invention relates to a metal fixing material bushing, in particular with the features of the generic part of claim 1; further a method for the production of a base plate of a metal fixing material bushing, in particular with the features from the generic part of claim 23.
Metal fixing material bushings are anticipated in the state of the art in various designs. By metal fixing material bushings, vacuum-tight sealings of fixing materials are understood, in particular sealings of glasses to metals. The metals act as electric conductors. As representatives, we make reference to U.S. Pat. No. 5,345,872, U.S. Pat. No. 3,274,937. Such bushings are common in electronics and in electrical engineering. The glass used for sealing serves as an insulator. Typical metal fixing material bushings are built in such a way, that metallic inner conductors are sealed in a preformed sintered glass part, whereby the sintered glass part or the glass tube in an outer metal part is sealed with the so-called base plate. For example, igniters are preferred applications of such metal fixing material bushings. Said igniters are used among other things for airbags or belt tensioning pulleys in motor vehicles. In this case the metal fixing material bushings are components of an ignition device. In addition to the metal fixing material bushing, the entire ignition device comprises a spark gap, the explosive as well as a metal cover, which tightly encapsulates the ignition mechanism. Either one or two or more than two metallic pins can be passed through the bushing. In a preferred implementation with one metallic pin the casing is grounded, in a preferred two-pole embodiment it grounded to one of the pins. The previously described ignition device is used in particular for air bags or belt tensioning pulleys in motor vehicles. Known devices of the named or similar type are described in U.S. Pat. No. 6,274,252, U.S. Pat. No. 5,621,183, DE 29 04 174 A1 or DE 199 27 233 A1, whose disclosure content is fully included in the present application. The previously named ignition units have two metal pins. However, electronic ignition devices are also possible with only a single pin. The ignition devices shown in the state of the art comprise a metal base plate, for example a metal sleeve, which is constructed as a swivel part. The metal base plate exhibits at least one slot through which at least one metal pin is passed. One significant problem of this design consists in the fact that such a design is both material and cost-intensive.
The invention is therefore based on the object of creating a metal fixing material bushing of the initially named type in such a way that it is characterized by a high strength with low material and labor expenses and by a suitability for higher stresses and further that assembly errors, which result from the inaccurate correspondence of the individual elements, are avoided.
The invention's solution is characterized by the features of claim 1. The procedural implementation for production of a base plate is described in claim 34. Advantageous developments are reproduced in the dependent claims.
The metal fixing material bushing comprises a metal base plate, through which at least one metal pin is passed. If two metal pins are provided in a preferred embodiment, one of the two pins at least directly or indirectly via additional elements establishes the ground connection to the base plate. In the implementation with two metal pins these metal pins are preferably arranged parallel to one another. At least one of the metal pins is arranged in a slot in the base body and fixed across from said base body by means of fixing material, preferably in the form of a glass plug. As per the invention the base plate is formed by a sheet metal element, whereby in a first embodiment at least the slot is produced by means of a separation process, in particular punching.
The base plate itself is preferably also punched out of a solid material, the final geometry of the base plate however is retained by means of a forming process for example deep drawing. In a preferred embodiment the final geometry describing the exterior contour and the base geometry describing the slot is produced at least by means of one separation process, in particular punching. Final geometry means that no more forming processes have to be performed on it. Base geometry means that it either represents the final geometry in the case of no further necessary changes or that changes can still be undertaken to said base geometry by means of further manufacturing methods, in particular forming methods, whereby the final geometry is not achieved until after these additional methods. Resources are provided between the front and the rear for avoiding a relative motion of fixing material in the direction of the rear toward the inner circumference of the slot. The resources are integrable components of the base plate or form together with the base plate a structural unit.
The production of the geometry by means of a separation process means that the final geometry on the outer circumference of the base plate is produced by means of blanking and the geometry of the slot is produced by means of punching. The resources for avoiding a relative motion of fixing material in the direction of the rear toward the inner circumference of the slot are provided for the purpose of getting control of the difficulties resulting from the sealing of the single metal pin in a slot and also for the purpose of security against a withdrawal of the unit fixing material and metal pin. Said resources act as a kind of barb and lead in the case of relative motion in the direction of the rear to a positive locking between fixing material plugs, in particular glass plug and base plate. These comprise for example at least one local contraction in the slot, whereby they can be provided in the entire region of the inner circumference, except for the front of the base plate.
The solution of the invention makes it possible to resort to a more cost-effective manufacturing method and starting materials, whereby the inventory is considerably minimized. Additionally, the entire base plate can be designed as an integral component, into which the metal pin is sealed by means of fixing material. Another significant advantage consists in the fact that even under increased loads on the single metal pin, for example a pressure load, a pressing out of the metal pin with the glass plug from the port slot is safely prevented. The overall design also builds smaller in width and is also applicable at a slighter size through the guarantee of the secure fixing of the metal pin in the base plate, even with higher loads.
Critical in the process is the fact that the local contraction of the cross section in the region of the rear or between the rear and front occur, whereby however the front is always characterized by a greater diameter.
In accordance with an especially advantageous design the second metal pin is grounded or fastened to ground as a ground pin on the rear of the base plate. As a result of this, additional measures for grounding a metal pin fixed in the base plate with fixing material or electrically coupling it to the base plate are no longer needed. Further, there is still only one pin to be fixed in a slot, whereby the possibilities for securely fixing the single pin completely in circumferential direction become more varied and the potential connecting surface for the ground pin can be enlarged.
For example a glass plug, a ceramic plug, a glass-ceramic plug or a high-performance polymer can be used as fixing material.
A number of possibilities exist for the concrete development of the resources for prevention of a relative motion between the fixing material and slot, in particular slipping out. These are characterized by measures on the base plate. In the simplest case measures on the base plate are resorted to, which can be implemented in production, particularly during the punching process. In the process the slot between the rear and the front is characterized by a change of the cross-sectional contour. In the simplest case at least two areas of variable inside dimensions are provided in the design as slot with circular cross section with variable diameter. In the process the cross-sectional change can take place in stages or continuously. In the latter case the slot between the front and rear is tapered in design, whereby said slot narrows to the rear.
The measures on the base plate are as a rule further characterized by the provision of several recesses or projections. These form at least one undercut arranged between the rear and the front viewed on the inner circumference of the slot in the base plate, whereby the front is free of such undercuts. In the symmetrical construction of the slot this is characterized by three sub-areas—a first sub-area, which extends from the rear in the direction of the front, a second sub-area connected to the first one and a third sub-area, which extends from the front in the direction of the rear. The second sub-area is characterized by slighter or greater dimensions of the slot than the first and third sub-areas. Preferably the first and second sub-areas are then characterized by identical cross-sectional dimensions.
In implementations with more than two areas of variable dimensions, in particular with variable diameters methods are selected which result from machining both sides of the base plate. If in the previously described implementations an asymmetrical shape of the slot is intended, with these implementations with more than two areas preferably a development of the slot is selected which can be used in any way with regard to the mounting position. This is, relative to a theoretical center line which runs vertically to the pin axis of the pin in the base plate and which extends in the central area of the base plate, symmetrically designed. Therewith the front and the rear can, with regard to their function, also be exchanged. The undercuts formed by these counteract possible movements of the fixing material plug in both directions.
In accordance with a further design there can also be a multiple number of projections arranged in circumferential direction distanced to each other on a common length between the front and the rear. These are as a rule produced by stamping, i.e. local forming under pressure in the area of the rear. The manufacturing process is thus especially cost-effective.
Another option for prevention of relative motions between fixing material plug and port consists in the forming of a positive connection between them. For example, normally the glass is placed in the opening together with the metal pin, the glass and metal ring are heated up, so that after the cooling the metal heat shrinks onto the glass plug. In general the slot exhibits in essence the final diameter after the punching of the slot. Naturally the punched slot can itself be machined, for example polished without the final diameter changing significantly. The slot can have a circular cross section. Other possibilities are conceivable, for example an oval cross section.
In accordance with an advantageous further development for additional prevention of relative motions under load between metal pin and fixing material measures on the metal pin are provided. In this process this can be a matter of projections or recesses extending over the entire outer circumference of the metal pin or with random or fixed predefined projections arranged next to each other in circumferential direction.
The method for manufacturing a base plate of a metal bushing is characterized by the fact that the end contour describing the outer geometry is gained by means of a separation process free of machining from a sheet metal part of predefined thickness. The achievement of the base geometry describing the form of the slot for formation of the slot also occurs for at least one metal pin by means of punching out of the sheet metal part. In the process both operations can be in cost-saving fashion in a single tool and one processing step. The undercuts in the slots are developed by means of deformation of the slots, for example by means of stamping. The single stamping operation can be undertaken before or after the punching operation. Preferably the stamping and punching operation take place on the same side of the base plate, to avoid unnecessary workpiece position changes and perhaps have these processes run one immediately after the other.
Corresponding to the desired geometries to be attained the stamping operations occur either on one side or both sides, whereby in the latter case preferably identical stamping parameters are set, in order to ensure a symmetrical implementation of the slot.
The invention's solution is explained in detail in the following using figures. The figures show the following:
a illustrates a first embodiment of a metal fixing material bushing designed as per the invention;
b through 1e illustrate in greatly simplified diagrammatic view the basic principle of a method as per the invention for manufacturing a base plate in accordance with the invention;
a illustrates a second embodiment of a metal fixing material bushing designed as per the invention with tapered design of the slot;
b through 2c illustrate a further embodiment of the method as per the invention for manufacturing a base plate in accordance with
a illustrates a first implementation of a metal fixing material bushing 1 designed as per the invention using an axial section, for example for use as an igniter of an airbag. This comprises a base plate 3 forming a metal collar 2, with which two parallel metal pins 4 and 5 are electrically coupled. The two metal pins 4 and 5 are arranged parallel to one another. In the process one acts as a conductor, while the second pin is grounded. In the represented case the first metal pin 4 acts as a conductor and metal pin 5 acts as the ground pin. At least one of the metal pins, in particular the metal pin 4 acting as the conductor is guided through the base plate 3. In the represented case the ground pin 5 is directly attached to the rear 12 of the base plate 3. The metal pin 4 is for this purpose sealed on a part l1 of its length l in fixing material 34, particularly on a glass plug 6 cooled from molten glass. The metal pin 4 protrudes at least on one side over the face 7 of the glass plug 6 and in the represented embodiment seals flush with the second face 8 of the glass plug 6. Other variants are also conceivable. Preferably not only the slot, but also the base plate 3 is designed as punched element 9. This means that the geometry describing the outer contour, in particular the outer circumference 10 is produced by means of blanking, preferably punching. The punch part can either continue to be used in the geometry as it is present after the punching operation or can be deformed in a further operation, for example it can be deep drawn. The slot 11 provided receiving and fixing of the metal pin 4 by means of the glass plug 6 is produced in a preferred embodiment by means of a punching operation in the form of slotting. Subsequently the metal pin 4 is inserted at the rear 12 of the metal fixing material bushing 1 together with the glass plug into the slot 11 and the metal plate containing the glass plug and the metal pin is heated, so that after a cooling operation the metal heat shrinks and in this way a non-positive connection between glass plug 6 with metal pin 4 and base plate 3 is formed. It is also conceivable to insert the fixing material in molten or fluid state, in particular the molten glass of the front 13 into the slot 11. During the cooling a positive and material connection incorporated into the material comes into being both between the outer circumference 14 of the metal pin 4 as well as between the inner circumference 15 of the slot 11. To prevent a loosening of the metal pin 4 with the glass plug 6 from the base plate 3 in the case of stress of the entire metal fixing material bushing 1 during ignition, resources for prevention of a relative motion between fixing material 34 and inner circumference 15 of the slot in the direction of the rear 12, said resources being marked with 35 here. These act sort of as a barb and bring about a positive locking between base plate 3 and glass plug 6 under tensile force influence and/or pressure on the glass plug 6 and/or the metal pin 4 and prevent therewith a slipping out at the rear 12. For this purpose as per a first embodiment the slot 11 is designed in such a way that it has an undercut 36, which is formed by a projection 37. This projection is arranged in the region of the rear 12 and in the represented case closes flush with it. The slot 12, which in the represented case is preferably designed with a circular cross section, is characterized through this projection 37 by means of two different diameters d1 and d2.
Diameter d1 is greater than diameter d2. Diameter d2 is the diameter of the slot 11 at the rear 12. Diameter d1 is the diameter of the slot 11 at the front 13. Thereby the slot 11 is executed over a significant part of its extent ld1 with the same diameter d1. ld2 stands for the design of slot 11 with diameter d2. That is, the slot has two sub-areas, a first sub-area 16 and a second sub-area 17, whereby the first sub-area 16 is characterized by diameter d1 and the second sub-area 17 is characterized by diameter d2. These diameters are produced thereby by means of a single-sided stamping operation in the form of slotting of the sides of the front 13 or rear 12 with subsequent deformation operation under the influence of pressure, particularly stamping, as represented in
b through 1e illustrates in diagrammatically simplified representation the basic principle of the invention's method for manufacturing of a base plate 3 with the required geometry.
In the implementation shown in
a illustrates a further design of the base plate 3.2 using an axial cut through a metal fixing material bushing 1.2. The base structure of the metal fixing material bushing 1.2 corresponds to the one described in
b illustrates the base plate 3′ resulting after the punching operation after stamping. A slot 11′ can be seen with equal dimensions throughout.
In all of the embodiments shown in
This also holds true in analogy for the development of the metal fixing material bushing 1.5 presented in
With all of the solutions described up to now it is possible to use a narrower base plate 3 in comparison to the known solutions from the state of the art with equal or increased strength of the seal caused by the glass plug 6.
The production of the base plate 3.4 as per
In case a symmetrical design is desired, the stamping forces and the stamp depth should however be selected equally for both sides. The effected implementations apply in analogy also for the formation of the base plate as per
If
The implementations described in
In addition it would be possible to have the glass plug which is inserted into the base plate to be additionally enclosed by a socket. Then both the surface of the slot and/or the socket and/or the metal pin can be roughened.
Such a mono pin is shown in
Preferably the inner wall panel of the socket as well as the free end of the metal pin 103 is coated. Gold for example is used as a coating material. Preferably the coating is applied using electrolytic procedures. The coating serves the purpose of keeping the electrical resistance at the junction point 108 between a plug 120, which is inserted into the socket and of the interior 101.1.2 of the socket 101.2 low. The plug is designated as 120 in the figure.
In the case of all of the implementations presented in
With all of the implementations presented in the figures the slots can be formed with variable cross section. Preferably however circular cross sections are selected. The formation of the undercuts takes place as an integral component of the base plate.
Number | Date | Country | Kind |
---|---|---|---|
203 03 413.9 | Mar 2003 | DE | national |
103 21 067.9 | Mar 2003 | DE | national |
103 26 253.9 | Jun 2003 | DE | national |
203 14 580.1 | Sep 2003 | DE | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10791165 | Mar 2004 | US |
Child | 11425212 | Jun 2006 | US |