The present invention provides a metal forming system with accelerated mass production, particularly to a metal forming system allowed for pressure forming with respect to sheet metal.
As technology advances and develops, the more and more personalized and elaborate design is required by current customers for electronic products, such as mobile phones or notebooks, for example. The appearance and shape of metal shells of these electronic products is often one major cause of affecting the aspiration to purchase of the customers.
Referring to
As illustrated in
As illustrated in
In this case, different from the procedure of prior metal forming configuration, a metal forming system of novel design is additionally provided by the present invention, in which not only the successful manufacturing of metal formed parts, but also further reduced manufacturing lead time of an individual metal formed part, may be the objects to be achieved by the present invention desirably.
It is one object of the present invention to provide a metal forming system with accelerated mass production, comprising a gantry means provided with an upper mold base and a platform provided with a plurality of lower mold bases bearing sheet metals, allowing the gantry means to displace laterally over the platform to a location above one of the lower mold bases predetermined to operate. Afterwards, the longitudinal position of the upper mold base is adjusted by the gantry means to determine whether a mold-closing or mold-opening state is presented between the upper mold base and the lower mold base. A metal forming operation is performed on a sheet metal between the upper mold base and the lower mold base so as to manufacture a metal formed part when the mold-closing state is presented between the upper mold base and the lower mold base.
It is one object of the present invention to provide a metal forming system with accelerated mass production, in which a part of surface of the upper mold base is painted with an anti-sticking coating having an anti-sticking effect, by which the metal formed part in high-temperature state may be not stuck to the upper mold base, in such a way that the upper mold base may be then opened with respect to the lower mold base immediately without the need to wait a cooling process. Thereby, the manufactured metal formed part may be demolded from the upper mold base rapidly, leading to an effectively reduced manufacturing lead time of one individual metal formed part.
It is one object of the present invention to provide a metal forming system with accelerated mass production, in which the upper mold base provided on the gantry means is a forming mold, the sheet metal being formed in the upper mold base.
It is one object of the present invention to provide a metal forming system with accelerated mass production, in which the longitudinal position of the upper mold base is adjusted by the gantry means via two mold locking means, so as to enhance the effect of mold locking between the upper mold base and the lower mold base.
To achieve above objects, the present invention provides a metal forming system with accelerated mass production, comprising: a platform provided at each of both sides thereof with a laterally displacing unit, respectively; a gantry means, mounted above the platform, comprising at least two uprights and a top base, the top base being provided on the top end of each of the uprights, while the bottom end of each of the uprights being fixed on the corresponding laterally displacing unit, respectively, the gantry means capable of being driven by the laterally displacing unit to perform lateral displacement on the platform; a plurality of lower mold bases provided at the center of the platform; at least one upper mold base, a sheet metal being provided between the upper mold base and each of the lower mold bases; and a toggle unit, provided between the top base of the gantry means and the upper mold base, used for adjusting the longitudinal position of the upper mold base so as to change the distance between the upper mold base and the lower mold base, resulting in determining whether a mold-closing state or a mold-opening state is formed between the upper mold base and the lower mold base, a metal forming operation being performed on the sheet metal between the upper mold base and the lower mold base so as to manufacture a metal formed part when the mold-closing state is presented between the upper mold base and the lower mold base.
In one embodiment of the present invention, wherein the toggle unit comprises a first link, a second link and a pneumatic cylinder, one end of the first link is pivoted on a bottom surface of the top base, while one end of the second link is pivoted on a top surface of the upper mold base, the other end of the first link is pivoted to that of the second link together to form a pivot, the pneumatic cylinder being connected to the pivot so as to drive the toggle unit to generate toggle motion, resulting in the adjustment of longitudinal position of the upper mold base.
In one embodiment of the present invention, wherein each of the two uprights is individually provided at inner side thereof with a longitudinally displacing unit, a movable board being further provided between the toggle unit and the upper mold base, the longitudinally displacing unit comprising a screw rod and a driving part, the movable board being provided at each of two sides thereof with a threaded hole, respectively, each threaded hole being allowed to wrap around the corresponding screw rod, respectively, the driving part driving the screw rod to turn so as to drive the movable board to move up and down, thus further adjusting the longitudinal position of the upper mold base.
In one embodiment of the present invention, wherein the upper mold base comprises an inner surface and at least one joint face to be joined to the sheet metal, an anti-sticking coating being provided on the inner surface and/or the joint face of the upper mold base.
In one embodiment of the present invention, wherein the lower mold base is provided on an inner surface thereof with a pattern layer.
In one embodiment of the present invention, wherein the upper mold base is a sealing mold, while the lower mold base is a forming mold, the upper mold base being provided with a fluid passage, a high-pressure fluid provided by a fluid supplier is injected into an inner chamber of the upper mold base through the fluid passage of the upper mold base, in such a way that the sheet metal is adhered to an inner surface of the lower mold base under the action of fluid pressure of the high-pressure fluid, thus manufacturing the metal formed part.
In one embodiment of the present invention, wherein the upper mold base is provided on an inner surface thereof with a pattern layer.
In one embodiment of the present invention, wherein the upper mold base is a forming mold, while the lower mold base is a sealing mold, the lower mold base being provided with a fluid passage, a high-pressure fluid provided by a fluid supplier is injected into an inner chamber of the lower mold base through the fluid passage of the upper mold base, in such a way that the sheet metal is adhered to an inner surface of the upper mold base under the action of fluid pressure of the high-pressure fluid, thus manufacturing the metal formed part.
The present invention further provides a metal forming system with accelerated mass production, comprising: a platform provided at each of both sides thereof with a laterally displacing unit, respectively; a gantry means, mounted above the platform, comprising at least two uprights and a top base, the top base being provided on the top end of each of the uprights, while the bottom end of each of the uprights being fixed on the corresponding laterally displacing unit, respectively, the gantry means capable of being driven by the laterally displacing unit to perform lateral displacement on the platform; a pair of longitudinally displacing units, each provided at inner side of corresponding one of the uprights, respectively; a plurality of lower mold bases provided at the center of the platform; and at least one upper mold base, a sheet metal being provided between the upper mold base and each of the lower mold bases, the upper mold base being mounted to the longitudinally displacing units via a movable board, the longitudinally displacing units being used for adjusting the longitudinal position of the upper mold base so as to change the distance between the upper mold base and the lower mold base, resulting in determining whether a mold-closing state or a mold-opening state is formed between the upper mold base and the lower mold base, a metal forming operation being performed on the sheet metal between the upper mold base and the lower mold base so as to manufacture a metal formed part when the mold-closing state is presented between the upper mold base and the lower mold base.
In one embodiment of the present invention, wherein the longitudinally displacing unit comprises a screw rod and a driving part, the movable board being provided at each of two sides thereof with a threaded hole, respectively, each threaded hole being allowed to wrap around the screw rod, the driving part driving the screw rod to turn so as to drive the movable board to move up and down, thus further adjusting the longitudinal position of the upper mold base.
Referring to
The platform 20 is provided at the center thereof with a plurality of lower mold bases 23, on each of which a sheet metal 21 is laid, respectively. At each of both sides of the platform 20, a laterally displacing unit 29 is provided, respectively. In this embodiment, the laterally displacing unit 29 may be the combination of a ball screw means and a slide rail means.
The gantry means 30 comprises at least two uprights 301 and a top base 303. The top base 303 is provided on the top end of two uprights 301 so as to form a gantry structure, while at least one upper mold base 25 is mounted below the top base 303. The bottom end of each of the uprights 301 is fixed on the corresponding laterally displacing unit 29, respectively. The gantry means 30 is capable of being driven by the laterally displacing unit 29 to perform lateral displacement on the platform 20, in such a way that the gantry means 30 may be displaced to a location above one lower mold base 23 which is predetermined to operate.
In this embodiment, the upper mold base 25 is a sealing mold provided therein with a chamber, while the lower mold base 23 is a forming mold provided therein with another chamber. The body of the upper mold base 25 is further provided with a fluid passage 281, which may be connected to a fluid supplier 28. Furthermore, at least one heater 255/235 is around the periphery of the upper mold base 25 and/or the lower mold base 23. The heater 255/235 is used for heating at high temperature with respect to the upper mold base 25 and/or the lower mold base 23. Moreover, the sheet metal 21 laid on each lower mold base 23 or the sheet metal 21 pressed between the upper mold base 25 and the lower mold base 23 may be heated indirectly via heating of the upper mold base 25 and/or the lower mold base 23, such that the sheet metal 21 may be then softened by heating.
Between the top base 303 of the gantry means 30 and the upper mold base 25, there is further provided with a toggle unit 31, which is used as a mold locking means. The upper mold base 25 is mounted below the top base 303 via the toggle unit 31. The toggle unit 31 is used to adjust the longitudinal position of the upper mold base 25, so as to change the distance between the upper mold base 25 and the lower mold base 23, further determining whether a mold-closing state (as illustrated in
The toggle unit 31 comprises a first link 311, a second link 313 and a pneumatic cylinder 315. One end of the first link 311 is pivoted on the bottom surface of the top base 303, while one end of the second link 313 is pivoted on the top surface of the upper mold base 25. The other end of the first link 311 is pivoted to that of the second link 313 together to form a pivot 312. The pneumatic cylinder 315 comprises a fixing part 3151 fixed to the bottom surface of the top base 303, and an extensible part 3153 pivoted to the pivot 312.
As illustrated in
Subsequently, as illustrated in
Further, in one preferred embodiment of the present invention, the upper mold base 25 comprises at least one joint face 253 capable of being joined to the sheet metal 21. Moreover, the joint face 253 is provided thereon with a heat-resistant anti-sticking coating 26, which may be made of chromium or Teflon. In the former metal forming operation, it is necessary for the upper mold base 25 to wait a cooling process before this upper mold base 25 is allowed to open with respect to the lower mold base 23, after the metal formed part 210 is manufactured at high temperature. Otherwise, it is incapable of demolding successfully due to the fact that the metal formed part 210 having been soften by heating may be stuck to surface pores of the joint face 253 of the upper mold base 25. The surface pores of the joint face 253 may be filled to avoid being stuck by the metal formed part 210 in high-temperature state, by means of painting the anti-sticking coating 26 to the joint face 253 of the upper mold base 25. Then, the upper mold base 25 may be opened with respect to the lower mold base 23 immediately without the need to wait a cooling process, in such a way that the metal formed part 210 may be demolded from the upper mold base 25 rapidly. As such, not only the lower mold base 23 and the metal formed part 210 borne thereon may be driven away from the platform 20 rapidly to be successively subject to subsequent temper in the last stage of production, but also the upper mold base 25 may be displaced rapidly via the gantry means 30 to a location above the next lower mold base 23 so as to proceed metal forming operation on next sheet metal 21, facilitating effective reduction in manufacturing lead time of each metal formed part 210. In addition, the upper mold base 25 and each lower mold base 23 are heated by the heaters 255/235 all the time to be kept at high temperature during manufacturing, because the upper mold base 25 is allowed to open with respect to the lower mold base 23 without the need to wait a cooling process.
Further, each of the two uprights 301 of the gantry means 30 of the present invention is individually provided at inner side thereof with a longitudinally displacing unit 33, which is another mold locking means. The longitudinally displacing unit 33 may be also, similar to the toggle unit 31, used for the adjustment of longitudinal position of the upper mold base 25. Furthermore, there is further provided with a movable board 32 between the toggle unit 31 and the upper mold base 25, in which the upper mold base 25 is mounted to the longitudinally displacing unit 33 via the movable board 32. The longitudinally displacing unit 33 comprises a screw rod 331 and a driving part 333, while the movable board 32 is provided at each of two sides thereof with a threaded hole 321, respectively. Each threaded hole 321 is allowed to wrap around the corresponding screw rod 331, respectively. In addition, a slide rail 332 is between the upright 301 and the screw rod 331, while a slide base 323 is connected to the side of the threaded hole 321. The slide base 323 may slide on the slide rail 332.
Referring to
Referring to
The longitudinally displacing unit 33 is provided for not only facilitating the toggle unit 31 to adjust the longitudinal position of the upper mold base 25 more precisely, but also enhancing the more firm mold-locking effect between the upper mold base 25 and the lower mold base 23, so as to avoid leakage of the high-pressure fluid 280 from the gap between the upper mold base 25 and the lower mold base 23 during the metal forming operation on the sheet metal 21, and thus, the effect on manufacturing quality of the metal formed part 210.
In the present embodiment, the lower mold base 23 is further provided on the inner surface 231 thereof with a pattern layer 27. The pattern layer 27 is presented as configuration including patterns, lines, bright surface, matte surface, characters and/or other representations. After the sheet metal 21 is heated and applied with high pressure, the sheet metal 21 may be pressed against the pattern layer 27 to be formed. Thus, after pressure forming and demolding, the metal formed part 210 is then carved to form the patterns, lines, bright surface, matte surface, characters or other representations on the outer surface thereof.
As mentioned above, two mold-locking means (such as toggle unit 31 and longitudinally displacing unit 33, for example) are used in the metal forming system 200 of the present invention to adjust the longitudinal position of the upper mold base 25. As illustrated in
Referring to
Referring to
Subsequently, as illustrated in
Afterwards, as illustrated in
In this embodiment, the anti-sticking coating 26 is painted on the inner surface 251 and the joint face 253 of the upper mold base 25. The metal formed part 210 in high-temperature state may be not stuck to the surface 251/253 of the upper mold base 25 owing to an anti-sticking effect of the painted anti-sticking coating 26, in such a way that the upper mold base 25 may be then opened with respect to the lower mold base 23 immediately without the need to wait a cooling process. After the mold is opened, the metal formed part 210 formed in the upper mold base 25 may be demolded from the upper mold base 25 and then allowed to fall onto the lower mold base 23. Afterwards, the lower mold base 23 and the metal formed part 210 borne thereon may be driven away from the platform 20 to be successively subject to subsequent temper in the last stage of production.
Furthermore, the price of the forming mold having the pattern layer 27 is often far higher than that of the sealing mold. Therefore, in the metal forming system 201 of the present embodiment, the high-priced forming mold (such as the upper mold base 25 in the present embodiment, for example) is provided on the gantry means 30, and then allowed to perform metal forming operation with respect to each of the sealing molds (such as lower mold base 23 in the present embodiment, for example) provided on the platform 20 in succession via the displacement of the gantry means 30. In this way, the number of arranged forming molds may be decreased effectively, so as to reduce the cost for the establishment of the system 201.
To sum up, the lateral displacement of the gantry means 30 above the platform 20 is used in the metal forming system 200/201 of the present invention to perform metal forming operation. Thus, not only the metal formed parts 210 may be manufactured successfully, but also the manufacturing lead time of one individual metal formed part 210 may be reduced to perform metal forming operation effectively.
The foregoing description is merely one embodiment of the present invention and not considered as restrictive. All equivalent variations and modifications in shape, structure, feature, and spirit in accordance with the appended claims may be made without in any way from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
101135690 A | Sep 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
1793054 | Carns | Feb 1931 | A |
4711111 | Hellgren | Dec 1987 | A |
5396786 | Bartholomew | Mar 1995 | A |
6354125 | Bernelf | Mar 2002 | B1 |
6553804 | Convert | Apr 2003 | B2 |
7568369 | Kubacki | Aug 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20140090439 A1 | Apr 2014 | US |