The invention is related to the field of wall framing systems used in the construction of buildings for receiving sheets of gypsum drywall sheeting and, more particularly, to a system utilizing metal constriction for the studs and plates of the system.
Metal framing systems have been used for some time in commercial construction and have recently become more popular in residential construction. Metal framing systems may include metal components used for studs and plates that are typically formed as three-sided channels, such as c-shaped channels. The systems typically utilize vertically extending metal channels as studs which are inserted into the open side of horizontally extending metal channels used for the sill and top plate members of the metal framing system. The joints between the vertical and horizontal members are usually secured with numerous fasteners such as screws. Metal straps may also be utilized to secure the vertically extending channel members to one another.
One problem with conventional metal framing members is their relative lack of stiffness in the lateral direction. Prior art metal studs, for example, are limited in their length and may be prone to twisting, especially with linger studs. Another problem is that the construction of walls utilizing metal components can be labor intensive, as the studs must first be measured for the correct spacing along the plates, then secured to the plates by screws or the like.
Therefore, it would be desirable to provide metal framing member having improved stiffness over greater lengths, without increasing the thickness of the metal of which they are formed. In addition, it would also be desirable to make the construction of the walls less labor-intensive.
The invention consists of a metal framing system that incorporates lightweight metal members produced by passing flexible thin steel between rolls, forming a c-shape consisting of a middle web and two parallel opposing side walls substantially perpendicular to the web.
The c-shaped members used as a studs define lateral support ribs or projections in the side walls that increase the strength of the member. Ribs may also be laterally defined in the web portion between the side walls. In the preferred embodiment, the lateral ribs are disposed substantially in the center of each opposing side walls, however, the ribs could also be offset. Preferably, the ribs are triangular in cross sectional shape, with the apex of the triangle facing the opposing side wall, however, the ribs may generally be of any cross sectional shape.
The ribs on the side walls of the stud members engage corresponding ribs on the track member to provide automatic spacing of the studs as well as a friction fit between the studs and plates.
In an alternate embodiment, one or both side walls of the stud members may also define a flange originating from the longitudinal edge of the side wall opposite the web and extending substantially in the direction of the opposite side wall.
The tracks of the framing system consists of members having the same basic construction as the stud members, however, the side walls of the track members define a series of spaced ribs therein which are disposed transverse to the side walls, such that when the track is laid horizontally, either as a sill or as a top plate, the transverse ribs are situated vertically. As such, the lateral ribs defined in the side walls of the stud members may engage the transverse ribs defined in the side walls of the track members to provide both an indexed spacing and a frictional fit. Preferably, the ribs transversely defined on one side walls will align with those define on the opposite side wall. As with the stud members, it is preferred that the ribs have a triangular cross section shape, with the apex of the triangle facing the opposing side wall, however any cross section shape could be used, as long as the cross sectional shape of the ribs in the plate members match those defined in the stud members.
The web and/or side walls of both the stud member and the track member may also have a pattern embossed thereon, such as by knurling, to increase the lateral strength of the members. In addition, the web of the stud members and track members may be provided with ribs or an offset construction, as will be explained later. These features of the web also increase strength and tend to resist twisting if the members.
As shown in
With reference to
Longitudinal ribs 26 and 27 defined in side walls 22 and 23 are preferably triangular in cross sectional shape, having apex 29 oriented such as to face the opposing side wall, although one skilled in the art will recognize that ribs 26 and 27 may be formed of any desirable cross sectional shape. Ribs 26 and 27 are preferably located along the lateral centerline of side walls 22 and 23, but in other embodiments may be offset from the lateral centerline as well. Preferably, longitudinal ribs 26 and 27 extend for the entire length of side walls 22 and 23. In additional embodiments, multiple longitudinal ribs may be defined in each of side walls 22 and 23.
In certain embodiments of the invention, stud 20 may also include one or more flanges 24 and 25 disposed on the ends of the side walls 22 and 23 along the longitudinal edge opposite web portion 21. Flanges 24 and 25 are preferably disposed substantially parallel to web portion 21 but may be disposed at any desirable angle. Flanges 24 and 25 may additionally be any desirable width. Preferably, flanges 24 and 25 are approximately 0.125 inches to 0.250 inches in width; more preferably, 0.1875 inches in width. In alternative embodiments, flanges 24 and 25 may be replaced by a second web portion (not shown), which may be substantially parallel to the first web portion 21.
Web portion 1 may define one or more offsets 28, running longitudinally along the length of web portion 21, to increase the strength of stud member 20 and to allow stud member 20 to resist twisting.
Track member 30 is shown in perspective view in
Transverse ribs 34 are preferably triangular in cross section shape, with the apex of the triangle facing the opposing side wall, however, one skilled in the art will realize that transverse ribs 34 may be of any cross-sectional shape, and will also realize that the cross sectional shape of longitudinal ribs 26 and 27 defined in the side walls of stud 30 must be complimentary with the cross sectional shape of transverse ribs 34 defined in the side walls of track 30.
It can be seen then, as shown in
The distance between transverse ribs d as shown in
Creating transverse ribs 34 at desired distances (indicated in
Referring again to
The invention also provides a method for making metal framing studs 20 comprising passing a length of sheet metal between a set of rolls to form a generally C-shaped stud member having a web portion 21 and two opposing side walls 22 and 23 integral with and extending from web 21, each of the opposing sidewalls having one or more longitudinal ribs 26 and 27 running along the sidewalls. In a preferred embodiment of this method, passing the sheet metal between the set of rolls may additionally form one or more flanges 24 and 25 originating from the longitudinal edge of opposing side walls 22 or 23 opposite web portion 21 and extending substantially in the direction of the opposite second opposing sidewall 22 or 23. Tracks 30 are manufactured in a similar manner, albeit without flanges.
The framing studs 20 and the tracks 30 are preferably made from a sheet metal. Preferably, the studs and tracks will be formed from a high-strength steel, but other suitable metals include, but are not limited to, aluminum, brass, steel, copper, cold rolled steel, mild steel, tin, nickel, or titanium, although any materials that may be formed in the manner disclosed may be used. Preferably, the framing studs 20 and the tracks 30 are formed from steel sheets having a thickness between about 30 gauge and about 8 gauge, more preferably about 20 gauge or 25 gauge. In one aspect of the invention, it has been found that 25 gauge track may be used with both 20 and 25 gauge studs. One of skill in the art will recognize that any combination of metals and gauges may be used so long as framing studs 20 frictionally fit in a complementary fashion with tracks 30. Additionally, one of skill in the art will recognize that framing system 10 of the present invention may be employed in combination with prior art framing systems that may currently exist in certain expansion construction projects.
The framing studs 20 and tracks 30 may be manufactured to any desirable dimensions that may be required for a particular construction job. In preferred embodiments, the side walls are about 1 inch to 1.5 inches wide, and more preferably about 1.25 inches wide. In preferred embodiments, the web portions are about 1.5 inches to 8 inches wide; more preferably, the width of the web portions are about 1.625 inches, 2.5 inches, 3.625 inches, 4 inches, or 6 inches.
In certain embodiments, one or more of the sidewalls 22, 23, 32, and 33 may be textured or embossed, such as by knurling or any similar patterning process. The embossing pattern on the stud and track tends to allow a drywall or sheet metal screw to be driven through the track and stud without the screw “walking” as it would tend to do on flat steel.
In a preferred embodiment, the framing studs 20 and the tracks 30 may be produced by roll-forming, that is, passing flexible thin metal between rolls to form a generally C-shaped channel. Roll forming machines are well-known and generally include a series of forming rolls arranged in successive forming stations along an advancing path. Suitable examples are disclosed in U.S. Pat. Nos. 4,045,989 and 6,604,397. In roll-forming, a piece of sheet metal is passed between top and bottom rolls of each successive forming station, wherein each forming station introduces an additional degree of bending to the metal until a desired cumulative bend in the metal is complete. Other processes commonly used for forming and shaping sheet metal may also be used including, but not limited to, stretching, drawing, deep drawing, cutting, bending and flanging, punching and shearing, spinning, press brake forming, roll forming and rolling.
Longitudinal ribs 26 and 27 in framing studs 20 and transverse ribs 34 in tracks 30 may be added by, for example, using an inline punching press. The formation of the ribs may be done in a pre-punch application (before roll-forming starts), in a mid-line punching application (in the middle of a roll-forming line/process), or a post punching application (after roll-forming is done). The roll-forming machines with inline punching capability are well known and are available, for example, from Johnson Bros. Metal Forming Co., Berkeley, Ill., USA.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 60/990,822, filed on Nov. 28, 2007, entitled “Metal Framing System,” the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60990822 | Nov 2007 | US |