The present invention relates to a gasket relating to a sealing technique and more specifically relates to a plate-shaped metal gasket having a bead structure on the plane. The metal gasket of the present invention is used in the automobile-related field or used in the field of a general industrial machine or the like, for example.
For example, the metal gasket for use in the automobile-related field is sometimes subjected to a salt spray test as a specification evaluation item in order to prepare for the situation where an automobile travels a seaside area, an area where a snow melting agent is sprinkled in a cold district, or the like (particularly when electronic components and the like are stored in a housing or when there is a possibility that salt water, a snow melting agent, or the like adheres to an engine room, for example). In this case, when a mating housing to which the metal gasket is to be attached is made from an aluminum alloy (ADC12 or the like), salt water stays (adheres) in a crevice between the metal gasket and the housing, so that drying and wetting are repeated, whereby corrosion (crevice corrosion) of the aluminum alloy due to the salt water (ion concentration difference) occurs. The metal gasket exhibits a seal function by the reaction force of the bead structure contacting the housings. However, when the corrosion portion of the housings penetrates the seal line formed by the bead structure, the seal function is impaired. Even when the housings are formed from an iron-based material, the corrosion occurs. However, the ionization tendency of aluminum is higher than that of the iron-based material, and therefore the corrosion is particularly likely to occur.
In order to prevent a reduction in the seal functional by the corrosion of the housing 61 described above, the applicant of this application has previously proposed the metal gasket 51 illustrated in
Thus, in the metal gasket 51 of
In the metal gasket 51 of
In view of the description above, it is an object of the present invention to provide a metal gasket having a structure capable of exhibiting an excellent seal effect on external foreign matter, such as salt water, and moreover having low reaction force compatible with a case where required sealing pressure is low as a situation where the metal gasket is attached and used.
In order to achieve the object, a metal gasket of the present invention is sandwiched between a pair of housings and sealing the internal space of the housings and preventing the entrance of external foreign matter into a crevice between the housing and the gasket, and the metal gasket has a straight portion in which the entire surface from an inner peripheral edge portion to an outer peripheral edge portion is formed into a planar shape, in which a bent bead portion provided so as to be directed obliquely outward and contacting one of the housings is integrally provided in the outer peripheral edge portion of the straight portion and the bent bead portion functions as both an inward seal sealing the internal space of the housings and an outward seal preventing the entrance of external foreign matter into the crevice between the housing and the gasket.
In the metal gasket of the present invention having the above-described configuration, the bent bead portion provided so as to be directed obliquely outward and contacting one of the housings is integrally provided in the outer peripheral edge portion of the straight portion, and the entire surface of the straight portion from the inner peripheral edge portion to the outer peripheral edge portion is formed into a planar shape, therefore a bead portion other than the bent bead portion is not provided in the straight portion. Accordingly, the bent bead portion is the only bead in the metal gasket, and the only bead functions as both the inward seal sealing the internal space of the housings and the outward seal preventing the entrance of external foreign matter into the crevice between the housing and the gasket. The reaction force of a seal structure by the only (single) bead is lower than that of a seal structure by a double bead. Accordingly, the present invention can provide a metal gasket having a seal structure of a single bead capable of exhibiting an excellent seal effect on external foreign matter, such as salt water, and moreover having low reaction force compatible with a case where required sealing pressure is low as a situation where the metal gasket is attached and used because the bent bead portion is provided in the outer peripheral edge portion of the straight portion.
It is preferable that the dimension of the bent bead portion provided as the only (single) bead is set so that the bead width is set within the range of 0.5 to 1.3 mm and the rise height is set within the range of 0.25 to 0.7 mm (the reason for which is described later).
Moreover, the entire metal gasket may be a single metal gasket containing only a metal plate but is preferably configured as a metal gasket of a lamination type in which rubber layers are deposited to the surfaces of a metal plate. Thus, the rubber layers contact the housings which are the attachment targets, and therefore an elastic seal effect by the rubber layers can be expected.
The present invention can provide a metal gasket having a structure capable of exhibiting an excellent seal effect on external foreign matter, such as salt water, and moreover having low reaction force compatible with a case where required sealing pressure is low as a situation where the metal gasket is attached and used.
When the required sealing pressure is low, the compressibility can be improved by providing only an outer peripheral bead (or inner and outer peripheral bead), whereby an improvement of salt water sealability and blow hole sealability can be expected.
Since the bead compressibility is excellent, the contact width can be widely secured. With respect to the crevice corrosion by the entrance of salt water, the contact width of the gasket is considered as the cause thereof. Therefore, it is confirmed that the salt water sealability is also improved by removing a main bead. Moreover, the contact width is excellent also when the mating surface has a blow hole or the like, and therefore the effect is exhibited.
Next, an embodiment of the present invention is described with reference to the drawings.
The metal gasket 11 has an annular straight portion 12 which is entirely formed into a planar shape from an inner peripheral edge portion 12a to an outer peripheral edge portion 12b. On the outer peripheral side of the straight portion 12, a plurality of flange portions 13 (Four flange portions are disposed at equal intervals in the figure) on the circumference are integrally provided as a part of the straight portion 12 on the same plane and a bolt hole 14 for passing an assembly bolt (not illustrated) is provided for each flange portion 13.
In the outer peripheral edge portion 12b of the straight portion 12 containing the flange portions 13, a bent bead portion 15 which is formed so as to rise obliquely outward (radially outward and one direction in the thickness direction) from the outer peripheral edge portion 12b is integrally provided. The bent bead portion 15 is provided throughout the entire circumference of the outer peripheral edge portion 12b.
Moreover, the metal gasket 11 has a metal plate (steel plate layer) 21, and rubber layers (surface rubber layer) 22 and 23 each are deposited (bonded) to both the entire surfaces in the thickness direction of the metal plate 21. Therefore, the metal gasket 11 is configured as a metal gasket (rubber coating metal gasket) of a lamination type containing a combination of the metal plate 21 and the rubber layers 22 and 23 in which the rubber layers 22 and 23 are deposited to the surfaces of the metal plate 21.
As the dimension of the bent bead portion 15, it is preferable that the bead width w is set within the range of 0.3 to 5 mm and the rise height h is set within the range of 0.1 to 5 mm and it is more preferable that the bead width w is set within the range of 0.5 to 1.3 mm and the rise height h is set within the range of 0.25 to 0.7 mm as illustrated in
More specifically, when the width w becomes smaller than 0.5 mm, the compressibility remarkably deteriorates. When the width w exceeds 1.3 mm, the reaction force characteristics remarkably decrease and the seal surface pressure decreases. When the height h becomes smaller than 0.25 mm, the compressibility remarkably deteriorates, and thus the compression is hard to achieve. When the height h exceeds 0.7 mm, high tensile stress acts on the rubber, and thus there is a concern that the rubber cracking occurs. The bent angle θ of the bent bead portion 15 to the straight portion 12 is determined by the trigonometric ratio of the width w and height h.
In the metal gasket 11 having the above-described configuration, the bent bead portion 15 formed so as to rise obliquely outward from the outer peripheral edge portion 12b is integrally provided in the outer peripheral edge portion 12b of the straight portion 12, and the entire surface of the straight portion 12 from the inner peripheral edge portion 12a to the outer peripheral edge portion 12b is formed into a planar shape, and therefore a bead portion other than the bent bead portion 15 is not provided in the straight portion 12. Accordingly, the bent bead portion 15 is the only seal bead in the metal gasket 11 and the bent bead portion 15 which is the only seal bead functions as both an inward seal sealing the internal space of the housings and an outward seal sealing external foreign matter, such as salt water and a snow melting agent, and preventing the entrance of the external foreign matter into a crevice between the housing and the gasket 11. The reaction force of a seal structure by the only (single) bead can be set to be lower than that of a seal structure by a double bead. Accordingly, the metal gasket 11 can be provided with a seal structure of a single bead, which is capable of exhibiting an excellent seal effect on external foreign matter, such as salt water, and moreover has low reaction force compatible with a case where required sealing pressure is low as a situation where the metal gasket 11 is attached and used because the bent head portion 15 is provided in the outer peripheral edge portion 12b of the straight portion 12.
The low reaction force is as follows when given by a comparison test.
More specifically,
In the metal gasket 31 according to this Comparative Example, both the bent bead portion 35 and the bead portion 36 containing a full bead are compressed in attachment, and therefore the relationship between the load and the displacement is as shown by the dotted line D in the graph drawing of
Furthermore, the bead portion 36 containing a full bead is omitted in the metal gasket 11 according to the above-described embodiment in comparison with Comparative Example, and therefore the width in the radial direction of the gasket 11 can be reduced. Accordingly, the gasket 11 can be attached also to a product in which the plane width of a gasket attachment portion is narrow.
Moreover, the compressibility is excellent similarly in comparison with Comparative Example, and therefore the interval between the pair of housings can be narrowed, and thus salt water and the like are difficult to enter, and therefore the crevice corrosion is difficult to occur. Moreover, only the bent bead portion 15 is compressed between the pair of housings, and therefore the seal surface pressure can be centralized, and thus the sealability can be improved. The moldability of the gasket can be designed without increasing the gasket reaction force even when the degree of plane of the housings is poor because the steel plate is not spread.
Number | Date | Country | Kind |
---|---|---|---|
JP2015-242015 | Dec 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/086661 | 12/9/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/099206 | 6/15/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4468044 | Ulmer | Aug 1984 | A |
4915398 | Kitagawa | Apr 1990 | A |
6045139 | Kinoshita | Apr 2000 | A |
6315303 | Erb et al. | Nov 2001 | B1 |
6422573 | Sekioka | Jul 2002 | B1 |
6783132 | Nakamura | Aug 2004 | B2 |
20020000695 | Izumi | Jan 2002 | A1 |
20030075873 | Nakamura | Apr 2003 | A1 |
20040113370 | Beutter | Jun 2004 | A1 |
20060261561 | Heilig | Nov 2006 | A1 |
20080197580 | Imai | Aug 2008 | A1 |
20110001295 | Egloff | Jan 2011 | A1 |
20110182722 | Matsuyama | Jul 2011 | A1 |
20150211637 | Aihara | Jul 2015 | A1 |
20180347699 | Tanji | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
103635724 | Mar 2014 | CN |
103797286 | May 2014 | CN |
104105908 | Oct 2014 | CN |
S57-10445 | Jan 1982 | JP |
63-158360 | Jul 1988 | JP |
H08-312785 | Nov 1996 | JP |
H11-336902 | Dec 1999 | JP |
2002-5291 | Jan 2002 | JP |
2003-314363 | Nov 2003 | JP |
2007-315476 | Dec 2007 | JP |
2013-61002 | Apr 2013 | JP |
2009022448 | Feb 2009 | WO |
2016104100 | Jun 2016 | WO |
Entry |
---|
Official Communication issued in International Bureau of WIPO Patent Application No. PCT/JP2016/086661, dated Mar. 14, 2017. |
Chinese Office Action, Chinese Patent Office, Application No. 201680067020.8, dated May 29, 2019, 5 pages. |
Japanese Office Action, Japanese Patent Office, Application No. 2017-555151, dated May 22, 2019, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20180347699 A1 | Dec 2018 | US |