This invention relates generally to improvements in building construction systems and methods, and more particularly to an improved metal or steel header frame for spanning a mechanical, electrical, plumbing, door or window or opening or the like in a framed building wall. More specifically, this invention relates to an improved metal jamb and header frame and related assembly adapted for use in a metal framed building wall or the like, wherein the invention facilitates rapid and structurally stable installation of a metal header stud spanning a wall opening.
In many commercial buildings, the various stud and header components used for framing a building wall comprise metal structures such as relatively lightweight or light gauge components formed from galvanized steel or the like. In this regard, a typical metal stud used for framing a building wall has an elongated, relatively thin-walled and essentially hollow construction approximating the cross sectional dimension of a conventional wood two-by-four used in traditional wood frame construction. In accordance with conventional metal frame construction techniques, such metal studs are normally connected in a vertically extending and parallel spaced-apart orientation between metal lower sole and upper header plates by means of suitable threaded fasteners such as self-tapping screws or the like, thereby facilitating relatively rapid yet structurally sturdy assembly of the wall frame components. The resultant skeletal wall frame may incorporate suitable utility lines and/or conduits, and/or insulation material prior to sheathing with finishing material such as drywall, plaster, interior/exterior paneling or siding materials and the like. These finishing products, in combination with the metal stud framing, can provide hourly fire resistance or fire retardation rates compatible with local building codes provided, of course, that Underwriter's Laboratory (UL) and local building code requirements are followed.
Modern building construction methods commonly incorporate building walls in the form of a skeletal frame structure defined by a plurality of vertically oriented studs extending in parallel spaced-apart relation between a lower or bottom runner or sole plate, and an upper track or header plate. Framed openings, particularly in heavy grade commercial construction such as hospitals and schools, are typically defined by two welded jamb studs or king studs extending vertically on opposite sides of the opening, in combination with two header studs and multiple header tracks which are field cut to length and overlapped with the adjacent vertical stud flanges at appropriate elevations to insure a positive connection between building components.
As a result of this added build-up, two problems are presented. The first is that the hourly fire code rating of the opening and adjacent wall structure is affected by the inability of the finishing product to rest flush against the metal stud framing. For example, at a rated door opening the drywall is required to nest to the inside of the door frame, but due to the build-up of overlapping components at the inside corner connection points, typically (but in violation of building codes) the door frame is altered by bending tabs on the metal frame components or drywall finishing material is back-cut to accommodate the unforeseen added dimensions. Both of these alteration techniques void the requisite hourly fire code ratings for the opening. The second problem pertains to build-up of material at the connecting corners of the header studs/tracks to the jamb studs, wherein this build-up results in unsightly bulges and cracks in the finishing material thereby decreasing the quality of the finished wall. Significant time, material and labor is required to correct these problems.
In the past, multiple metal header studs and tracks spanning the top and bottom of a framed door, window or other mechanical opening, and a pair of metal jamb or king studs on opposite sides of the opening, have commonly been connected together and to the associated jamb studs by welding. Also, prior to the present invention, a metal framed stud building requiring a “chase” wall or two walls parallel to each other to accommodate mechanical and plumbing lines and the like, and further incorporating a framed opening for a door or window or mechanical duct or the like, could only be framed with the use of added stud gusset plates, straps and brackets due to the inability to weld inside or interior points of attachment. The use of these added parts and the requisite installation labor has been directly due to the inability to make connections to, through and around such adjacent parallel walls.
Unfortunately, such welding steps require the use of specialized and typically certified welding personnel, expensive welding equipment, and associated specialty inspectors to inspect and approve completed welds. Moreover, each weld represents a relatively time-consuming task that must be performed with considerable precision and care. As a result, in a heavy duty commercial metal framed construction project such as a hospital or school having numerous mechanical, electrical, plumbing, medical gas, door and/or window openings each presenting a fire-life-safety concern, the cost associated with jamb and header metal stud framing can be substantial.
Another problem that exists in the conventional or commonly used method of framing such mechanical openings is the inability to a dust or rework an opening due to a variety of occurrences in commercial framing. For example, changes made by the architect or owner, out-of-level concrete floors, and out-of-square framed openings all require adjustment and reworking of the opening. Current assembly methods require complete or substantially complete dismantling of the opening-forming structure, without the ability to level or square framing components.
There exists, therefore, a significant need for improvements in and to metal frame construction systems and methods, wherein metal jamb and header studs spanning building openings can be installed quickly and easily and in a structurally sturdy and stable manner, to provide a finished product of high quality and reduced construction cost, without requiring welding or the time and labor costs associated therewith, and further without jeopardizing or comprising fire code ratings. The present invention fulfills these needs and provides further related advantages.
In accordance with the invention, an improved metal or steel header/jamb frame system and related installation method are provided for use in a metal framed building wall, wherein the header frame is adapted for quick and easy installation of jamb/king studs and a header stud to span an opening such as a door or window opening or the like formed in the building wall. The framed wall opening is defined between a pair of vertically oriented jamb studs formed preferably with a geometry and from a suitable gauge metal according to building wall design criteria. The improved header frame includes a pair of metal bracket clips adapted for screw-on and/or bolt-on attachment respectively and universally to the associate pair of vertical jamb studs at a selected vertical elevation. These bracket clips define support flanges and lands or ledges for vertically receiving and supporting an elongated header stud which can be quickly and easily seated thereon to span the framed opening, and attached thereto by one or more suitable fasteners such as screws or the like.
In a preferred form, each bracket clip has a unitary or one-piece construction formed from a suitable gauge metal such as galvanized sheet steel or the like. Each bracket clip may be formed as a blank cut from metal sheet stock and then folded to define a base wall for secure attachment abutted directly to the associated jamb stud by means of one or more screws and/or bolts or the like. At least one support land or ledge is turned horizontally relative to the base wall and thereby defines a horizontally oriented surface for vertically supporting one end of the associated header stud. In the preferred form, each bracket clip further includes a pair of laterally disposed and generally vertically oriented flanges or wing walls turned at a right angle relative to the base wall, and cooperating with the support land or lands to define an upwardly open pocket for relatively close tolerance slide-fit seated reception and support of the header stud end. The support land or lands and the wing walls of the bracket clip are adapted for secure connection to the header stud as by means of suitable fasteners, such as self-tapping screws or the like.
The base wall of each bracket clip may include one or more preformed or pre-cut apertures for facilitated reception of the associated fasteners such as screws and/or bolts for securely affixing the bracket clip to the adjacent jamb stud. In one preferred form, such pre-cut apertures include at least one vertically elongated slot for receiving a fastener such as a mounting bolt or screw, wherein the bracket clip can be vertically adjusted for precise vertical positioning relative to the adjacent jamb stud prior to secure tightening of the mounting bolt or screw and any additional adjacent fasteners such as self-tapping screws or the like. In addition, a strengthening or reinforcing rib can be formed to extend vertically along the clip base wall, preferably at a generally centered position, for resisting loads applied thereto.
The width of the bracket clip is selected to correspond substantially with the width of the associated jamb stud, thereby avoiding overlapping components of the type resulting in undesirable build-up or increase in wall thickness that can otherwise interfere with subsequent mounting of finishing materials such as drywall or the like.
The header stud may comprise a metal stud framing component incorporating a strengthening or reinforcing rib. In a preferred form, a secondary reinforcing sleeve may be seated within the header stud for further increasing load capacity.
Other features and advantages of the present invention will become apparent from the following more detailed description, taken in connection with the accompanying drawing which illustrate, by way of example, the principals of the present invention.
The accompanying drawings illustrate the invention. In such drawings:
As shown in the exemplary drawings, an improved header frame referred to generally in
The improved header frame 10 of the present invention is particularly adapted for use in metal frame building construction wherein the building wall 12 comprises a skeletal frame constructed from metal framing materials. In this regard, as viewed in
Within the thus-framed building wall 12, one or more openings may be included, such as a window or door opening, as well as other types of openings for accommodating mechanical pneumatic, electrical, and plumbing equipment and the like.
One of the jamb studs 16 is shown in more detail in
Each bracket clip 14, in accordance with a preferred form of the invention, may have a unitary construction formed from metal sheet stock as by cutting a preformed or pre-cut blank 40 (
In accordance with one important feature of the invention, the width of each bracket clip 14 is selected for conformance with the width dimension of the web 32 on the associated jamb stud 16. That is, the combined width of the bracket clip 14 as defined by the base wall 42 and the wing walls 58 generally corresponds with but does not exceed the width of the jamb stud web 32. With this construction, the bracket clip 14 when assembled with the jamb stud 16 and the associated header stud 20, does not produce an undesirable build-up or overlap of components that would otherwise interfere with subsequent flush-mounted installation of finishing material such as drywall or the like.
The reinforcing sleeve 66 has a similar cross sectional configuration to include a side wall or web 80 joined to a pair of parallel-oriented end walls 82, which are joined in turn to a respective pair of side strips 84 defining a narrow slot 86 therebetween. However, the cross sectional size of the reinforcing sleeve 66 is slightly smaller than that of the header stud 20, so that the reinforcing sleeve 66 can be slide-fit and frictionally nested therein. In this regard, in a preferred configuration, the reinforcing sleeve is inverted relative to the header stud, so that sleeve side wall 80 interfits at the inboard surface of the stud side strips 74 whereas the sleeve side strips 84 interfit at the inboard surface of the stud side wall or web 70. Central strengthening or reinforcing ribs 78 and 88 may also be formed within the respective side walls 70 and 80, for slide-fit reception within the respective slots 76 and 86. The length of the reinforcing sleeve 66 may be variably selected, and the sleeve 66 may be freely nested within the header stud 20 or otherwise securely fastened thereto as by means of suitable fasteners such as self-tapping screws 90 (
The improved header frame 10 of the present invention thus provides a simple frame structure for securely mounting the header stud to span a door or window or other framed opening formed in a framed or partially framed metal wall structure. The bracket clips 14 are quickly and easily installed in pairs, at individually selected appropriate vertical positions at the opposite sides of the framed opening, followed by similarly quick and easy mounting of the associated header stud. Importantly, this assembly of components does not require any welding step, and beneficially eliminates component build-up at inside corners of the framed opening. Accordingly, concerns for jeopardizing and/or compromising the fire safety rating of the constructed wall, and/or the need for time-intensive and labor-intensive remedial action to correct such problems are substantially eliminated.
Although an embodiment has been described in detail for purposes of illustration, various modifications may be made without departing from the scope and spirit of the invention. Accordingly, no limitation on the invention is intended by way of the foregoing description and accompanying drawings, except as set forth in the appended claims.
This application claims the benefit of U.S. Provisional Application 60/588,926, filed Jul. 16, 2004.
Number | Name | Date | Kind |
---|---|---|---|
625427 | Stewart | May 1899 | A |
3036347 | Findleton | May 1962 | A |
3633950 | Gilb | Jan 1972 | A |
4021988 | Edeus et al. | May 1977 | A |
4067157 | Robinson | Jan 1978 | A |
4481749 | Stirling | Nov 1984 | A |
4717279 | Commins | Jan 1988 | A |
5189857 | Herren et al. | Mar 1993 | A |
5664392 | Mucha | Sep 1997 | A |
5689922 | Daudet | Nov 1997 | A |
5771644 | Kidd | Jun 1998 | A |
5846018 | Frobosilo et al. | Dec 1998 | A |
5906080 | diGirolamo et al. | May 1999 | A |
5941044 | Sera | Aug 1999 | A |
6189277 | Boscamp | Feb 2001 | B1 |
6230466 | Pryor | May 2001 | B1 |
6260318 | Herren | Jul 2001 | B1 |
6398193 | DeSouza | Jun 2002 | B1 |
6609344 | Saldana | Aug 2003 | B2 |
6612087 | diGirolamo et al. | Sep 2003 | B2 |
6799407 | Saldana | Oct 2004 | B2 |
6799408 | Brady | Oct 2004 | B2 |
7216465 | Saldana | May 2007 | B2 |
D640916 | Sias | Jul 2011 | S |
D644503 | Crane et al. | Sep 2011 | S |
8540201 | Gadd et al. | Sep 2013 | B2 |
20020062617 | diGirolamo et al. | May 2002 | A1 |
20050066611 | Brady | Mar 2005 | A1 |
20060096192 | Daudet | May 2006 | A1 |
20060096201 | Daudet | May 2006 | A1 |
Entry |
---|
Internet web site http://www.steelnetwork.com entitled StiffClip HE (2 pages). |
Internet web site http://www.strongtie.com entitled Simpson Strong-Tie/HH Header Hangers (2 pages). |
Number | Date | Country | |
---|---|---|---|
20060010809 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
60588926 | Jul 2004 | US |