The present invention relates to a metal magnetic material usable for a power inductor or other component for use in an electric circuit.
A power inductor for use in a power supply circuit is required to achieve smaller size and lower loss and cope with a large current. With a view to meeting such requirements, it is being studied to use, as a magnetic material for the power inductor, a metal magnetic material having a high saturation magnetic flux density. Although the metal magnetic material has an advantage of exhibiting a high saturation magnetic flux density, an insulation resistance of the material itself is insufficiently low. Thus, as a prerequisite for allowing the metal magnetic material to be used as a magnetic material for an electric component, it is necessary to ensure insulation between particles of the metal magnetic material. If it fails to ensure the insulation, a component body of the electric component is electrically conducted to surroundings, or material properties of the metal magnetic material are degraded, thereby leading to an increase in loss in an end product.
Therefore, in order to allow the metal magnetic material to be used for an electric component, the insulation between particles of the metal magnetic material has heretofore been ensured by bonding the particles together by a resin or the like or by coating each of the particles with an insulating film.
For example, JP 2010-062424A describes an electronic component obtained by coating a surface of a Fe—Cr—Si alloy with ZnO-based glass to prepare a metal magnetic material, and subjecting the material to burning in a vacuum or oxygen-free or low-oxygen partial pressure atmosphere. However, the burning in a vacuum or oxygen-free or low-oxygen partial pressure atmosphere gives rise to a need to ensure coating of particles of the metal magnetic material so as to prevent sintering. This leads to problems such as a need to increase an addition amount of the glass, and an increase in cost for coating the particles.
As above, the conventional technique of bonding the particles together by a resin or the like or coating each of the particles with an insulating film has a problem that the amount of an insulating material other than the metal magnetic material has to be increased so as to more reliably ensure insulation performance, and the increase in volume of a material other than the metal magnetic material leads to degradation in magnetic properties.
There has also been disclosed a technique of forming a layer of an oxide originating from only a raw material composition of particles of a metal magnetic material, on each of the particles (JP 4866971B and JP 5082002B). In this technique, an insulation film made of an oxide originating from only the raw material composition of the particles of the metal magnetic material is utilized for insulation between the particles, so that degradation in magnetic properties becomes reduced. However, in some cases, such an insulating film made of an oxide originating from only a raw material composition of particles of a metal magnetic material, as used in the above technique, exhibits poor insulation performance or fails to obtain sufficient strength.
Therefore, there has also been disclosed a technique of forming a layer of an oxide originating from only a raw material composition of particles of a metal magnetic material, on each of the particles, and then impregnating the layer with a resin (JP 2012-238841A). However, the technique based on the impregnation or the like is poor in practicality because it causes not only an increase in cost but also a lack of stability in product quality.
Further, JP 2013-033966A discloses a magnetic layer material containing: metal magnetic particles each having a core-shell structure in which a core is made of an iron-based compound, and a shell made of a metal compound is formed around the core; and glass. However, this technique is required to coat the core-forming material with the shell-forming material so as to construct the core-shell structure. Thus, as with the aforementioned conventional technique of coating each particle with an insulating film, there are problems such as an increase in cost, and an increase in amount of a coating material (shell-forming material), leading to degradation in magnetic properties.
In the metal magnetic material for an electronic component, particles thereof need to be mutually insulated by a minimum insulating layer, so as to ensure high insulation performance. Further, the insulating film needs to be strong electrically and mechanically. Furthermore, a composition in each particle of the metal magnetic material needs to be maintained uniformly. However, each of the conventional techniques has some sort of problem, as mentioned above.
The present invention address a technical problem of providing a metal magnetic material capable of reliably establishing insulation while realizing high saturation magnetic flux density, and an electronic component using the metal magnetic material and having low loss and good DC superimposition characteristics.
The present invention provides the following solutions to the above technical problem.
According to a first aspect of the present invention, there is provided a metal magnetic material comprising a metal magnetic alloy powder containing iron and silicon, and an additional element added to the metal magnetic alloy powder, wherein the additional element is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder.
In the metal magnetic material of the present invention, the metal magnetic alloy powder may further contain chromium.
In the metal magnetic material of the present invention, the metal magnetic alloy powder may consist of iron and silicon.
In the metal magnetic material of the present invention, the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder may be lithium.
The metal magnetic material of the present invention may be subjected to a heat treatment, wherein the metal magnetic material after the heat treatment may include a reaction product of the metal magnetic alloy powder and the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder.
In this case, an oxide of the elements of the metal magnetic alloy powder and the reaction product may be present.
The reaction product may be present in a vicinity of surfaces of particles of the metal magnetic alloy powder.
The reaction product may be spinel-type ferrite.
According to a second aspect of the present invention, there is provided an electric component which comprises: a component body formed using a metal magnetic material; and a coil formed inside or on a surface of the component body, wherein the metal magnetic material comprises a metal magnetic alloy powder containing iron and silicon, and an additional element added to the metal magnetic alloy powder, wherein the additional element is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder, and wherein the component body internally includes a reaction product of the metal magnetic alloy powder and the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder.
In the electric component of the present invention, the metal magnetic alloy powder may further contain chromium.
In the electric component of the present invention, the metal magnetic alloy powder may consist of iron and silicon.
In the electric component of the present invention, the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder may be lithium.
In the electric component of the present invention, the reaction product may be deposited in a vicinity of surfaces of particles of the metal magnetic alloy powder.
In the electric component of the present invention, the reaction product may be formed by subjecting the component body to a heat treatment.
In the electric component of the present invention, particles of the metal magnetic alloy powder contained in the component body may be bound together through the reaction product of the metal magnetic alloy powder and the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder.
In the electric component of the present invention, adjacent particles of the metal magnetic alloy powder contained in the component body may be bound together through the reaction product of the metal magnetic alloy powder and the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder.
The electric component of the present invention may have: a region where adjacent particles of the metal magnetic alloy powder contained in the component body are bound together through the reaction product of the metal magnetic alloy powder and the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder; and a region wherein particles of the metal magnetic alloy powder contained in the component body are mutually bound together.
In the electric component of the present invention, the reaction product may be spinel-type ferrite.
In the electric component of the present invention, the component body may have a volume resistivity of 107 Ω·cm or more.
In the electric component of the present invention, the component body may have a three-point bending strength of 40 MPa or more.
In the first aspect of the present invention, an additional element is added to a metal magnetic alloy powder consisting of iron and silicon or containing iron, silicon and chromium, wherein the additional element is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder. This makes it possible to allow a metal magnetic material to reliably establish insulation while realizing high saturation magnetic flux density.
In the second aspect of the present invention, a component body is formed using a metal magnetic material, and a coil is formed inside or on a surface of the component body, wherein the metal magnetic material comprises a metal magnetic alloy powder consisting of iron and silicon or containing iron, silicon and chromium, and an additional element added to the metal magnetic alloy powder, wherein the additional element is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder; and wherein the component body internally includes a reaction product of the metal magnetic alloy powder and the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder. This makes it possible to allow an electric component to have low loss and good DC superimposition characteristics.
According to one embodiment of the present invention, there is provided a metal magnetic material which comprises a metal magnetic alloy powder consisting of iron and silicon or containing iron, silicon and chromium, and an additional element added to the metal magnetic alloy powder, wherein the additional element is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder. Lithium may be used as the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder. When the metal magnetic material is subjected to a heat treatment, a reaction product of at least one of the elements of the metal magnetic alloy powder and lithium as the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder. The reaction product is present in the form of an oxide of at least one of the elements of the metal magnetic alloy powder and the additional element, in a vicinity of surfaces of particles of the metal magnetic alloy powder.
Thus, in one embodiment of the present invention, types of and an amount of elements comprised in the metal magnetic material are adjusted by adding the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder, so that it becomes possible to produce a substance which does not originate from a raw material composition of the metal magnetic alloy powder, and thus effectively establish insulation, as compared to the conventional technique of forming an insulating film made of an oxide originating from only a raw material composition of particles of a metal magnetic material, on each of the particles. Lithium is capable of reacting with iron constituting the metal magnetic alloy powder to form a reaction product with iron in the vicinity of the surface of the metal magnetic alloy powder.
According to another embodiment of the present invention, there is provided an electric component which comprises a component body formed using a metal magnetic material comprising: a metal magnetic alloy powder consisting of iron and silicon or containing iron, silicon and chromium; and an additional element added to the metal magnetic alloy powder, wherein the additional element is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder. Lithium may be used as the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder. When the component body is subjected to a heat treatment, a reaction product of at least one of the elements of the metal magnetic alloy powder and lithium as the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder. The reaction product is present in the form of an oxide of at least one of the elements of the metal magnetic alloy powder and the additional element, in the vicinity of surfaces of particles of the metal magnetic alloy powder. A coil is formed inside or on a surface of the component body.
Thus, in another embodiment of the present invention, types of and an amount of elements comprised in the metal magnetic material are adjusted by adding the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder, so that it becomes possible to produce a substance which does not originate from a raw material composition of the metal magnetic alloy powder, and thus effectively insulate between particles of the metal magnetic alloy powder, and strongly bind the particles of the metal magnetic alloy powder together, as compared to the conventional technique of forming an insulating film made of an oxide originating from only a raw material composition of particles of a metal magnetic material, on each of the particles. Lithium is capable of reacting with iron constituting the metal magnetic alloy powder to form a reaction product with iron in the vicinity of the surface of the metal magnetic alloy powder, and strongly binding the particles of the metal magnetic alloy powder together through the reaction product.
With reference to the drawings, a preferred embodiment of the present invention will be described below.
In
The electronic component 10 is a laminated inductor comprising the component body 11 and the two external terminals 13, 14.
The component body 11 comprises a plurality of metal magnetic layers 11A, 11B, 11C, 11D, and a plurality of coil conductor patterns 12A, 12B, 12C.
Each of the metal magnetic layers 11A, 11B, 11C, 11D is formed of a metal magnetic material comprising a metal magnetic alloy powder and an additional element added to the metal magnetic alloy powder, wherein the additional element is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than an element contained in the metal magnetic alloy powder.
The metal magnetic alloy powder is composed of a powder of a metal magnetic alloy consisting of iron and silicon (i.e., Fe—Si based metal magnetic alloy) or a metal magnetic alloy containing iron, silicon and chromium (i.e., Fe—Si—Cr based metal magnetic alloy). In this embodiment, lithium is used as the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder. In the component body 11 (metal magnetic layers 11A, 11B, 11C, 11D), a reaction product of iron as one of the elements of the metal magnetic alloy powder and lithium as the additional element is formed in the form of an oxide of the elements of the metal magnetic alloy, in a vicinity of surfaces of particles of the metal magnetic alloy. Further, the particles of the metal magnetic alloy powder in the component body 11 are bound together through the reaction product of iron constituting the metal magnetic alloy powder and lithium as the additional element. Details of the metal magnetic alloy powder forming the metal magnetic layers 11A, 11B, 11C, 11D will be described later.
Each of the coil conductor patterns 12A, 12B, 12C is formed using a conductive paste obtained by forming a metal material, such as silver, a silver-based alloy, gold, a gold-based alloy, copper or a copper-based alloy, into paste form.
The coil conductor pattern 12A is formed on a surface of the metal magnetic layer 11A. The coil conductor pattern 12A is formed in a shape corresponding to less than one coil turn. One end of the coil conductor pattern 12A is led to one edge face of the metal magnetic layer 11A.
The coil conductor pattern 12B is formed on a surface of the metal magnetic layer 11B. The coil conductor pattern 12B is formed in a shape corresponding to less than one coil turn. One end of the coil conductor pattern 12B is connected to the other end of the coil conductor pattern 12A via a conductor in a through-hole of the coil conductor pattern 12B.
The coil conductor pattern 12C is formed on a surface of the metal magnetic layer 11C. The coil conductor pattern 12C is formed in a shape corresponding to less than one coil turn. One end of the coil conductor pattern 12C is connected to the other end of the coil conductor pattern 12B via a conductor in a through-hole of the coil conductor pattern 12C. Further, the other end of the coil conductor pattern 12C is led to one edge face of the metal magnetic layer 11C.
The metal magnetic layer 11D is laminated on the metal magnetic layer 11C formed with the coil conductor pattern 12C, to thereby protect the coil conductor patterns.
In this manner, a coil pattern is formed within the component body 11 by the coil conductor patterns 12A to 12C between adjacent ones of the metal magnetic layers. The external terminals 13, 14 are formed, respectively, on the opposite edge faces of the component body 11, as depicted in
The electronic component having the above configuration, according to this embodiment, may be produced as follows.
First of all, a given amount of lithium is added to and mixed with a Fe—Si alloy or Fe—Si—Cr alloy powder having a given composition, and then a binder such as PVA (polyvinyl alcohol) is further added thereto. Then, the resulting mixture is kneaded into a paste to obtain a metal magnetic material paste. Separately, a conductive paste for forming the coil conductor patterns 12A, 12B, 12C is prepared. The metal magnetic material paste and the conductive paste are alternately screen-printed to form layers to thereby obtain an untreated component body. The obtained shaped body is subjected to a binder removing treatment in an ambient atmosphere at a given temperature, and then a heat treatment to obtain an electronic component 10. The external terminals 13, 14 may be formed after the heat treatment. In this case, the conductive paste for the external terminals may be applied to opposite edge faces of the component body 11 after the heat treatment, and then subjected to heating to provide the external terminals 13, 14. Alternatively, the external terminals 13, 14 may be provided by: applying the conductive paste for the external terminals to opposite edge faces of the component body 11 after the heat treatment; then subjecting the conductive paste to baking; and subjecting the resulting conductors baked on the component body 11 to plating. In this case, with a view to preventing a plating solution from entering a void existing inside the component body 11, the component body 11 may be impregnated with a resin to fill the void with the resin.
In this embodiment, as the metal magnetic material for use in the metal magnetic layers 11A, 11B, 11C, 11D for forming the component body 11, a mixture obtained by adding lithium to the metal magnetic alloy powder is used to satisfy both of magnetic properties and insulating performance. Specific examples of the metal magnetic material will be described below with reference to a result of comparative test on examples including Comparative Examples.
In this comparative test, an inductor was formed by: adding lithium to a Fe—Cr—Si alloy powder having a given composition, in a given amount represented in Li2O3 equivalent in
The metal magnetic materials in Examples 1 to 4 were prepared by adding lithium to the metal magnetic alloy powder in an amount of less than 5 wt %. As a result, as compared to the case without the addition (Comparative Example 1), the insulation resistance increases, and the three-point bending strength also increases.
Further, by adding lithium to the metal magnetic alloy powder in an amount of less than 1 wt %, magnetic properties such as the complex permeability μ′ could be ensured at a level equal to that in the case without the addition (Comparative Example 1).
In the metal magnetic material where lithium was added to the metal magnetic alloy powder in an amount of 10 wt %, the resistivity was lowered due to generation of a different phase (Fe3O4) or the like, and thereby the permeability at 10 MHz is significantly lowered.
When, in the comparative test, the lowering of the complex permeability μ′ at 10 MHz with respect to the case without the addition is within 30%, and the volume resistivity and the three-point bending strength are, respectively, 107 Ω·cm or more and 40 MPa or more, the metal magnetic material was evaluate as “OK (∘)”, and, when this condition was not satisfied, the metal magnetic material was evaluate as “NG (×)”. A result of evaluation is presented in
A fact that LiFe5O8 is produced on surfaces of particles of the Fe—Cr—Si alloy powder as a result of the addition of lithium can be ascertained by X-ray diffraction or ESM-EDX.
According to the result, in the samples of the metal magnetic material in Example 3 and the metal magnetic material in Comparative Example 3, peaks of LiFe5O8 can be observed when 20 is in the range of 30 to 50. In Comparative Example 1 without the addition of lithium, no peak of LiFe5O8 is observed, and, instead, a peak of Fe2O3, i.e., an oxide of only a raw material composition of particles of the metal magnetic alloy powder, is observed.
Further, in the rage where no different phase is produced, the diffraction peak of LiFe5O8 tends to become larger along with an increase of the addition amount of lithium. Therefore, the diffraction peak of LiFe5O8 in the sample of the metal magnetic material in Comparative Example 3 is larger than that in the sample of the metal magnetic material in Example 3.
Further, as for Examples 1 to 4 and Comparative Example 1 without the addition of lithium, the permeability property was ascertained while changing a heat treatment temperature. As depicted in
It should be noted that the addition of lithium does not always provide good result, as in Comparative Examples 2 to 5. Thus, when the metal magnetic material in each of Examples 1 to 4 with the addition of lithium is used, the addition amount of lithium may be set to an optimal value depending on a particle size of the metal magnetic material and the heat treatment temperature. In this regard, as the particle size of the metal magnetic alloy powder becomes larger, a required amount of lithium becomes smaller (because a surface area of the particles of the metal magnetic alloy powder becomes smaller). Further, when the heat treatment temperature is set to a higher value, it is also desirable to adjust the addition amount of lithium.
In this comparative test, an inductor was formed by: adding lithium to a Fe—Si alloy powder having a given composition, in a given amount represented in Li2O3 equivalent in
In the metal magnetic material without the addition of lithium to the Fe—Si alloy powder (Comparative Example 6), the permeability at 10 MHz was poor although the insulation resistance and the strength were sufficiently high. Similarly, in the metal magnetic material without the addition of lithium to the Fe—Cr—Si alloy powder (Comparative Example 1), the insulation resistance, the withstand voltage and the three-point bending strength were poor although the permeability at 10 MHz was sufficiently high. In contrast, the metal magnetic materials in Examples 5 to 11 were prepared by adding lithium to the metal magnetic alloy powder in an amount of less than 3 wt %. As a result, as compared to Comparative Examples 1 and 2, the three-point bending strength increases. In addition, by adding lithium to the metal magnetic alloy powder in an amount of less than 3 wt %, magnetic properties such as the complex permeability μ′ at 10 MHz was improved, as compared to the metal magnetic material without the addition of lithium to the Fe—Si alloy powder (Comparative Example 6). Further, by adding lithium to the metal magnetic alloy powder in an amount of less than 3 wt %, the metal magnetic materials in Examples 5 to 11 are also improved in terms of the insulation resistance and the withstand voltage, as compared to the metal magnetic material without the addition of lithium to the Fe—Cr—Si alloy powder (Comparative Example 1).
In the metal magnetic material where lithium was added to the metal magnetic alloy powder in an amount of 3 wt % or more, the resistivity was lowered due to generation of a different phase (Fe3O4) or the like, and thereby the permeability at 10 MHz is significantly lowered.
When, in the comparative test, the lowering of the complex permeability μ′ at 10 MHz with respect to the case without the addition of lithium to the Fe—Cr—Si alloy powder (Comparative Example 1) is within 30%, and the volume resistivity and the three-point bending strength are, respectively, 107 Ω·cm or more and 40 MPa or more, the metal magnetic material was evaluate as “OK (∘)”, and, when this condition was not satisfied, the metal magnetic material was evaluate as “NG (×)”. A result of the evaluation is presented in the column “Evaluation” in
A fact that LiFe5O8 is produced on surfaces of particles of the Fe—Si alloy powder as a result of the addition of lithium can be ascertained by X-ray diffraction or ESM-EDX.
According to the result, in the samples of the metal magnetic material in Example 6 and the metal magnetic material in Example 11, peaks of LiFe5O8 can be observed when 20 is in the range of 30 to 50. In Comparative Example 6 without the addition of lithium to the Fe—Si alloy powder, no peak of LiFe5O8 is observed, and, instead, peaks of Fe2O3, i.e., an oxide of only a raw material composition of particles of the metal magnetic alloy powder, are observed.
Further, in the rage where no different phase is produced, the diffraction peak of LiFe5O8 tends to become larger along with an increase of the addition amount of lithium. Therefore, the diffraction peak of LiFe5O8, i.e., an amount of formation of LiFe5O8, in the sample of the metal magnetic material in Example 11 is larger than that in the sample of the metal magnetic material in Example 5. In Example 6, in addition to LiFe5O8, a very small amount of formation of Fe2O3 is ascertained. In this situation, it should be understood that, as long as a large part of the reaction product of the metal magnetic alloy powder and the additional element which is more easily oxidizable in an equilibrium state of oxidation-reduction reaction than the elements contained in the metal magnetic alloy powder is LiFe5O8, the same effect can be obtained even if an oxide of at least one of the elements of the metal magnetic alloy powder is present together with the LiFe5O8.
Further, as for Examples 6, 7 and 9, Comparative Example 7, and Comparative Example 6 without the addition of lithium to the Fe—Si alloy powder, the permeability property was ascertained while changing a heat treatment temperature. As depicted in
It should be noted that the addition of lithium does not always provide good result, as in Comparative Examples 7 and 8. Thus, when the metal magnetic material in each of Examples 7 and 8 with the addition of lithium is used, the addition amount of lithium may be set to an optimal value depending on a particle size of the metal magnetic material and the heat treatment temperature. In this regard, as the particle size of the metal magnetic alloy powder becomes larger, a required amount of lithium becomes smaller (because a surface area of the particles of the metal magnetic alloy powder becomes smaller). Further, when the heat treatment temperature is set to a higher value, it is also desirable to adjust the addition amount of lithium.
It is to be understood that the present invention is not limited to the above embodiment, but various changes and modifications will be apparent to those skilled in the art. Therefore, unless otherwise such changes and modifications depart from the scope of the present invention hereinafter defined, they should be construed as being included therein.
The above embodiment and each of the modified embodiments may be appropriately used in combination, but detailed description thereof will be omitted. It should be noted that the present invention is not limited to the aforementioned embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2014-086178 | Apr 2014 | JP | national |
2014-086179 | Apr 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/061890 | 4/17/2015 | WO | 00 |