The present invention is directed to metal-organic frameworks as catalysts and sorbents for the capture and detoxification of chemical warfare nerve agents.
Extensive research over the past few years has focused on the synthesis and characterization of highly tunable, microporous materials with high internal surface areas. Metal-Organic Frameworks (MOFs) are a crystalline subset of these materials that have shown promise for a wide array of gas, vapor, and liquid applications ranging from storage, separation, and catalysis. MOFs are comprised of at least ditopic organic linkers and metal ions that self-assemble into 3-dimensional porous structures. Example MOFs are illustrated in
Embodiments of the invention are drawn to (a) the development of MOF structures for catalytic detoxification of chemical warfare nerve agents, and (b) integration of these structures into air respiratory systems to filter and destroy toxic nerve agents. High performing MOFs enable a significant increase in the rate of chemical detoxification and a significant increase in the overall safety for personnel exposed to chemical warfare nerve agents.
An embodiment is drawn to a method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the MOF to the chemical warfare nerve agent, and catalytically decomposing the nerve agent with the MOF. The metal nodes of the MOF comprise derivatives of TixZryHfz(μ3-O)r, where x+y+z=6 and r=4, 6 or 8.
Another embodiment is drawn to a metal-organic framework (MOF) including the coordination product of a metal ion and an at least bidentate organic ligand, where the metal ion and the organic ligand are selected to assemble a MOF configured to catalytically detoxify chemical warfare nerve agents. Metal nodes of the MOF comprise derivatives of TixZryHfz(μ3-O)r, where x+y+z=6 and r=4, 6 or 8.
Another embodiment is drawn to a chemical warfare reagent detoxification device including a metal-organic framework (MOF) including the coordination product of a metal ion and an at least bidentate organic ligand. The metal ion and the organic ligand are selected to assemble a MOF configured to catalytically detoxify chemical warfare nerve agents. Metal nodes of the MOF comprise derivatives of TixZryHfz(μ3-O)r, where x+y+z=6 and r=4, 6 or 8. The MOF comprises pellets, disks, or a monolith and the device comprises a respirator cartridge.
Multiple global military events have increased the need to find rapid, safe, and effective strategies to catalytically detoxify banned chemical warfare agents. Many of these agents contain moieties that can be degraded through hydrolysis. Degradable moieties include organophosphorus bonds and phosphate ester bonds that are found in nerve agents such as Sarin or VX. Table 1 includes a non-exhaustive list of nerve agents that may be detoxified by embodiment discussed in more detail below. These nerve agents are among the most toxic chemicals known to mankind. Solutions are needed to improve the safety of bulk destruction of banned chemical weapon stockpiles, to improve personnel safety from airborne agents, and to improve the containment of nerve agent spills and/or leaks. Some heterogeneous materials, such as modified activated carbon or metal oxides, display a few of the desired characteristics for detoxification of nerve agents. However, these materials also suffer from many undesirable characteristics such as low sorptive capacities, low effective active site loading, limited catalytic lifetime, slow catalytic rates, and material degradation. Embodiments herein overcome the limitations and challenges associated with the prior art sorbent-based heterogeneous nerve agent detoxification.
As used herein, detoxification is the process of chemically converting highly toxic chemical warfare nerve agents into corresponding by-products that have much lower toxicity, such as little or no toxicity.
Embodiments of the MOFs disclosed herein include MOFs in which the metal cluster of the MOF ranges between and includes twelve-coordinate and three-coordinate. The embodiments of the MOFs disclosed herein may have pore size diameters ranging from 4 to 55 Å. Embodiments of the MOFs disclosed herein have a BET measured surface area between 500 to 5000 m2/g. Depending on the method of synthesis, as discussed in more detail below, the MOF particles may have sizes ranging from 100 nm to 5 mm. Embodiments of the methods herein may be used to detoxify nerve agents provided in a gas phase, vapor phase, liquid phase, or an aerosol. In embodiments, the nerve agents are exposed to the MOFs in a pressure range of 0.33 and 1.48 standard atmospheres, a temperatures between −40° C. and 50° C., and a pH between 0 and 14.
The naturally occurring phosphotriesterase (PTE) enzyme, found in pseudomonas diminuta, flavobacterium, agrobacterium radiobacter, and chryseobacterium balustinum bacterium, is known to be highly active in the hydrolysis of phosphate ester bonds and organophosphorus bonds, the types of bonds found in many chemical warfare nerve agents. The active site of the phosphotriesterase enzyme contains a hydroxyl group bridged by two Zn(II) atoms (Zn—OH—Zn). This arrangement works cooperatively to cleave the P—O bond(s) and thus detoxifying the agent. While the Zn—OH—Zn moiety illustrates one type of the catalytic active sites used to detoxify nerve agents, other mechanisms and other active sites exist. MOFs are materials with tunable properties which may scaffold a high density of active sites useful for detoxification, such as metal to metal bridging hydroxyl or oxo groups.
Given their outstanding thermal, mechanical, and hydrolytic stability, MOFs containing nodes/clusters with individual metals or any combination of metals from group 4 on the periodic table (e.g. Ti, Zr, or Hf) may be used for catalytic detoxification of nerve agents. These MOFs have nodes or clusters with general molecular formulas of TixZryHfz(μ3-OH)4(μ3-O)4(O2)12 (where x+y+z=6) in the hydrated form (e.g. UiO-66 MOF shown in
These MOFs may have a terminal hydroxyl group or a terminal water molecule connected to a metal cluster selected from the group consisting of titanium, zirconium, hafnium, and combinations thereof. Additionally, these MOFs contain several Zr—OH—Zr type moieties (i.e. the oxygen atom of the bridging hydroxyl group is connected to two metal atoms, such as two Ti, Zr or Hf atoms, or combinations thereof), similar to the bridging Zn—OH—Zn active site found in naturally occurring enzymes discussed above. For example as illustrated in
Considering the incredibly high toxicity of nerve agents, experiments were conducted using less toxic simulants, including methyl paraoxon (dimethyl 4-nitrophenyl phosphate) and p-nitrophenyl diphenyl phosphate. The rate of degradation was observed using UV-vis spectroscopy by following the formation of UV/blue-adsorbing byproducts. In an example, the hydrolysis was carried out in the presence of 6 mol % UiO-66 in an aqueous solution containing 0.45 M N-ethylmorpholine (as a buffer at pH=10).
To validate the heterogeneous nature of the catalysis, the UiO-66 MOF was removed by filtration and the reaction was further monitored. As expected, no catalysis was further observed. Additionally, the surface area of the UiO-66 material was measured and found to decrease from 1450 m2/g (UiO-66 prior to detoxification catalysis measurements) to 750 m2/g (UiO-66 after detoxification catalysis measurements). This loss in surface area after catalysis is not due to a loss in crystallinity or structure integrity as the PXRD pattern for the as-synthesized UiO-66 matched the PXRD pattern for the UiO-66 after catalysis. However, the loss in surface area after catalysis is attributed to the porous nature of the MOF, i.e. the pores of the MOF captured and adsorbed the nerve agent simulant and/or byproducts. From these measurements, the MOF was determined to have a nerve agent simulant and/or byproduct capacity of 0.3-0.7 g(nerve agent)/g(MOF), such as 0.4-0.6 g(nerve agent)/g(MOF), such as ˜0.47 g(nerve agent)/g(MOF).
Considering the small pore apertures of UiO-66 (˜6 Å) and the relatively larger size of methyl paraoxon (˜11 Å×4.5 Å), much of the catalysis occurs on the exterior surface of the MOF particle. Dynamic-light scattering (DLS) measurements and scanning electron microscope (SEM) images indicate UiO-66 MOF particle sizes of 400 nm. However, the ratio between the interior surface and the exterior surface decreases as the particle size decreases. Therefore, for UiO-66, particle size plays a role in the rate of detoxification. Depending on the synthesis procedures, UiO-66 particles can be synthesized as small as 100 nm.
To promote interior catalysis and overcome the challenge of exclusive surface or near surface catalysis, a similar highly stable zirconium MOF was synthesized, NU-1000, illustrated in
NU-1000 was used to catalyze the hydrolysis of nerve agent simulates under the same conditions as UiO-66 discussed above, i.e. 6 mol % NU-1000 in an aqueous solution containing 0.45 M N-ethylmorpholine (as a buffer at pH 10).
In addition to highly active bridging hydroxyl groups, bridging oxo groups also exhibit very high rates of catalysis. This was illustrated after NU-1000 was thermally dehydrated at 300° C. to remove terminal aquo and hydroxyl ligands, thus converting bridging hydroxyl groups in NU-1000 to bridging oxo groups in dehydrated NU-1000. The bridging oxo groups may be connected to two atoms selected from the group consisting of titanium, zirconium, hafnium and combinations thereof.
Oxo bridges are also found in a variety of other MOF structures. As with the thermal treatment of other metal-oxides or other MOFs, coordinatively unsaturated metal sites are exposed after the removal of hydrating ligands. These coordinatively unsaturated metal sites act as potent Lewis acids because of their ability to bind to electron rich moieties, such as those found in chemical warfare nerve agents. This binding enhances the hydrolytic detoxification of nerve agents. A half-life of merely 1.5 minutes was observed for the catalytic degradation of methyl paraoxon using dehydrated NU-1000 as the catalyst under the same reaction conditions as the aforementioned UiO-66 and NU-1000 catalysis.
The above embodiments illustrate the highly effective ability of MOFs to catalytically detoxify chemical warfare nerve agents. This detoxification can be accomplished on a bulk scale to safely and rapidly detoxify banned chemical stockpiles or to mitigate and detoxify nerve agent spills and leaks. Additionally, given the highly porous nature of MOFs, this detoxification can be accomplished on a personnel scale through the use MOF-based air respirators. MOF-based air respirators can capture toxic nerve agents through their highly sorptive abilities while also catalytically detoxifying nerve agents. This is a significant improvement over other sorbent-based heterogeneous detoxification materials.
Additional embodiments include MOF-based detoxification systems that include containers comprising the MOFs discussed above. As illustrated in
The alternative embodiment detoxification device 600b illustrated in
An embodiment of the method includes exposing the chemical warfare nerve agent to a metal-organic-framework (MOF), and catalytically decomposing the nerve agent with the MOF. The chemical warfare nerve agent may be an organophosphate, an organophosphorus compound, or combinations thereof. For example, the chemical warfare nerve agent may comprises cyanogen chloride, hydrogen cyanide, ethyldichloroarsine (ED), methyldichloroarsine (MD), phenyldichloroarsine (PD), lewisite (L), sulfur mustard (HD, H, HT, HL, HQ), nitrogen mustard (NH1, NH2, NH3), Tabun (GA), Sarin (GB), Soman (GD), Cyclosarin (GF), GV, Methyl fluorophosphoryl homocholine iodid (MFPhCh), EA-3148, VE, VG, VM, VP, VR, VX, Novichok agents, phoshene oxime (CX), chlorine, chloropicrin (PS), phosgene (CG), diphosgene (DP), disulfur decafluoride, agent 15 (BZ), dimethylheptylpyran (DMHP), EA-3167, kolokol-1, LSD-25, PAVA spray, sleeping gas, pepper spray (OC), CS, mace® (CN), CR, and combinations thereof. In an embodiment, the container is a respirator cartridge. An embodiment of the method includes filling the cartridge with a MOF (e.g. pellets, disks or a monolithic MOF body) capable of detoxifying chemical warfare nerve agents. In an embodiment, the MOF is part of a stacked bed containing other layers of materials in a respirator cartridge.
An embodiment includes a method of making a MOF comprising reacting a metal ion and an at least bidentate organic ligand, wherein the metal ion and the organic ligand are selected assemble a MOF to catalytically detoxify chemical warfare nerve agents. In an embodiment, the MOF catalytically detoxifies the nerve agent at a rate with a half-life no greater than 45 minutes second measured at 298 K, catalysis loading of 6 mol %, chemical warfare nerve agent concentration of 0.025 mol/L, and buffered solution of pH 10.
An embodiment includes a method of using a metal organic framework (MOF) which includes a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the MOF to the chemical warfare nerve agent, and catalytically decomposing the nerve agent with the MOF. The metal nodes of the MOF comprise derivatives of TixZryHfz(μ3-O)n, where x+y+z=6 and n=4, 6 or 8. In an embodiment, the metal nodes of the MOF comprise: TixZryHfz(μ3-O)n(A)a(B)b(C)c(D)d(E)e(F)f, where A=(μ3-OH)4, B=(H2O)6, C=(OH)6, D=(O2)6, E=Xm, F=(RCOO)6 and wherein a+b+c+d+e+f≧2 and each of a, b, c, d, e and f=0 or 1.
In an embodiment, the metal nodes of the MOF comprise TixZryHfz(μ3-O)4(μ3-OH)4(H2O)6(OH)6(O2)6 or TixZryHfz(μ3-O)8(O2)6 and where the oxygen atoms from the organic linker are included in the formula and where x+y+z=6. In an embodiment, the metal nodes of the MOF comprise TixZryHfz(μ3-O)4(μ3-OH)lXm(OL)24 where x+y+z=6, m=0-8, OL=any carboxylate oxygen atoms on a mono-, di-, tri-, or tetra-dentate ligand, and l+m=4; where X is any anion with a −1 charge. In an embodiment, the metal nodes of the MOF comprise TixZryHfz(μ3-O)4(μ3-OH)4(OH)lXm(H2O)(OL)16 where x+y+z=6, n=0-8, OL=any carboxylate oxygen atoms on a mono-, di-, tri-, or tetra-dentate ligand, and l+m=4; where X is any anion with a −1 charge. In an embodiment, the metal nodes of the MOF comprise TixZryHfz(μ3-O)4(μ3-OH)1Xm(RCOO)6(OL)12 where x+y+z=6, OL=any carboxylate oxygen atoms on a mono-, di-, tri-, or tetra-dentate ligand, and l+m=4; where X is any anion with a −1 charge. In an embodiment, the metal nodes of the MOF comprise TixZryHfz(μ3-O)4(μ3-OH)4(OH)lXm(H2O)n(OL)12 where x+y+z=6, m=0-8, OL=any carboxylate oxygen atoms on a mono-, di-, tri-, or tetra-dentate ligand, and l+m=6 where X is any anion with a −1 charge.
Another embodiment includes a metal-organic framework (MOF) including the coordination product of a metal ion and an at least bidentate organic ligand, where the metal ion and the organic ligand are selected to assemble a MOF configured to catalytically detoxify chemical warfare nerve agents. Metal nodes of the MOF comprise derivatives of TixZryHfz(μ3-O)n, where x+y+z=6 and n=4, 6 or 8. The metal nodes of the MOF may comprise TixZryHfz(μ3-O)n(A)a(B)b(C)c(D)d(E)e(F)f, wherein A=(μ3-OH)4, B=(H2O)6, C=(OH)6, D=(O2)6, E=Xm, F=(RCOO)6, wherein a+b+c+d+e+f≧2 and each of a, b, c, d, e and f=0 or 1. In an embodiment, the metal nodes of the MOF comprise TixZryHfz(μ3O)4(μ3-OH)4(H2O)6(OH)6(O2)6 or TixZryHfz(μ3-O)8(O2)6 and where the oxygen atoms from the organic linker are included in the formula and where x+y+z=6. In an embodiment, the metal nodes of the MOF comprise TixZryHfz(μ3-O)4(μ3-OH)lXm(OL)24 where x+y+z=6, m=0-8, OL=any carboxylate oxygen atoms on a mono-, di-, tri-, or tetra-dentate ligand, and l+m=4; where X is any anion with a −1 charge. In an embodiment, the metal nodes of the MOF comprise TixZryHfz(μ3-O)4(μ3-OH)4(OH)lXm(H2O)(OL)16 where x+y+z=6, n=0-8, OL=any carboxylate oxygen atoms on a mono-, di-, tri-, or tetra-dentate ligand, and l+m=4 where X is any anion with a −1 charge. In an embodiment, the metal nodes of the MOF comprise TixZryHfz(μ3-O)4(μ3-OH)lXm(RCOO)6(OL)12 where x+y+z=6, OL=any carboxylate oxygen atoms on a mono-, di-, tri-, or tetra-dentate ligand, and l+m=4; where X is any anion with a −1 charge. In an embodiment, the metal nodes of the MOF comprise TixZryHfz(μ3-O)4(μ3OH)4(OH)lXm(H2O)(OL)12 where x+y+z=6, m=0-8, OL=any carboxylate oxygen atoms on a mono-, di-, tri-, or tetra-dentate ligand, and l+m=6; where X is any anion with a −1 charge.
Another embodiment includes a chemical warfare reagent detoxification device including a metal-organic framework (MOF) including the coordination product of a metal ion and an at least bidentate organic ligand. The metal ion and the organic ligand are selected to assemble a MOF configured to catalytically detoxify chemical warfare nerve agents. Metal nodes of the MOF comprise derivatives of TixZryHfz(μ3-O)n, where x+y+z=6 and n=4, 6 or 8. The MOF comprises pellets, disks, or a monolith and the device comprises a respirator cartridge. The chemical warfare reagent detoxification device may include any of the MOFs discussed above.
The following references disclose aspects of the fabrication of MOFs and are hereby incorporated by reference in their entireties:
Although the foregoing refers to particular preferred embodiments, it will be understood that the invention is not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments and that such modifications are intended to be within the scope of the invention. All of the publications, patent applications and patents cited herein are incorporated herein by reference in their entirety.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/585,718, filed Dec. 30, 2014, which claims the benefit of U.S. Provisional Application No. 61/922,370, filed Dec. 31, 2013, hereby incorporated by reference in their entirety.
This invention was made with government support under HDTRA1-10-1-0023 awarded by the Defense Threat Reduction Agency and DE-AC05-060R23100 (SubK No. 10-20903 DOE Oak Ridge, Tenn.) awarded by the Department of Energy. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61922370 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14585718 | Dec 2014 | US |
Child | 15412412 | US |