Metal oxide particles

Abstract
Manganese oxide particles have been produced having an average diameter less than about 500 nm and a very narrow distribution of particle diameters. Methods are described for producing metal oxides by performing a reaction with an aerosol including a metal precursor. Heat treatments can be performed in an oxidizing environment to alter the properties of the manganese oxide particles.
Description




FIELD OF THE INVENTION




The invention relates to metal oxide powders. More particularly, the invention relates to nanoscale metal oxide particles, such as manganese oxide particles, produced by laser pyrolysis. The invention further relates to methods for producing metal oxide powders with laser pyrolysis and aerosol precursors.




BACKGROUND OF THE INVENTION




Advances in a variety of fields have created a demand for many types of new materials. In particular, a variety of chemical powders can be used in many different processing contexts. Specifically, there is considerable interest in the application of ultrafine or nanoscale powders that are particularly advantageous for a variety of applications involving small structures or high surface area materials. This demand for ultrafine chemical powders has resulted in the development of sophisticated techniques, such as laser pyrolysis, for the production of these powders.




Manganese can exist in various oxidation states. Correspondingly, manganese oxides are known to exist with various stoichiometries. In addition, manganese oxides with a particular stoichiometry can have various crystalline lattices, or they can be amorphous. Thus, manganese oxides exhibit an extraordinarily rich phase diagram.




Manganese oxides with various stoichiometries have been noted as promising materials for use in lithium based batteries. Appropriate manganese oxides can intercalate lithium ions into their crystal structure. Because of the interest in manganese oxides, several approaches have been developed for producing manganese oxides. Other metal oxide powders are useful in the production of batteries as well as a variety of other applications.




SUMMARY OF THE INVENTION




In a first aspect, the invention pertains to a collection of particles comprising manganese oxide, the collection of particles having an average diameter less than about 500 nm, the manganese oxide having a structure selected from the group consisting of amorphous manganese oxide, crystalline MnO, crystalline Mn


5


O


8


and crystalline Mn


2


O


3


.




In another aspect, the invention pertains to a method of producing a metal oxide powder, the method comprising reacting an aerosol within a reaction chamber to form metal oxide particles, the aerosol comprising a metal precursor and the metal oxide particles having an average diameter less than about 500 nm.




In a further aspect, the invention pertains to a method for altering the stoichiometry of a collection of manganese oxide particles, the method comprising heating manganese oxide particles in an oxidizing environment at a temperature less than about 600° C.




In another aspect, the invention pertains to a battery having a cathode comprising manganese oxide particles, said manganese oxide particles having an average diameter less than about 250 nm.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic sectional view of a solid precursor delivery system taken through the center of the system.





FIG. 2

is a schematic, sectional view of an embodiment of a laser pyrolysis apparatus, where the cross section is taken through the middle of the laser radiation path. The upper insert is a bottom view of the collection nozzle, and the lower insert is a top view of the injection nozzle.





FIG. 3

is a schematic, side view of a reactant delivery apparatus for the delivery of vapor reactants to the laser pyrolysis apparatus of FIG.


2


.





FIG. 4

is schematic, side view of a reactant delivery apparatus for the delivery of an aerosol reactant to the laser pyrolysis apparatus of FIG.


2


.





FIG. 5

is a schematic, perspective view of an elongated reaction chamber for the performance of laser pyrolysis, where components of the reaction chamber are shown as transparent to reveal internal structure.





FIG. 6

is a perspective view of an embodiment of an elongated reaction chamber for performing laser pyrolysis.





FIG. 7

is a cut away, side view of the reaction chamber of FIG.


6


.





FIG. 8

is a partially sectional, side view of the reaction chamber of

FIG. 6

, taken along line


8





8


of FIG.


6


.





FIG. 9

is a sectional, front view of a reactant delivery apparatus for the delivery of an aerosol reactant into the reaction chamber of

FIG. 6

, where the cross section is taken through the center of the reactant delivery apparatus.





FIG. 10

is a fragmentary, sectional front view of the top portion of the reactant delivery apparatus of FIG.


9


.





FIG. 11

is a top view of the mount of the reactant delivery apparatus of FIG.


9


.





FIG. 12

is a top view of a cap of the aerosol delivery apparatus of FIG.


9


.





FIG. 13

is a sectional view of the cap of

FIG. 12

taken along line


13





13


.





FIG. 14

is a sectional side view of a spacer used in the aerosol delivery apparatus of

FIG. 9

, where the cross section is taken through the center of the spacer.





FIG. 15

is a sectional side view of a shim used in the aerosol delivery apparatus of

FIG. 9

, where the cross section is taken through the center of the shim.





FIG. 16

is a sectional, side view of an embodiment of a brushing cap for use in the aerosol delivery apparatus of

FIG. 9

, where the cross section is taken through the center of the brushing cap.





FIG. 17

is a sectional, side view of an alternative embodiment of a brushing cap for use in the aerosol delivery apparatus of

FIG. 9

, where the cross section is taken through the center of the brushing cap.





FIG. 18

is a sectional, side view of a second alternative embodiment of a brushing cap for use in the aerosol delivery apparatus of

FIG. 9

, where the cross section is taken through the center of the brushing cap.





FIG. 19

is a side view of an ultrasonic aerosol generator having an atomization surface.





FIG. 20

is a sectional, side view of the ultrasonic aerosol generator of

FIG. 19

, where the cross section is taken through the center of the apparatus.





FIG. 21

is a schematic, side view of a liquid supply system for supplying liquid to the aerosol generator of

FIGS. 19 and 20

.





FIG. 22

is a schematic, sectional view of an oven for heating nanoparticles, in which the section is taken through the center of the quartz tube.





FIG. 23

is an x-ray diffractogram of manganese oxide nanoparticles produced by laser pyrolysis with gaseous reactants according to the parameters specified in column 1 of Table 1.





FIG. 24

is an x-ray diffractogram of manganese oxide nanoparticles produced by laser pyrolysis with gaseous reactants according to the parameters specified in column 2 of Table 1.





FIG. 25

is an x-ray diffractogram of manganese oxide nanoparticles produced by laser pyrolysis with gaseous reactants according to the parameters specified in column 3 of Table 1.





FIG. 26

is a transmission electron micrograph of manganese oxide nanoparticles produced by laser pyrolysis with gaseous reactants according to the parameters specified in column 2 of Table 1.





FIG. 27

is a plot of particle diameter distribution for the particles shown in the transmission electron micrograph shown in FIG.


26


.





FIG. 28

is an x-ray diffractogram of manganese oxide nanoparticles produced by laser pyrolysis with an aerosol manganese precursor according to the parameters specified in Table 2.





FIG. 29

is a transmission electron micrograph of manganese oxide nanoparticles produced by laser pyrolysis with an aerosol manganese precursor according to the parameters specified in Table 2.





FIG. 30

is a plot of particle size distribution for the particles shown in the transmission electron micrograph shown in FIG.


29


.





FIG. 31

is an x-ray diffractogram of manganese oxide nanoparticles following a heat treatment of particles produced by laser pyrolysis, sample 1 of Table 3.





FIG. 32

is an x-ray diffractogram of manganese oxide nanoparticles following a heat treatment of particles produced by laser pyrolysis, sample 2A of Table 3.





FIG. 33

is an x-ray diffractogram of manganese oxide nanoparticles following a heat treatment of particles produced by laser pyrolysis, sample 2B of Table 3.





FIG. 34

is an x-ray diffractogram of manganese oxide nanoparticles produced by laser pyrolysis using with aerosol reactants according to the parameters specified in column 1 of Table 4.





FIG. 35

is an x-ray diffractogram of manganese oxide nanoparticles produced by laser pyrolysis using with aerosol reactants according to the parameters specified in column 2 of Table 4.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Several approaches are described for the production of metal oxide nanoparticles. These approaches provide for the production of metal oxide particles, such as manganese oxide nanoparticles, with a wide range of properties. Aerosol based approaches are described that can make use of low cost precursors to produce nanoparticles with a high production rate. Preferred collections of metal oxide particles have an average diameter less than a micron and a very narrow distribution of particle diameters. Laser pyrolysis with or without additional processing is a versatile approach for the production of a wide range of manganese oxide materials. The aerosol based approaches described herein can be used in the production of many other metal oxide nanoparticles.




To generate the desired nanoparticles, laser pyrolysis is used either alone or in combination with additional processing. Specifically, laser pyrolysis is an excellent process for efficiently producing suitable manganese oxide particles with a narrow distribution of average particle diameters. In addition, nanoscale metal oxide particles produced by laser pyrolysis can be subjected to heating in an oxygen environment or an inert environment to alter and/or improve the properties of the particles.




A basic feature of successful application of laser pyrolysis for the production of metal oxide nanoparticles is the generation of a reactant stream containing a metal precursor compound, a radiation absorber and a secondary reactant. The secondary reactant can be an oxygen source. The reactant stream is pyrolyzed by an intense laser beam. As the reactant stream leaves the laser beam, the particles are rapidly quenched.




The reactants can be supplied in vapor form. Alternatively, one or more reactants can be supplied as an aerosol. The use of an aerosol provides for the use of a wider range of metal precursors than are suitable for vapor delivery only. Thus, less expensive precursors can be used with aerosol delivery. Also, aerosol delivery can be used for high production rates. Suitable control of the reaction conditions with the aerosol results in nanoscale particles with a narrow particle size distribution.




As noted above, various forms of manganese oxide can intercalate lithium atoms and/or ions. The manganese oxide nanoparticles can be incorporated into a cathode film with a binder such as a polymer. The film preferably incorporates additional electrically conductive particles held by the binder along with the manganese oxide particles. The cathode film can be used in a lithium battery or a lithium ion battery. The electrolyte for lithium and lithium ion batteries comprises lithium ions.




A. Particle Production




Laser pyrolysis has been discovered to be a valuable tool for the production of nanoscale metal oxide particles, in particular manganese oxide particles. In addition, the particles produced by laser pyrolysis are a convenient material for further processing to expand the pathways for the production of desirable metal oxide particles. Thus, using laser pyrolysis alone or in combination with additional processes, a wide variety of metal oxide particles can be produced.




The reaction conditions determine the qualities of the particles produced by laser pyrolysis. The reaction conditions for laser pyrolysis can be controlled relatively precisely in order to produce particles with desired properties. The appropriate reaction conditions to produce a certain type of particles generally depend on the design of the particular apparatus. Specific conditions used to produce manganese oxide particles in two particular apparatuses are described below in the Examples. Furthermore, some general observations on the relationship between reaction conditions and the resulting particles can be made.




Increasing the laser power results in increased reaction temperatures in the reaction region as well as a faster quenching rate. A rapid quenching rate tends to favor production of high energy phases, which may not be obtained with processes near thermal equilibrium. Similarly, increasing the chamber pressure also tends to favor the production of higher energy structures. Also, increasing the concentration of the reactant serving as the oxygen source in the reactant stream favors the production of particles with increased amounts of oxygen.




Reactant flow rate and velocity of the reactant gas stream are inversely related to particle size so that increasing the reactant gas flow rate or velocity tends to result in smaller particle size. Also, the growth dynamics of the particles have a significant influence on the size of the resulting particles. In other words, different forms of a product compound have a tendency to form different size particles from other phases under relatively similar conditions. Laser power also influences particle size with increased laser power favoring larger particle formation for lower melting materials and smaller particle formation for higher melting materials.




Laser pyrolysis has been performed generally with gas phase reactants. The use of exclusively gas phase reactants is somewhat limiting with respect to the types of precursor compounds that can be used. Thus, techniques have been developed to introduce aerosols containing reactant precursors into laser pyrolysis chambers. The aerosol atomizers can be broadly classified as ultrasonic atomizers, which use an ultrasonic transducer to form the aerosol, or as mechanical atomizers, which use energy from one or more flowing fluids (liquids, gases, or supercritical fluids) themselves to form the aerosol.




Improved aerosol delivery apparatuses for reactant systems are described further in commonly assigned and simultaneously filed U.S. patent application Ser. No. 09/188,670, now U.S. Pat. No. 6,193,936, entitled “Reactant Delivery Apparatuses,” incorporated herein by reference. The formation of composite metal oxide particles using multiple metal precursors with an aerosol delivery apparatus is described in commonly assigned and simultaneously filed U.S. patent application Ser. No. 09/188,768 to Kumar et al., entitled “Composite Metal Oxide Particles,” incorporated herein by reference.




Using aerosol delivery apparatuses, solid precursor compounds can be delivered by dissolving the compounds in a solvent. Alternatively, powdered precursor compounds can be dispersed in a liquid\solvent for aerosol delivery. Liquid precursor compounds can be delivered as an aerosol from a neat liquid, a multiple fluid (liquid/gas) dispersion or a liquid solution, if desired. Aerosol reactants can be used to obtain a significant reactant throughput. The solvent, if any, can be selected to achieve desired properties of the solution. Suitable solvents include water, methanol, ethanol, isopropyl alcohol and other organic solvents. The solvent should have a desired level of purity such that the resulting particles have a desired purity level.




If the aerosol precursors are formed with a solvent present, the solvent is rapidly evaporated by the laser beam in the reaction chamber such that a gas phase reaction can take place. Thus, the fundamental features of the laser pyrolysis reaction is unchanged. However, the reaction conditions are affected by the presence of the aerosol. Below, examples are described for the production of manganese oxide nanoparticles using gaseous reaction precursors and aerosol precursors using two different laser pyrolysis reaction chambers. The parameters associated with aerosol reactant delivery can be explored based on the description below.




A number of suitable solid, manganese precursor compounds can be delivered as an aerosol from solution. For example, manganese chloride (MnCl


2


) and hydrated manganese chloride (MnCl


2


.H


2


O) are soluble in water and alcohols, and manganese nitrate (Mn(NO


3


)


2


) is soluble in water and certain organic solvents. Similarly, suitable vanadium precursors for aerosol production include, for example, VOCl


2


, which is soluble in absolute alcohol.




The compounds are dissolved in a solution preferably with a concentration greater than about 0.5 molar. Generally, the greater the concentration of precursor in the solution the greater the throughput of reactant through the reaction chamber. As the concentration increases, however, the solution can become more viscous such that the aerosol has droplets with larger sizes than desired. Thus, selection of solution concentration can involve a balance of factors in the selection of a preferred solution concentration.




Appropriate manganese precursor compounds for gaseous delivery generally include manganese compounds with reasonable vapor pressures, i.e., vapor pressures sufficient to get desired amounts of precursor vapor in the reactant stream. The vessel holding liquid or solid precursor compounds can be heated to increase the vapor pressure of the manganese precursor, if desired. Suitable solid, manganese precursors with sufficient vapor pressure of gaseous delivery include, for example, manganese carbonyl (Mn


2


(CO)


10


). A suitable container for heating and delivering a solid precursor to a laser pyrolysis apparatus is shown in FIG.


1


.




Referring to

FIG. 1

, the solid precursor delivery system


50


includes a container


52


and a lid


54


. A gasket


56


is located between container


52


and lid


54


. In one preferred embodiment, container


52


and lid


54


are made from stainless steel, and gasket


56


is made from copper. In this embodiment, lid


54


and gasket


56


are bolted to container


52


. Other inert materials, such as Pyrex®, suitable for the temperatures and pressures applied to the solid precursor system can be used. Container


52


is surrounded with a band heater


58


, which is used to set the temperature of the delivery system


50


at desired values. Suitable band heaters are available from Omega Engineering Inc. Stamford, Conn. The temperature of the band heater can be adjusted to yield a desired vapor pressure of the precursor compound. Additional portions of the precursor delivery system can be heated to maintain the precursor in a vapor state after it has left container


52


.




Preferably, a thermocouple


60


is inserted into container


52


through lid


54


. Thermocouple


60


can be inserted by way of a Swagelok® fitting


62


or other suitable connection. Tubing


64


provides a input flow of a carrier gas into container


52


. Tubing


64


preferably includes a shut off valve


66


and can be inserted through lid


54


by way of a Swagelok® fitting


68


or other suitable connection. Output tube


70


also preferably includes a shut off valve


72


. Output tube


70


preferably enters into container


52


through lid


54


at a sealed connection


74


. Tubes


64


and


70


can be made of any suitable inert material such as stainless steel. A solid precursor can be placed directly within container


52


or it can be placed within a smaller, open container within container


52


.




Preferred secondary reactants serving as oxygen source include, for example, O


2


, CO, CO


2


, O


3


and mixtures thereof. The secondary reactant compound should not react significantly with the manganese precursor prior to entering the reaction zone since this generally would result in the formation of large particles.




Laser pyrolysis can be performed with a variety of optical laser frequencies. Preferred lasers operate in the infrared portion of the electromagnetic spectrum. CO


2


lasers are particularly preferred sources of laser light. Infrared absorbers for inclusion in the molecular stream include, for example, C


2


H


4


, NH


3


, SF


6


, SiH


4


and O


3


. O


3


can act as both an infrared absorber and as an oxygen source. The radiation absorber, such as the infrared absorber, absorbs energy from the radiation beam and distributes the energy to the other reactants to drive the pyrolysis.




Preferably, the energy absorbed from the radiation beam increases the temperature at a tremendous rate, many times the rate that energy generally would be produced even by strongly exothermic reactions under controlled condition. While the process generally involves nonequilibrium conditions, the temperature can be described approximately based on the energy in the absorbing region. The laser pyrolysis process is qualitatively different from the process in a combustion reactor where an energy source initiates a reaction, but the reaction is driven by energy given off by an exothermic reaction.




An inert shielding gas can be used to reduce the amount of reactant and product molecules contacting the reactant chamber components. Appropriate shielding gases include, for example, Ar, He and N


2


.




An appropriate laser pyrolysis apparatus generally includes a reaction chamber isolated from the ambient environment. A reactant inlet connected to a reactant supply system produces a reactant stream through the reaction chamber. A laser beam path intersects the reactant stream at a reaction zone. The reactant stream continues after the reaction zone to an outlet, where the reactant stream exits the reaction chamber and passes into a collection system. Generally, the laser is located external to the reaction chamber, and the laser beam enters the reaction chamber through an appropriate window.




Two laser pyrolysis reaction chambers are described further below. These laser pyrolysis reaction chambers can be configured for delivery of gas phase reactants and/or aerosol reactants. As noted above the particles/powders can be further treated by heating. After the description of the laser pyrolysis apparatuses, the heating process is described further.




1. First Laser Pyrolysis Reaction Chamber




Referring to

FIG. 2

, a particular embodiment


100


of a laser pyrolysis apparatus involves a reactant supply system


102


, reaction chamber


104


, collection system


106


, laser


108


and shielding gas delivery system


110


. Two alternative reaction supply systems can be used with the apparatus of FIG.


2


. The first reaction supply system is used to deliver exclusively gaseous reactants. The second reactant supply system is used to deliver one or more reactants as an aerosol.




Referring to

FIG. 3

, a first embodiment of reactant supply system


112


includes a source


120


of precursor compound. For liquid or solid precursors, a carrier gas from carrier gas source


122


can be introduced into precursor source


120


to facilitate delivery of the precursor as a vapor. Precursor source


120


can be a solid precursor delivery system


50


, as shown in FIG.


1


. The carrier gas from source


122


preferably is either an infrared absorber or an inert gas and is preferably bubbled through a liquid precursor compound or delivered into a solid precursor delivery system. Inert gas used as a carrier gas can moderate the reaction conditions. The quantity of precursor vapor in the reaction zone is roughly proportional to the flow rate of the carrier gas.




Alternatively, carrier gas can be supplied directly from infrared absorber source


124


or inert gas source


126


, as appropriate. The secondary reactant is supplied from reactant source


128


, which can be a gas cylinder or other suitable container. The gases from the precursor source


120


are mixed with gases from reactant source


128


, infrared absorber source


124


and inert gas source


126


by combining the gases in a single portion of tubing


130


. The gases are combined a sufficient distance from reaction chamber


104


such that the gases become well mixed prior to their entrance into reaction chamber


104


.




The combined gas in tube


130


passes through a duct


132


into rectangular channel


134


, which forms part of an injection nozzle for directing reactants into the reaction chamber. Portions of reactant supply system


112


can be heated to inhibit the deposition of precursor compound on the walls of the delivery system.




Referring to

FIG. 4

, a second embodiment of the reactant supply system


150


is used to supply an aerosol to duct


132


. Duct


132


connects with rectangular channel


134


, which forms part of an injection nozzle for directing reactants into the reaction chamber. Reactant supply system


150


includes a delivery tube


152


that is connected to duct


132


. Venturi tube


154


connects to delivery tube


152


as a source of the aerosol. Venturi tube


154


is connected to gas supply tube


156


and liquid supply tube


158


.




Gas supply tube


156


is connected to gas source


160


. Gas source


160


can include a plurality of gas containers that are connected to deliver a selected gas or gas mixture to gas supply tube


156


. The flow of gas from gas source


160


to gas supply tube


156


is controlled by one or more valves


162


. Liquid supply tube


158


is connected to liquid supply


164


. Delivery tube


152


also connects with drain


166


that flows to reservoir


168


.




In operation, gas flow through venturi tube


154


creates suction that draws liquid into venturi tube


154


from liquid supply tube


158


. The gas-liquid mixture in venturi tube


154


forms an aerosol when venturi tube


154


opens into delivery tube


152


. The aerosol is drawn up into duct


132


by pressure differentials within the system. Any aerosol that condenses within delivery tube


152


is collected in reservoir


168


, which is part of the closed system.




Referring to

FIG. 2

, shielding gas delivery system


110


includes inert gas source


190


connected to an inert gas duct


192


. Inert gas duct


192


flows into annular channel


194


. A mass flow controller


196


regulates the flow of inert gas into inert gas duct


192


. If reactant delivery system


112


is used, inert gas source


126


can also function as the inert gas source for duct


192


, if desired.




The reaction chamber


104


includes a main chamber


200


. Reactant supply system


102


connects to the main chamber


200


at injection nozzle


202


. Reaction chamber


104


can be heated to keep the precursor compound in the vapor state. In particular, the entire reaction chamber


104


preferably is heated to about 120° C. when a solid precursor is used. Similarly, the argon shielding gas preferably is heated to about 150° C. when a solid precursor is used. The chamber can be examined for condensation to ensure that precursor is not deposited on the chamber.




The end of injection nozzle


202


has an annular opening


204


for the passage of inert shielding gas, and a reactant inlet


206


for the passage of reactants to form a reactant stream in the reaction chamber. Reactant inlet


206


preferably is a slit, as shown in FIG.


2


. Annular opening


204


has, for example, a diameter of about 1.5 inches and a width along the radial direction from about ⅛ in to about {fraction (1/16)} in. The flow of shielding gas through annular opening


204


helps to prevent the spread of the reactant gases and product particles throughout reaction chamber


104


.




Tubular sections


208


,


210


are located on either side of injection nozzle


202


. Tubular sections


208


,


210


include ZnSe windows


212


,


214


, respectively. Windows


212


,


214


are about 1 inch in diameter. Windows


212


,


214


are preferably cylindrical lenses with a focal length equal to the distance between the center of the chamber to the surface of the lens to focus the beam to a point just below the center of the nozzle opening. Windows


212


,


214


preferably have an antireflective coating. Appropriate ZnSe lenses are available from Janos Technology, Townshend, Vt. Tubular sections


208


,


210


provide for the displacement of windows


212


,


214


away from main chamber


200


such that windows


212


,


214


are less likely to be contaminated by reactants and/or products. Window


212


,


214


are displaced, for example, about 3 cm from the edge of the main chamber


200


.




Windows


212


,


214


are sealed with a rubber O-ring to tubular sections


208


,


210


to prevent the flow of ambient air into reaction chamber


104


. Tubular inlets


216


,


218


provide for the flow of shielding gas into tubular sections


208


,


210


to reduce the contamination of windows


212


,


214


. Tubular inlets


216


,


218


are connected to inert gas source


138


or to a separate inert gas source. In either case, flow to inlets


216


,


218


preferably is controlled by a mass flow controller


220


.




Laser


108


is aligned to generate a laser beam


222


that enters window


212


and exits window


214


. Windows


212


,


214


define a laser light path through main chamber


200


intersecting the flow of reactants at reaction zone


224


. After exiting window


214


, laser beam


222


strikes power meter


226


, which also acts as a beam dump. An appropriate power meter is available from Coherent Inc., Santa Clara, Calif. Laser


108


can be replaced with an intense conventional light source such as an arc lamp. Preferably, laser


108


is an infrared laser, especially a CW CO


2


laser such as an 1800 watt maximum power output laser available from PRC Corp., Landing, N.J.




Reactants passing through reactant inlet


206


in injection nozzle


202


initiate a reactant stream. The reactant stream passes through reaction zone


224


, where reaction involving the manganese precursor compound takes place. Heating of the gases in reaction zone


224


is extremely rapid, roughly on the order of 10


5


degree C/sec depending on the specific conditions. The reaction is rapidly quenched upon leaving reaction zone


224


, and particles


228


are formed in the reactant stream. The nonequilibrium nature of the process allows for the production of nanoparticles with a highly uniform size distribution and structural homogeneity.




The path of the reactant stream continues to collection nozzle


230


. Collection nozzle


230


is spaced about 2 cm from injection nozzle


202


. The small spacing between injection nozzle


202


and collection nozzle


230


helps reduce the contamination of reaction chamber


104


with reactants and products. Collection nozzle


230


has a circular opening


232


. Circular opening


232


feeds into collection system


106


.




The chamber pressure is monitored with a pressure gauge attached to the main chamber. The preferred chamber pressure for the production of the desired oxides generally ranges from about 80 Torr to about 500 Torr.




Reaction chamber


104


has two additional tubular sections not shown. One of the additional tubular sections projects into the plane of the sectional view in

FIG. 2

, and the second additional tubular section projects out of the plane of the sectional view in FIG.


2


. When viewed from above, the four tubular sections are distributed roughly, symmetrically around the center of the chamber. These additional tubular sections have windows for observing the inside of the chamber. In this configuration of the apparatus, the two additional tubular sections are not used to facilitate production of particles.




Collection system


106


preferably includes a curved channel


270


leading from collection nozzle


230


. Because of the small size of the particles, the product particles follow the flow of the gas around curves. Collection system


106


includes a filter


272


within the gas flow to collect the product particles. Due to curved section


270


, the filter is not supported directly above the chamber. A variety of materials such as Teflon, glass fibers and the like can be used for the filter as long as the material is inert and has a fine enough mesh to trap the particles. Preferred materials for the filter include, for example, a glass fiber filter from ACE Glass Inc., Vineland, N.J. and cylindrical polypropylene filters from Cole-Parmer Instrument Co., Vernon Hills, Ill.




Pump


274


is used to maintain collection system


106


at a selected pressure. A variety of different pumps can be used. Appropriate pumps for use as pump


274


include, for example, Busch Model B0024 pump from Busch, Inc., Virginia Beach, Va. with a pumping capacity of about 25 cubic feet per minute (cfm) and Leybold Model SV300 pump from Leybold Vacuum Products, Export, Pa. with a pumping capacity of about 195 cfm. It may be desirable to flow the exhaust of the pump through a scrubber


276


to remove any remaining reactive chemicals before venting into the atmosphere. The entire apparatus


100


can be placed in a fume hood for ventilation purposes and for safety considerations. Generally, the laser remains outside of the fume hood because of its large size.




The apparatus is controlled by a computer. Generally, the computer controls the laser and monitors the pressure in the reaction chamber. The computer can be used to control the flow of reactants and/or the shielding gas. The pumping rate is controlled by either a manual needle valve or an automatic throttle valve inserted between pump


274


and filter


272


. As the chamber pressure increases due to the accumulation of particles on filter


272


, the manual valve or the throttle valve can be adjusted to maintain the pumping rate and the corresponding chamber pressure.




The reaction can be continued until sufficient particles are collected on filter


272


such that the pump can no longer maintain the desired pressure in the reaction chamber


104


against the resistance through filter


272


. When the pressure in reaction chamber


104


can no longer be maintained at the desired value, the reaction is stopped, and filter


272


is removed. With this embodiment, about 1-300 grams of particles can be collected in a single run before the chamber pressure can no longer be maintained. A single run generally can last up to about 10 hours depending on the type of particle being produced and the type of filter being used.




The reaction conditions can be controlled relatively precisely. The mass flow controllers are quite accurate. The laser generally has about 0.5 percent power stability. With either a manual control or a throttle valve, the chamber pressure can be controlled to within about 1 percent.




The configuration of the reactant supply system


102


and the collection system


106


can be reversed. In this alternative configuration, the reactants are supplied from the top of the reaction chamber, and the product particles are collected from the bottom of the chamber. In this configuration, the collection system may not include a curved section so that the collection filter is mounted directly below the reaction chamber.




2. Second Laser Pyrolysis Reaction Chamber




An alternative design of a laser pyrolysis apparatus has been described in copending and commonly assigned U.S. patent application Ser. No. 08/808,850 now U.S. Pat. No. 5,958,348, entitled “Efficient Production of Particles by Chemical Reaction,” incorporated herein by reference. This alternative design is intended to facilitate production of commercial quantities of particles by laser pyrolysis. The reaction chamber is elongated along the laser beam in a dimension perpendicular to the reactant stream to provide for an increase in the throughput of reactants and products. The original design of the apparatus was based on the introduction of purely gaseous reactants. A particular embodiment for the introduction of an aerosol into the apparatus is described below. Additional embodiments for the introduction of an aerosol into an elongated reaction chamber is described in commonly assigned and simultaneously filed U.S. patent application Ser. No. 09/188,670 to Gardner et al. now U.S. Pat. No. 6,193,936, entitled “Reactant Delivery Apparatuses,” incorporated herein by reference.




In general, the alternative pyrolysis apparatus includes a reaction chamber designed to reduce contamination of the chamber walls, to increase the production capacity and to make efficient use of resources. To accomplish these objectives, an elongated reaction chamber is used that provides for an increased throughput of reactants and products without a corresponding increase in the dead volume of the chamber. The dead volume of the chamber can become contaminated with unreacted compounds and/or reaction products.




The design of the improved reaction chamber


300


is shown schematically in

FIG. 5. A

reactant inlet


302


enters the main chamber


304


. Reactant inlet


302


conforms generally to the shape of main chamber


304


. Main chamber


304


includes an outlet


306


along the reactant\product stream for removal of particulate products, any unreacted gases and inert gases. Shielding gas inlets


310


are located on both sides of reactant inlet


302


. Shielding gas inlets are used to form a blanket of inert gases on the sides of the reactant stream to inhibit contact between the chamber walls and the reactants and products.




Tubular sections


320


,


322


extend from the main chamber


304


. Tubular sections


320


,


322


hold windows


324


,


326


to define a laser beam path


328


through the reaction chamber


300


. Tubular sections


320


,


322


can include inert gas inlets


330


,


332


for the introduction of inert gas into tubular sections


320


,


322


.




Referring to

FIGS. 6-8

, a specific embodiment of a laser pyrolysis reaction system


350


with aerosol reactant delivery includes reaction chamber


352


, a particle collection system


354


, laser


356


and a reactant delivery system


358


(described below). Reaction chamber


352


includes reactant inlet


364


at the bottom of reaction chamber


352


where reactant delivery system


358


connects with reaction chamber


352


. In this embodiment, the reactants are delivered from the bottom of the reaction chamber while the products are collected from the top of the reaction chamber. The configuration can be reversed with the reactants supplied from the top and product collected from the bottom, if desired.




Shielding gas conduits


365


are located on the front and back of reactant inlet


364


. Inert gas is delivered to shielding gas conduits


365


through ports


367


. The shielding gas conduits direct shielding gas along the walls of reaction chamber


352


to inhibit association of reactant gases or products with the walls.




Reaction chamber


352


is elongated along one dimension denoted in

FIG. 6

by “w”. A laser beam path


366


enters the reaction chamber through a window


368


displaced along a tube


370


from the main chamber


372


and traverses the elongated direction of reaction chamber


352


. The laser beam passes through tube


374


and exits window


376


. In one preferred embodiment, tubes


370


and


374


displace windows


368


and


376


about 11 inches from the main chamber. The laser beam terminates at beam dump


378


. In operation, the laser beam intersects a reactant stream generated through reactant inlet


364


.




The top of main chamber


372


opens into particle collection system


354


. Particle collection system


354


includes outlet duct


380


connected to the top of main chamber


372


to receive the flow from main chamber


372


. Outlet duct


380


carries the product particles out of the plane of the reactant stream to a cylindrical filter


382


. Filter


382


has a cap


384


on one end. The other end of filter


382


is fastened to disc


386


. Vent


388


is secured to the center of disc


386


to provide access to the center of filter


382


. Vent


388


is attached by way of ducts to a pump. Thus, product particles are trapped on filter


382


by the flow from the reaction chamber


352


to the pump. Suitable pumps were described above. Suitable pumps include, for example, an air cleaner filter for a Saab 9000 automobile (Purilator part A44-67), which is wax impregnated paper with Plasticol or polyurethane end caps.




Referring to

FIG. 9

, an aerosol delivery apparatus


480


includes an aerosol generator


482


, which is supported by mount


484


and a cap


486


. Aerosol delivery apparatus


480


is secured to reactant inlet


364


of reaction chamber


352


to extend within main chamber


372


, shown in

FIGS. 6-8

. Mount


484


is connected to a base plate


488


. Base plate


488


is fastened to reactant inlet


364


with bolts


490


. An O-ring or the like, suitably shaped, can be placed within hollow


492


to form a seal between base plate


488


and reactant inlet


364


.




Referring to

FIGS. 10 and 11

, mount


484


has a generally cylindrical shape. Mount


484


includes a lip


506


extending within cylindrical cavity


508


. Lip


506


helps support aerosol generator


482


. In this embodiment, lip


506


includes a notch


510


, which allows a portion of aerosol generator


482


to extend past lip


506


. Top surface


512


of mount


484


includes a hollow


514


for holding an O-ring or the like to form a seal with cap


486


or a spacer, described below. Mount


484


further includes threads


518


on the outer surface


520


.




Referring to

FIGS. 10

,


12


and


13


, cap


486


attaches over the top of mount


484


. Cap


486


includes threads


528


that are mated with threads


518


on mount


484


. Flange


530


can be used to form a seal with an O-ring or the like. Surface


532


includes hollow


534


. Hollow


534


can hold an O-ring or the like to form a seal with aerosol generator


482


or a shim, described further below.




Tube


536


is in fluid communication with cavity


538


. Tube


536


provides for gas flow into cavity


538


. Cavity


538


vents through port


540


. Tubes


542


provide for fluid flow through channels


544


into projecting tubes


546


. In this embodiment, four projecting tubes


546


project toward the flow stream coming from aerosol generator


482


and port


540


. Four projecting tubes


546


are symmetrically distributed around port


540


. More or less than four projecting tubes


546


can be used, if desired. Gas can be supplied to tubes


536


and


542


through one or more ports


547


through base plate


488


by way of stainless steel tubing or the like.




The use of projecting tubes


546


are particularly useful to mix reactants further within the reaction chamber away from aerosol generator


482


. Such mixing further in the reaction chamber can be useful particularly if the reaction is highly exothermic. Using projecting tubes


546


, gases such as reactant gases and/or radiation absorbing gases can be mixed within reaction chamber


352


with reactants from aerosol generator


482


and/or port


540


. Laser beam path


548


intersects the reaction stream just above projecting tubes


546


.




The position of aerosol generator


482


relative to port


540


can affect the properties of the resulting reactant stream and thereby the properties of the reaction product. With an ultrasonic aerosol generator, the tip of the aerosol generator preferably is located between positions just slightly the cap surface to just slightly above the cap surface.




Spacer


550


, shown in

FIG. 14

, can be placed between cap


486


and mount


484


to change the position of aerosol generator


482


relative to port


540


. Spacer


550


is a cylindrical piece with a hollow


552


along top surface


554


for holding an O-ring or the like. Top surface


554


seals against flange


530


of cap


486


. Lower surface


556


of spacer


550


seals against top surface


512


of mount


484


. A shim


558


as shown in

FIG. 15

is correspondingly placed between cap


486


and aerosol generator


482


. Top surface


560


of shim


558


engages the O-ring in hollow


534


. Flange


562


engages the aerosol generator


482


.




The flow of reactants into main chamber


372


can be affected by the placement of a cap bushing at the opening of port


540


. More specifically, a cap bushing can help provide a more confined reactant stream within main chamber


372


. Three embodiments of cap bushings


570


,


572


,


574


are shown in

FIGS. 16-18

, respectively. Referring to

FIG. 16

, cap bushing


570


has a cylindrical passage


576


and a flat upper surface


578


generally perpendicular to the central axis of cylindrical passage


576


. Referring to

FIG. 17

, cap bushing


572


has a conical passage


580


and a flat upper surface


582


generally perpendicular to the symmetry axis of conical passage


580


. Referring to

FIG. 18

, cap bushing


574


has a conical passage


584


and a top surface with a flat section


586


and a conical section


588


. Preferred embodiments of cap bushings have a sharp edge between the internal passage and the top surface.




The reaction chamber and reactant supply system preferably are constructed from stainless steel or other corrosion resistant metal. O-rings and other seals can be made from natural or synthetic rubber or other polymers.




Referring to

FIG. 10

, in a preferred embodiment, aerosol generator


482


included an ultrasonic nozzle


600


and nozzle supply


602


. Preferred ultrasonic nozzle


600


is a model


8700


-


120


from Sono-Tek Corporation, Milton, N.Y. Referring to

FIGS. 19-20

, ultrasonic nozzle


600


includes a nozzle tip


604


, a nozzle body


606


, a connector


608


for connection to an ultrasonic generator, and a liquid connection


610


for connection to a liquid reservoir. The end of nozzle tip


604


is an atomization surface


612


. The size and shape of atomization surface


612


can be varied to yield a desirable spacial distribution of aerosol particles.




Nozzle tip


604


is connected to nozzle body


606


at or near top surface


614


. Ultrasonic transducer


616


is located within nozzle body


606


at a suitable position to vibrate nozzle tip


604


. Generally, ultrasonic transducer


616


is located toward top surface


614


. Preferred ultrasonic transducers include, for example, piezoelectric transducers. Preferably, ultrasonic transducer


616


includes two or more piezoelectric transducers


618


coupled to oscillate in phase such that the amplitudes of the two vibrating piezoelectric transducers add to create an additive force at atomizing surface


612


.




Ultrasonic transducer


616


is connected to an ultrasonic generator by way of connector


608


. The ultrasonic generator preferably is a broad band generator operating over a frequency range from about 20 kHz to about 120 kHz. The electrical signal from the ultrasonic generator is conveyed from connector


608


to ultrasonic transducer


616


by way of conductors


620


.




Liquid flows from liquid connection


610


to atomization surface


612


through channel


622


, which runs through nozzle body


606


. Referring to

FIG. 10

, nozzle supply


628


is connected to liquid connection


610


with a liquid fitting


630


. Nozzle supply


628


includes a needle valve with pneumatic control. Nozzle supply


628


has a pneumatic control inlet


632


, a needle valve adjustment


634


and a liquid feedstock inlet


636


. Pneumatic control inlet and liquid feedstock inlet are accessed through central channel


508


, which extends through base plate


488


.




Liquid feedstock inlet


636


is connected to a liquid supply apparatus


640


, shown schematically in FIG.


21


. Liquid supply apparatus


640


includes, at least, one liquid source


642


, an outlet tube


644


and a gas supply tube


646


. Tube


644


connects with fitting


648


to liquid feedstock inlet


636


. Similarly, tube


644


is connected directly or indirectly to liquid source


642


. Liquid source


642


also connects to gas supply tube


646


. Gas supply tube connects to a gas source


666


, which can be a gas cylinder or the like. Flow from gas source


666


to gas supply tube


664


is controlled by one or more valves


668


. Gas under pressure from gas supply tube


664


forces liquid from liquid source


642


into tube


644


.




Proper placement of liquid source


642


can result in gravity supplying the pressure as an alternative to using gas pressure. In other embodiments, mechanical pumps are used to supply a relatively constant amount of pressure within tube


644


. Suitable pumps include, for example, a plurality of syringe or piston pumps that operate sequentially.




In use, the aerosol generator


482


produces an aerosol of a liquid supplied to aerosol generator


482


. Aerosol generator


482


can deliver a gas along with the aerosol. Also, the aerosol can be combined with a gas supplied through tube


536


. Thus, the aerosol and any gases supplied from aerosol generator


482


and/or tube


536


are directed into reaction chamber


352


near port


540


of cap


486


. The aerosol and any gases emanating from aerosol generator


482


and/or tube


536


can be combined further within reaction chamber


352


with additional gases from projecting tubes


546


. The resulting mixture of aerosol and gases is subsequently reacted within reaction chamber


352


.




For the performance of laser pyrolysis based reaction synthesis, the aerosol/gas mixture generally includes one or more reactants in aerosol form, optionally, one or more additional reactant gases, a laser absorbing gas if the reactants do not sufficiently absorb the laser radiation, and, optionally, an inert gas. The gases can be supplied from a pressurized cylinder or other suitable container. Multiple reactants can be mixed in the liquid phase and delivered as the aerosol.




Alternative aerosol generators can be used with the elongated reaction chamber. In addition, one or more aerosol generators can be configured with the elongated reaction chamber in a variety of ways. These alternatives are described in commonly assigned and simultaneously filed U.S. patent application Ser. No. 09/188,670 to Gardner et al. now U.S. Pat. No. 6,139,936, entitled “Reactant Delivery Apparatuses,” incorporated herein by reference.




3. Heat Treatment




As noted above, properties of the product particles can be modified by further processing. In particular, manganese oxide nanoscale particles can be heated in an oven in an oxidizing environment or an inert environment to alter the oxygen content, to change the crystal lattice, or to remove adsorbed compounds on the particles to improve the quality of the particles.




The use of sufficiently mild conditions, i.e., temperatures well below the melting point of the particles, results in modification of the manganese oxide particles without significantly sintering the particles into larger particles. The processing of metal oxide nanoscale particles in an oven is discussed further in copending and commonly assigned, U.S. patent application Ser. No. 08/897,903, filed Jul. 21, 1997, now U.S. Pat. No. 5,889,514 entitled “Processing of Vanadium Oxide Particles With Heat,” incorporated herein by reference.




A variety of apparatuses can be used to perform the heat processing. An example of an apparatus


700


to perform this processing is displayed in FIG.


22


. Apparatus


700


includes a tube


702


into which the particles are placed. Tube


702


is connected to a reactant gas source


704


and inert gas source


706


. Reactant gas, inert gas or a combination thereof are placed within tube


702


to produce the desired atmosphere.




Preferably, the desired gases are flowed through tube


702


. Appropriate reactant gases to produce an oxidizing environment include, for example, O


2


, O


3


, CO, CO


2


and combinations thereof. The reactant gas can be diluted with inert gases such as Ar, He and N


2


. The gases in tube


702


can be exclusively inert gases if an inert atmosphere is desired. The reactant gases may not result in changes to the stoichiometry of the particles being heated.




Tube


702


is located within oven or furnace


708


. Oven


708


maintains the relevant portions of the tube at a relatively constant temperature, although the temperature can be varied systematically through the processing step, if desired. Temperature in oven


708


generally is measured with a thermocouple


710


. The manganese oxide particles can be placed in tube


702


within a vial


712


. Vial


712


prevents loss of the particles due to gas flow. Vial


712


generally is oriented with the open end directed toward the direction of the source of the gas flow.




The precise conditions including type of oxidizing gas (if any), concentration of oxidizing gas, pressure or flow rate of gas, temperature and processing time can be selected to produce the desired type of product material. The temperatures generally are mild, i.e., significantly below the melting point of the material. The use of mild conditions avoids interparticle sintering resulting in larger particle sizes. Some controlled sintering of the particles can be performed in oven


708


at somewhat higher temperatures to produce slightly larger, average particle diameters.




For the processing of manganese oxide, for example, the temperatures preferably range from about 50° C. to about 600° C. and more preferably from about 50° C. to about 550° C. The particles preferably are heated for about 5 minutes to about 100 hours. Some empirical adjustment may be required to produce the conditions appropriate for yielding a desired material.




B. Particle Properties




A collection of particles of interest generally has an average diameter for the primary particles of less than about 500 nm, preferably from about 5 nm to about 100 nm, more preferably from about 5 nm to about 50 nm. The primary particles usually have a roughly spherical gross appearance. Upon closer examination, the manganese oxide particles generally have facets corresponding to the underlying crystal lattice. Nevertheless, the crystalline primary particles tend to exhibit growth that is roughly equal in the three physical dimensions to give a gross spherical appearance. In preferred embodiments, 95 percent of the primary particles, and preferably 99 percent, have ratios of the dimension along the major axis to the dimension along the minor axis less than about 2. Diameter measurements on particles with asymmetries are based on an average of length measurements along the principle axes of the particle.




Because of their small size, the primary particles tend to form loose agglomerates due to van der Waals and other electromagnetic forces between nearby particles. Nevertheless, the nanometer scale of the primary particles is clearly observable in transmission electron micrographs of the particles. The particles generally have a surface area corresponding to particles on a nanometer scale as observed in the micrographs. Furthermore, the particles can manifest unique properties due to their small size and large surface area per weight of material. For example, TiO


2


nanoparticles generally exhibit altered absorption properties based on their small size, as described in copending and commonly assigned U.S. patent application Ser. No. 08/962,515 now U.S. Pat. No. 6,699,798, entitled “Ultraviolet Light Block and Photocatalytic Materials,” incorporated herein by reference.




Laser pyrolysis as described above generally results in particles having a very narrow range of particle diameters. With aerosol delivery, the distribution of particle diameters is particularly sensitive to the reaction conditions. Nevertheless, if the reaction conditions are properly controlled, a very narrow distribution of particle diameters can be obtained with an aerosol delivery system as described above. The primary particles preferably have a high degree of uniformity in size. As determined from examination of transmission electron micrographs, the primary particles generally have a distribution in sizes such that at least about 95 percent, and preferably 99 percent, of the primary particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Preferably, the primary particles have a distribution of diameters such that at least about 95 percent of the primary particles have a diameter greater than about 60 percent of the average diameter and less than about 140 percent of the average diameter.




Furthermore, in preferred embodiments no primary particles have an average diameter greater than about 4 times the average diameter and preferably 3 times the average diameter, and more preferably 2 times the average diameter. In other words, the particle size distribution effectively does not have a tail indicative of a small number of particles with significantly larger sizes. This is a result of the small reaction region and corresponding rapid quench of the particles. An effective cut off in the tail of the size distribution indicates that there are less than about 1 particle in 10


6


have a diameter greater than a specified cut off value above the average diameter. Narrow size distributions, lack of a tail in the distributions and the roughly spherical morphology can be exploited in a variety of applications.




In addition, the nanoparticles generally have a very high purity level. The crystalline manganese oxide nanoparticles produced by the above described methods are expected to have a purity greater than the reactant gases because the crystal formation process tends to exclude contaminants from the lattice. Furthermore, crystalline manganese oxide particles produced by laser pyrolysis have a high degree of crystallinity. Impurities on the surface of the particles may be removed by heating the particles to achieve not only high crystalline purity but high purity overall.




Manganese oxides are known to exist in a wide range of oxidation states from +2 to +4. The most common stoichiometries for manganese oxides include MnO, Mn


3


O


4


, Mn


2


O


3


, Mn


5


O


8


, and MnO


2


. MnO and Mn


5


O


8


have only a single known crystalline phase. In particular, MnO has a cubic crystal structure while Mn


5


O


8


has a monoclinic crystal structure. Several of the manganese oxides can exist in alternative crystal structures. For example, Mn


3


O


4


has either a tetragonal or orthorhombic crystal structure. Mn


2


O


3


has either a cubic or a hexagonal crystal structure. Also, MnO


2


has either a cubic, orthorhombic or tetragonal crystal structure.




EXAMPLES




Example 1




Gas Phase Reactants




The synthesis of magnesium oxide particles described in this example was performed by laser pyrolysis. The particles were produced using essentially the laser pyrolysis apparatus of

FIG. 2

, described above, using the reactant delivery apparatus of

FIG. 3

along with the solid precursor delivery system shown schematically in FIG.


1


.




The manganese carbonyl (Strem Chemical, Inc., Newburyport, Mass.) precursor vapor was carried into the reaction chamber by flowing Ar gas through the solid precursor delivery system containing the Mn


2


(CO)


10


. The precursor was heated to a temperature as indicated in Table 1. C


2


H


4


gas was used as a laser absorbing gas, and Argon was used as an inert gas. The reaction gas mixture containing Mn


2


(CO)


10


, Ar, O


2


and C


2


H


4


was introduced into the reactant gas nozzle for injection into the reaction chamber. The reactant gas nozzle had an opening with dimensions of ⅝ in.×{fraction (1/16)} in. Additional parameters of the laser pyrolysis synthesis relating to the particles of Example 1 are specified in Table 1.
















TABLE 1











1




2




3



























Crystalline




Manganosite




Manganosite




Manganosite &






Phase






unidentified






Crystal




Cubic




Cubic




Cubic






Structure






Pressure (Torr)




180




320




430






Argon F.R.-




700




700




700






Window (SCCM)






Argon F.R.-




1.71




1.99




1.99






Shielding (SLM)






Ethylene (SCCM)




492




517




517






Carrier Gas




507




507




627






(Argon) SCCM






Oxygen (SCCM)




348




400




420






Laser Output




260




108




206






(Watts)






Precursor




140




140




150






Temperature ° C.











sccm = standard cubic centimeters per minute










slm = standard liters per minute










Argon - Win. = argon flow through inlets 216, 218










Argon - Sld. = argon flow through annular channel 142.













The production rate of manganese oxide particles was typically about 1 g/hr. To evaluate the atomic arrangement, the samples were examined by x-ray diffraction using the Cu(Ka) radiation line on a Siemens D500 x-ray diffractometer. X-ray diffractograms for a sample produced under the conditions specified in the three columns of Table 1 is shown in

FIGS. 23-25

, respectively. Under the set of conditions specified in Table 1, the particles had an x-ray diffractogram corresponding to manganosite (cubic) MnO. The particles produced under the conditions in the third column of Table 1 also had a peak at 65° produced by the aluminum samples holder. The sample holder is occasionally seen in the diffractogram. The diffractograms may also have peaks indicating the presence of small amounts of amorphous carbon, which can form as a coating on the particles. The amorphous carbon can be removed by gentle heating in an oxygen environment. Such coating of amorphous carbon are described further in copending and commonly assigned U.S. patent application Ser. No. 09/136,483 to Kumar et al., entitled “Aluminum Oxide Particles,” incorporated herein by reference.




Transmission electron microscopy (TEM) was used to determine particle sizes and morphology. A TEM photograph of the particles produced under the conditions in the second column of Table 1 are shown in FIG.


26


. An examination of a portion of the TEM micrograph yielded an average particle size of about 9 nm. The corresponding particle size distribution is shown in FIG.


27


. The approximate size distribution was determined by manually measuring diameters of the particles distinctly visible in the micrograph of FIG.


26


. Only those particles having clear particle boundaries were measured to avoid regions distorted or out of focus in the micrograph. Measurements so obtained should be more accurate and are not biased since a single view cannot show a clear view of all particles. It is significant that the particles span a rather narrow range of sizes.




Example 2




Aerosol Metal Precursors, First Laser Pyrolysis Apparatus




The synthesis of magnesium oxide particles described in this example was performed by laser pyrolysis. The particles were produced using essentially the laser pyrolysis apparatus of

FIG. 2

, described above, using the reactant delivery apparatus of FIG.


4


.




The manganese chloride (Alfa Aesar, Inc., Ward Hill, Mass.) precursor vapor was carried into the reaction chamber as an aerosol of an aqueous solution formed with deionized water. C


2


H


4


gas was used as a laser absorbing gas, and Argon was used as an inert gas. The reactant mixture containing MnCl


2


, Ar, O


2


and C


2


H


4


was introduced into the reactant nozzle for injection into the reaction chamber. The reactant nozzle had an opening with dimensions of ⅝ in.×{fraction (1/16)} in. Additional parameters of the laser pyrolysis synthesis relating to the particles of Example 2 are specified in Table 2.














TABLE 2











1



























Crystalline Phase




Amorphous + Manganosite








(MnO)







Crystal Structure




Cubic







Pressure (Torr)




350







Argon F.R.-Window (SCCM)




700







Argon F.R.-Shielding (SLM)




6.8







Ethylene (SLM)




1.27







Carrier Gas (Argon) SLM




6.35







Oxygen (SCCM)




883







Laser Output (Watts)




660







Precursor




Manganese Chloride solution








in water







Precursor Molarity




2 M







Precursor Temperature ° C.




Room Temperature













sccm = standard cubic centimeters per minute











slm = standard liters per minute











Argon - Win. = argon flow through inlets 216, 218











Argon - Sld. = argon flow through annular channel 142.













The production rate of manganese oxide particles was typically about 1 g/hr. To evaluate the atomic arrangement, the samples were examined by x-ray diffraction using the Cu(Ka) radiation line on a Siemens D500 x-ray diffractometer. X-ray diffractograms for a sample produced under the conditions specified in Table 2 is shown in FIG.


28


. The particles again had an x-ray diffractogram corresponding to manganosite (cubic) MnO, although the peaks in the x-ray diffractogram were very weak indicating that the particles were substantially amorphous. Based on these results, variations in the reaction conditions should result in either amorphous MnO or more highly crystalline MnO.




Transmission electron microscopy (TEM) was used to determine particle sizes and morphology. A TEM micrograph for the particles produced under the conditions of Table 2 is displayed in FIG.


29


. The corresponding particle size distribution is shown in FIG.


30


. The particle size distribution was obtained following the procedure described in Example 1.




Example 3




Heat Treated Samples




Samples of manganese oxide nanoparticles produced by laser pyrolysis according to the conditions specified in the second column of Table 1 and in Table 2 were heated in an oven under oxidizing conditions. Three samples were heat treated. Two separate samples were heat processed starting with the nanoparticles produced under the conditions in Table 2. The oven was essentially as described above with respect to FIG.


5


. Between about 100 and about 300 mg of nanoparticles were placed in an open 1 cc vial within the quartz tube projecting through the oven. Oxygen gas was flowed through a 1.0 in diameter quartz tube. Other parameters of the heat processing are specified in Table 3.

















TABLE 3













Oxygen




Crystalline







Temperature




Time




Flow Rate




Phase




























Sample 1




480° C.




3 hrs




200 cc/min




Mn


5


O


8








Sample 2A




480




5 hrs




300 cc/min




Mn


3


O


4


, Mn


2


O


3








Sample 2B




300




20 hrs 




350 cc/min




Mn


3


O


4













Sample 1 - Sample prepared from particles produced according to the parameters in the second column of Table 1.










Samples 2A & 2B - Samples prepared from particles produced according to the parameters of Table 2.













The crystal structure of the resulting heat treated particles were determined by x-ray diffraction. The x-ray diffractogram for samples 1, 2A and 2B of Table 3 are shown in

FIGS. 31-33

, respectively. The x-ray diffractogram shown in

FIG. 31

indicates that the manganese oxide in Sample 1 was converted to a form with a stoichiometry of Mn


5


O


8


. The x-ray diffractogram of Sample 2A shown in

FIG. 32

indicates the presence of Mn


3


O


4


with additional peaks in the spectrum at 23° and 33° corresponding to a minor amount of Mn


2


O


3


. The x-ray diffractogram of Sample 2B in

FIG. 30

indicates that the manganese oxide was converted to Mn


3


O


4


. It is not clear why the MnO samples upon heat treatment resulted in different stoichiometries of manganese oxide. The different results may be due to the different properties of the starting materials or the different amounts of heating times.




Example 4




Aerosol Metal Precursors, Second Laser Pyrolysis Apparatus




The synthesis of magnesium oxide particles described in this example was performed by laser pyrolysis. The particles were produced using a laser pyrolysis apparatus essentially as shown in

FIGS. 6-13

, described above and the ultrasonic nozzle essentially as shown in

FIGS. 19-20

. No cap bushing was used, and the ultrasonic transducer had a simple conical horn tip. A spacer


550


and shim


558


was used to raise the level of the ultrasonic nozzle to approximately the top of the cap. The solution delivered by the aerosol delivery apparatus contained 111.6 gm (19.4 weight percent) MnNO


3


.H


2


O (Alfa Aesar, Inc., Ward Hill, Mass.), 386 gm (67.2 weight percent) isopropyl alcohol, 75 gm (13 weight percent) water and 2.3 gm (0.4 weight percent) HCl. Isopropyl alcohol acts as an infrared absorber. The liquid flow rate was greater than about 10 ml/min. Oxygen was mixed with the aerosol by delivery through tube


536


and port


540


. Projecting tubes


546


in

FIG. 10

were not present. The top of cap


486


was about 0.85 inches from the center line of the laser beam. Additional parameters for two runs are presented in Table 4.















TABLE 4











1




2




























Crystalline Phase




MnO +




MnO +








Mn


3


O


4






Mn


3


O


4









Pressure (Torr)




300




200







Argon Window (SLM)




10




7.5







Argon Shielding (SLM)




40




70







Oxygen (SLM)




5




5







Laser Power (input)




1500




1800







(watts)







Laser Power (output)




1300




1300







(watts)







Absorbed Laser Power




200




500







(watts)







Mass of Powder




3.4




5.0







Recovered







Run Duration (min.)




about 30




<30







Ultrasonic Transducer




2.3




4.6







Power (Watts)













sccm = standard cubic centimeters per minute











slm = standard liters per minute











Argon - Win. = argon flow through inlets 330, 332











Argon - Sld. = argon flow through shielding gas conduits 365.











Laser Power (input) = Laser power input into reaction chamber.











Laser Power (output) = Laser power exiting the reaction chamber into the beam dump.













The conditions specified in column 1 of Table 4 resulted in brown powder while the parameters specified in the second column of Table 4 resulted in yellow powder.




To evaluate the atomic arrangement, the samples were examined by x-ray diffraction using the Cu(Ka) radiation line on a Siemens D500 x-ray diffractometer. X-ray diffractograms for a sample produced under the conditions specified in column 1 and column 2 of Table 4 are shown in

FIGS. 34 and 35

, respectively. The particles produced under the conditions in columns 1 and 2 of Table 4 had x-ray diffractograms indicating the presence of both manganosite (cubic) MnO and hausmannite Mn


3


O


4


. The conditions in column 1 evidently resulted in a higher proportion of Mn


3


O


4


relative to MnO. The composition difference may be correlated with a more violent reaction observed under the conditions specified in column 2.




The embodiments described above are intended to be illustrative and not limiting. Additional embodiments are within the claims below. Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.



Claims
  • 1. A collection of particles comprising manganese oxide, the collection of particles having an average diameter less than about 250 nm, the manganese oxide having a structure selected from the group consisting of crystalline MnO, crystalline MnO2, crystalline Mn5O8 and crystalline Mn2O3, wherein the collection of particles form a powder.
  • 2. The collection of particles of claim 1 wherein the collection of particles have an average diameter from about 5 nm to about 250 nm.
  • 3. The collection of particles of claim 1 wherein the collection of particles have an average diameter from about 5 nm to about 100 nm.
  • 4. The collection of particles of claim 1 wherein the collection of particles have an average diameter from about 5 nm to about 50 nm.
  • 5. The collection of particle of claim 1 wherein the particles comprise crystalline MnO.
  • 6. The collection of particles of claim 1 wherein the particles comprise crystalline Mn2O3.
  • 7. The collection of particles of claim 1 wherein the particles comprise crystalline Mn5O8.
  • 8. The collection of particles of claim 1 wherein effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
  • 9. The collection of particles of claim 1 wherein the collection of particles have a distribution of particle sizes such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter.
  • 10. The collection of particles of claim 1 wherein effectively no particles have a diameter greater than about three times the average diameter of the collection of particles.
  • 11. The collection of particles of claim 1 wherein effectively no particles have a diameter greater than about two times the average diameter of the collection of particles.
  • 12. The collection of particles of claim 1 wherein the collection of particles have a distribution of particle sizes such that at least about 95 percent of the particles have a diameter greater than about 60 percent of the average diameter and less than about 140 percent of the average diameter.
  • 13. A battery having a cathode comprising manganese oxide particles, said manganese oxide particles having an average diameter less tan about 250 nm wherein the particles form a powder contained within the electrode structure.
  • 14. The battery of claim 13 wherein the manganese oxide particles have an average diameter from about 5 nm to about 100 nm.
  • 15. The battery of claim 13 wherein the manganese oxide particles have an average diameter from about 5 nm to about 50 nm.
  • 16. The battery of claim 13 wherein effectively no manganese oxide particles have a diameter greater than about four times the average diameter of the collection of particles.
  • 17. The battery of claim 13 wherein the manganese oxide particles comprise manganese oxide selected from the group consisting of crystalline MnO, crystalline Mn5O8, crystalline MnO2 and crystalline Mn2O3.
  • 18. A collection of particles comprising maganese oxide, the collection of particles having an average diameter less than about 500 nm, wherein the collection of particles have a distribution of particle sizes such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than bout 160 percent of the average diameter, wherein the collection of particles form a powder.
  • 19. The collection of particles of claim 18 wherein effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
  • 20. The collection of particles of claim 18 wherein the collection of particles have a distribution of particle sizes such that at least about 95 percent of the particles have a diameter greater than about 60 percent of the average diameter and less than about 140 percent of the average diameter.
  • 21. The collection of particles of claim 18 wherein the manganese oxide comprises a crystalline structure.
  • 22. The collection of particles of claim 18 wherein the manganese oxide comprises an amorphous structure.
  • 23. The collection of particles of claim 18 wherein the manganese oxide comprises MnO2.
  • 24. The collection of particles of claim 18 wherein the manganese oxide comprises a composition selected from the group consisting of MnO, Mn5O8, Mn3O4, and Mn2O3.
  • 25. The collection of parties of claim 18 having an average diameter less than about 100 nm.
  • 26. A collection of particles comprising manganese oxide, the collection of particles having an average diameter less than about 500 nm wherein effectively no particles have a diameter greater than about four times the average diameter of the collection of particles and wherein the collection of particles form a powder.
  • 27. The collection of particles of claim 26 wherein the manganese oxide comprises a crystalline structure.
  • 28. The collection of particles of claim 26 wherein the manganese oxide comprises an amorphous structure.
  • 29. The collection of particles of claim 26 wherein the manganese oxide comprises MnO2.
  • 30. The collection of particles of claim 26 wherein the manganese oxide comprises a composition selected from the group consisting of MnO, Mn5O8, Mn3O4, Mn2O3.
  • 31. The collection of particles of clam 26 having an average diameter less than about 100 nm.
US Referenced Citations (33)
Number Name Date Kind
4376755 Narayan et al. Mar 1983 A
4975346 Lecerf et al. Dec 1990 A
4980251 Thackeray et al. Dec 1990 A
5013706 Schramm et al. May 1991 A
5152973 Spencer Oct 1992 A
5348726 Wang et al. Sep 1994 A
5356842 Yamakawa et al. Oct 1994 A
5443930 Shoji et al. Aug 1995 A
5478672 Mitate Dec 1995 A
5496664 Sterr Mar 1996 A
5523073 Sumida et al. Jun 1996 A
5545393 O'Young et al. Aug 1996 A
5549973 Majetich et al. Aug 1996 A
5604057 Nazri Feb 1997 A
5637545 Lewis Jun 1997 A
5665664 Tomioka et al. Sep 1997 A
5672329 Okada et al. Sep 1997 A
5674644 Nazri Oct 1997 A
5695887 Amatucci et al. Dec 1997 A
5716737 Hasegawa et al. Feb 1998 A
5759720 Amatucci Jun 1998 A
5770018 Saidi Jun 1998 A
5807646 Iwata et al. Sep 1998 A
5871863 Miyasaka Feb 1999 A
5874058 Sheargold et al. Feb 1999 A
5874134 Rao et al. Feb 1999 A
5883032 Bogdan et al. Mar 1999 A
5952125 Bi et al. Sep 1999 A
5958361 Laine et al. Sep 1999 A
5965293 Idota et al. Oct 1999 A
5985237 Lu et al. Nov 1999 A
6126097 Chen et al. Oct 2000 A
6162530 Xiao et al. Dec 2000 A
Foreign Referenced Citations (13)
Number Date Country
0 817 300 Jan 1998 EP
2296732 Dec 1990 JP
3-80121 Apr 1991 JP
4-198028 Jul 1992 JP
6-275276 Sep 1994 JP
7-37593 Feb 1995 JP
7-130361 May 1995 JP
2513418 Apr 1996 JP
8-124557 May 1996 JP
8-213018 Aug 1996 JP
8-239222 Sep 1996 JP
2711624 Oct 1996 JP
9-124321 May 1997 JP
Non-Patent Literature Citations (4)
Entry
“Nanocomposite Maganese Oxides for Rechargeable Lithium Batteries” by, Kim et al., Electrochemical and Solid State Letters, 1(5) 207-209 (1998), pp. 207-209. No Month.
Relationship between Chemical Bonding Nature and Electrochemical Property of LiMn2O4 Spinel Oxides with Various Particles Sizes: “Electrochemical Grafting” Concept, by, Trueil et al., J. Phys. Chem. B, 1999, 103, pp. 2100-2106. No Month.
“A MnO2-V2O5 Composit as a Positivfe Material for Secondary Lithium Batteries”, by Kumagi et al., Process in Batteries & Solar, vol. 10 (1991), pp. 115-118. No Month.
“Modeling A Porous Intercalation Electrode With Two Characteristic Particle Sizes” by Darling et al., J. Electrochem. Soc., vol. 144, No. 12, Dec. 1997, pp. 4201-4208.