The present invention relates generally to semiconductor devices, and more specifically a metal-oxide-semiconductor (MOS) capacitor based sensor.
The traditional MOS structure is obtained by growing a layer of silicon dioxide (SiO2) on top of a silicon substrate and depositing a layer of metal or polycrystalline silicon (the latter is commonly used). As the silicon dioxide is a dielectric material, its structure is equivalent to a planar capacitor, with one of the electrodes replaced by a semiconductor.
In general, a capacitor is a passive two-terminal electrical component used to store energy electrostatically in an electric field. The forms of practical capacitors vary widely, but all contain at least two electrical conductors (plates) separated by a dielectric (i.e., insulator). The conductors can be thin films of metal, aluminum foil or disks, etc. A dielectric can be glass, ceramic, plastic film, air, paper, mica, etc. Capacitors are widely used as parts of electrical circuits in many common electrical devices. Unlike a resistor, an ideal capacitor does not dissipate energy. Instead, a capacitor stores energy in the form of an electrostatic field between its plates.
When there is a potential difference across the conductors, an electric field develops across the dielectric, causing positive charge (+Q) to collect on one plate and negative charge (−Q) to collect on the other plate. An ideal capacitor is characterized by a single constant value for its capacitance. Capacitance is expressed as the ratio of the electric charge (Q) on each conductor to the potential difference (V) between them. The SI unit of capacitance is the farad (F), which is equal to one coulomb per volt (1 C/V). Typical capacitance values range from about 1 pF (10−12 F) to about 1 mF (10−3 F).
Aspects of an embodiment of the present invention disclose a glucose sensor. The glucose sensor comprises a conducting back electrode. The glucose sensor also comprises a silicon substrate in electrical contact with the conducting back electrode. The glucose sensor also comprises a dielectric layer disposed on the silicon substrate. The glucose sensor also comprises a pH sensing layer disposed on the dielectric layer. The glucose sensor also comprises a chemical layer disposed on the pH sensing layer, wherein the chemical layer is in contact with an aqueous solution. The glucose sensor also comprises a conductive electrode disposed on the dielectric layer, where in the conductive electrode is in contact with the aqueous solution.
The following detailed description, given by way of example and not intended to limit the disclosure solely thereto, will best be appreciated in conjunction with the accompanying drawings, in which:
Embodiments of the present invention recognize that current glucose sensors have high power requirements and slow response times or require optical readers and are not quantitative. Diabetes is an important worldwide health issue and the need for in-vivo glucose monitoring can be a significant advancement in the management of this disease. Fluctuation of glucose levels in blood also produce fluctuations in glucose levels in tears. Hence, glucose can be monitored by measuring glucose levels in tears by embedding sensors in a contact lens.
One type of glucose sensor, an electrochemical amperometric sensor, measures a concentration of an analyte by measuring a current generated through electrochemical oxidation or reduction reactions of the analyte at a working electrode of a sensor. A reduction reaction occurs when electrons are transferred from the electrode to the analyte, whereas an oxidation reaction occurs when electrons are transferred from the analyte to the electrode. The direction of the electron transfer is dependent upon the electrical potentials applied to the working electrode by a potentiostat. A counter electrode and/or reference electrode is used to complete a circuit with the working electrode and allow the generated current to flow. When the working electrode is appropriately biased, the output current is proportional to the reaction rate, which provides a measure of the concentration of the analyte surrounding the working electrode.
A reagent may be localized proximate the working electrode to selectively react with a desired analyte. For example, glucose oxidase can be fixed near the working electrode to react with glucose and release hydrogen peroxide, which is then electrochemically detected by the working electrode to indicate the presence of glucose. Amperometric sensors measure 2e− production on the electrode coated with glucose oxidase and are based on the reaction scheme shown below, Scheme (1).
Another type of glucose sensor is optically labeled boronic acid molecules (e.g., a boronic acid containing fluorophore) embedded in a contact lens. When glucose molecules bind to the boronic acid molecules, the color of contact lens changes thereby providing a semi quantitative measure of glucose concentration.
Embodiments of the present invention propose a metal-oxide-semiconductor (MOS) capacitor based sensor suitable for embedding in a contact lens. The MOS capacitor based sensor has low power requirements and is compatible with silicon process technology. Therefore, the MOS capacitor based sensor can be easily integrated with a silicon based circuit chip.
Main components of a glucose sensing device for contact lens applications are a MOS capacitor based sensor and other silicon based circuit chips or devices for power management, signal measurement, or communication. This disclosure focuses on the MOS capacitor based sensor component.
Some examples of circuit chips or devices for power management, signal measurement, or communication are: one or more wireless antenna devices; one or more integrated power supplies such as an integrated battery, capacitor or other power source; one or more integrated energy scavenging devices; one or more external power sources; or one or more wired or wireless communication devices. For example, a power source may be a thin film battery, a radio frequency (RF) power amplifier, or any other suitable power source.
In one embodiment, the glucose sensing device (including the MOS capacitor based sensor) may be located within the thickness of a contact lens. The glucose sensing device is positioned within a contact lens such that the glucose sensing device is not in the optical region of the contact lens (e.g., the center region of the contact, a range of about 4 mm to about 10 mm in diameter, preferably about 6 mm in diameter). The glucose sensing device should be placed in the outer region of the contact lens.
In another embodiment, the glucose sensing device may be integrated in a microsystem that can serve as a platform and ecosystem for a variety of microsystems and can be embedded in a contact lens. An example of a suitable microsystem is described in U.S. patent application Ser. No. 14/340,253 filed on Jul. 24, 2014 entitled “Thin, flexible microsystem with integrated energy source,” the entirety of which is incorporated by reference herein. The microsystem may include one or more thin silicon die (e.g., the glucose sensing chip), interconnect wiring, and a battery energy source. One or more circuits may be customized on the one or more silicon die to perform one or more functions.
In one embodiment, the MOS capacitor based sensor for sensing glucose concentrations comprises a material stack of Si, SiO2, HfO2, and glucose oxidase immobilized over the HfO2 surface. The glucose sensing range of the MOS capacitor based sensor is from about 0.1 mM (millimolar) of glucose to 1 mM of glucose. Advantages of the MOS capacitor based sensor include: HfO2 has near Nernst limit of pH sensitivity (60 mV/pH); pH sensitivity is not impacted by proteins in tears; and low power requirements for sensing. The energy used for sensing is about 0.5*C*V2 or about 1×10−10 J, where C (capacitance) is about 200 pF and V (potential difference/voltage) is 1.
Detailed embodiments of the present invention are disclosed herein with reference to the accompanying drawings. It is to be understood that the disclosed embodiments are merely illustrative of potential embodiments of the present invention and may take various forms. In addition, each of the examples given in connection with the various embodiments is intended to be illustrative, and not restrictive. Further, the figures are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
References in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
For purposes of the description hereinafter, the terms “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, and derivatives thereof shall relate to the disclosed present invention, as oriented in the drawing figures. The terms “overlying”, “underlying”, “atop”, “on top”, “positioned on” or “positioned atop” mean that a first element, such as a first structure, is present on a second element, such as a second structure, wherein intervening elements, such as an interface structure may be present between the first element and the second element. The term “direct contact” means that a first element, such as a first structure, and a second element, such as a second structure, are connected without any intermediary conducting, insulating or semiconductor layers at the interface of the two elements.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
Weight percent, percent by weight, % by weight, and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the weight of the composition and multiplied by 100.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The present invention will now be described in detail with reference to the figures.
Reference is first made to
In
In other embodiments, semiconductor substrate 10 may also include a first doped (n- or p-) region, and a second doped (n- or p-) region. The first doped region and the second doped region may be the same, or they may have different conductivities and/or doping concentrations. These doped regions are known as “wells” and they are formed utilizing conventional ion implantation processes.
In
In
In one embodiment, pH sensing layer 14 is comprised of hafnium oxide (HfO2). In other embodiments, pH sensing layer 14 may comprise hafnium silicate (HfSiOx), Hf silicon oxynitride (HfSiON), ZrO2, or Al2O3. In some embodiments, pH sensing layer 14 comprises a mixture of HfO2 and ZrO2. Generally, pH sensing layer 14 comprises a “high k” material whose dielectric constant is greater than about 10.0. The thickness of pH sensing layer 14 is typically in the range of about 10 angstroms to about 40 angstroms, and the thickness is preferably about 40 angstroms. The surface area of pH sensing layer 14 is in the range of about 0.001 cm2 to about 0.1 cm2.
Once the structure shown in
In other embodiments, the MOS capacitor based sensor can be used for diagnostics of other analytes in tears.
In another embodiment, if the MOS capacitor based sensor is to sense just pH changes in tears, no chemical layer is deposited on pH sensing layer 14. The pH of tears can provide diagnostics about eye infection. In order to measure the pH changes in tears, pH sensing layer 14 would be left bare (no immobilization of another layer).
In other embodiments, and if the MOS capacitor based sensor is to sense proteins in tears, chemical layer 16 comprises antibodies capable of binding to specific proteins. Some proteins present in tears may be biomarkers for certain diseases. In order to sense proteins in tears, pH sensing layer 14 (e.g., HfO2) is coated with appropriate biomolecules (e.g., antibodies) that would specifically bind a target protein. The charge of the protein changes the flat band voltage which, in turn, would change the capacitance measured at a fixed voltage.
In one embodiment, after the MOS capacitor based sensor is completed it can be electrically connected to one or more silicon based circuit chips or devices for power management, signal measurement, or communication. For example, a substrate is provided that is suitable for mounting the MOS capacitor based sensor and any other silicon based circuit chips or devices needed for the sensor to function. The substrate can be employed both as a mounting platform for chip-based circuitry (e.g., by flip-chip mounting) and/or as a platform for patterning conductive materials (e.g., gold, platinum, palladium, titanium, copper, aluminum, silver, metals, other conductive materials, combinations of these, etc. to create electrodes, interconnects, antennae, etc. The substrate can be a relatively rigid material, such as polyethylene terephthalate (“PET”) or another material sufficient to structurally support the circuitry and/or electronics when integrated in a contact lens.
In one embodiment, substantially transparent conductive materials (e.g., indium tin oxide (ITO)) can be patterned on the substrate to form circuitry, electrodes, etc. In other embodiments, those skilled in the art understand that other transparent conducting oxides can be used, such as indium zinc oxide (IZO), Al-doped zinc oxide (AZO), Ga-doped zinc oxide (GZO), or indium gallium zinc oxide (IGZO). In other embodiments, any combination of ITO, IZO, AZO, GZO, and IGZO can be used. In another embodiment, a conducting polymer or any other transparent conductive material may be used. Interconnects between the MOS capacitor based sensor and any other silicon based circuit chips or devices needed for the sensor to function can be formed by depositing suitable patterns of conductive materials on the substrate. A combination of resists, masks, and deposition techniques can be employed to pattern materials on the substrate.
Examples of silicon based circuit chips or devices need for the sensor to function may include a power source, a controller, or a communication device.
A power source may be a thin film battery, a radio frequency (RF) power amplifier, solar cells (photovoltaic cells), inertial power scavenging system, or any other suitable power source. The power source may be configured to provide any power needed to the MOS capacitor based sensor or any other silicon based circuit chips or devices need for the sensor to function.
A controller may contain logic that operates the MOS capacitor based sensor and a communication device. The communication device may be a radio frequency signal generator (e.g., RFID tag) or an antenna. In one embodiment, the controller may modulate the impedance of an antenna in a manner that is perceivably by an external reader. In another embodiment, if the communication device is an RFID tag, RFID tags can be either passive, active, or battery-assisted passive. An active tag has an on-board battery and periodically transmits its ID signal. A battery-assisted passive (BAP) has a small battery on board and is activated when in the presence of an RFID reader. Tags may be read/write, where object-specific data can be written into the tag by the system user. RFID tags contain at least two parts: an integrated circuit for storing and processing information, modulating and demodulating a radio-frequency (RF) signal, collecting DC power from the incident reader signal, and other specialized functions; and an antenna for receiving and transmitting the signal. The tag information is stored in a non-volatile memory. The RFID tag includes either a chip-wired logic or a programmed or programmable data processor for processing the transmission and sensor data, respectively.
In another embodiment, after the MOS capacitor based sensor is completed it can be integrated along with one or more silicon based circuit chips for power management, signal measurement, or communication in a suitable microsystem is described in U.S. patent application Ser. No. 14/340,253 filed on Jul. 24, 2014 entitled “Thin, flexible microsystem with integrated energy source.”
After the MOS capacitor based sensor is completed and electrically connected to one or more silicon based circuit chips or devices for power management, signal measurement, or communication, the MOS capacitor based sensor and the one or more silicon based circuit chips or devices are embedded in a contact lens.
A contact lens is composed of lens material and includes two surfaces, an outer surface and an inner surface, both of which are spherical. In one embodiment, the inner surface is concave and the outer surface convex and opposite the inner surface. The lens material is porous. The MOS capacitor based sensor and the one or more silicon based circuit chips or devices are located within the thickness of the contact lens. In one embodiment, the MOS capacitor based sensor and the one or more silicon based circuit chips or devices, are positioned within the contact lens such that the MOS capacitor based sensor and the one or more silicon based circuit chips or devices are not in the optical region of the contact lens (e.g., the center region of the contact, a range of about 4 mm to about 10 mm in diameter, preferably about 6 mm in diameter). The MOS capacitor based sensor and the one or more silicon based circuit chips or devices should be placed in the outer region of the contact lens.
The particular dimensions (including dimensions attributable to thickness, diameter, curvature, and etc.) of the contact lens may vary. Lenses are classified by the curvature of the two optical surfaces. Therefore, in other embodiments, the contact lens may one of the following: biconvex (or double convex, or just convex) if both surfaces are convex; equiconvex, if both surfaces have the same radius of curvature; biconcave (or just concave) if the lens has two concave surfaces; if one of the surfaces is flat, the contact lens is plano-convex or plano-concave depending on the curvature of the other surface; convex-concave or meniscus, if the contact lens has one convex side and one concave side; or any other type of contact lens.
Lens material can include any suitable material that provides support for the MOS capacitor based sensor and the one or more silicon based circuit chips or devices, contain the MOS capacitor based sensor and the one or more silicon based circuit chips or devices, and/or otherwise form a structural and/or functional body of the contact lens. Lens material may also be porous to tears in order for the sensor to come in contact with the tears. Lens material is substantially transparent, with a transmittance of 40% to 99%, preferably 70% to 99%, and biocompatible. In one embodiment, lens material may comprise a soft polymer material including but not limited to, a hydrogel, a silicone based hydrogel, a polyacrlyamide, or a hydrophilic polymer. In other embodiments, lens material may comprise polyethylene terephthalate (“PET”), polymethyl methacrylate (“PMMA”), polyhydroxyethylmethacrylate (polyHEMA) based hydrogels, or combinations thereof. I yet another embodiment, lens material may comprise a rigid gas permeable material. In yet another embodiment, lens material may comprise glass, plastic (such as a polycarbonate), or any other suitable material.
The process for the MOS capacitor based sensor to determine the glucose level in tears includes three general steps. First, chemical layer 16 is formed on pH sensing layer 14 (HfO2) providing the structure shown in
The MOS capacitor based sensor detects variations in the H+ ion concentration resulting from the reaction of glucose with O2 in the presence of the enzyme glucose oxidase. A resulting local pH increase near pH sensing layer 14 (HfO2) leads to a change in the capacitance of the MOS capacitor based sensor, which in turn leads to a change in the sensing signal (voltage) across the MOS capacitor based sensor. The change in capacitance of the MOS capacitor based sensor is caused by the H+ ions changing the surface potential of pH sensing layer 14 (HfO2) causing the flat band voltage to shift with a concomitant change in the capacitance measured at a fixed voltage. When the capacitance increases the sensing signal (voltage) across the MOS capacitor based sensor decreases.
The energy used for sensing is about 0.5*C*V2 or about 1×10−10 J, where C (capacitance) is about 200 pF and V (potential difference/voltage) of 1 applied across the MOS capacitor based sensor from a conducting electrode (e.g., the back electrode) electrically connected to silicon substrate 10 to top electrode 18.
Second, a calibration process is completed. Capacitance is measured at a fixed voltage (near flat band) as a function of glucose concentration, thereby creating a calibration curve.
Third, a measurement is taken. To measure glucose concentration, measure the capacitance of the MOS capacitor based sensor at the fixed voltage (same as voltage used for calibration). Using the calibration curve, the glucose concentration in the tears is estimated from the measured capacitance.
Having described embodiments of a MOS capacitor based sensor (which are intended to be illustrative and not limiting), it is noted that modifications and variations may be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments disclosed which are within the scope of the present invention as outlined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4432937 | Kuwayama et al. | Feb 1984 | A |
4460543 | Glaeser | Jul 1984 | A |
4994333 | Jose et al. | Feb 1991 | A |
5240793 | Glaeser | Aug 1993 | A |
5306580 | Mansfield, Jr. et al. | Apr 1994 | A |
5326652 | Lake | Jul 1994 | A |
5339024 | Kuo et al. | Aug 1994 | A |
5376480 | Shinoda et al. | Dec 1994 | A |
5451766 | Van Berkel | Sep 1995 | A |
5558957 | Datta et al. | Sep 1996 | A |
5591548 | Mao | Jan 1997 | A |
5827621 | Morishita et al. | Oct 1998 | A |
5897522 | Nitzan | Apr 1999 | A |
6300929 | Histake et al. | Oct 2001 | B1 |
6379835 | Kucherovsky et al. | Apr 2002 | B1 |
6420071 | Lee et al. | Jul 2002 | B1 |
6482543 | Shelekhin et al. | Nov 2002 | B1 |
6540938 | Afzali-Arkadani et al. | Apr 2003 | B1 |
6652676 | Hymer et al. | Nov 2003 | B1 |
6982132 | Goldner et al. | Jan 2006 | B1 |
7087348 | Holman et al. | Aug 2006 | B2 |
7320845 | Zucker | Jan 2008 | B2 |
7348096 | Schubert et al. | Mar 2008 | B2 |
7435395 | Durkot et al. | Oct 2008 | B2 |
7446380 | Bojarczuk, Jr. et al. | Nov 2008 | B2 |
7491464 | Merrill et al. | Feb 2009 | B2 |
7531271 | Boulton et al. | May 2009 | B2 |
7776468 | Richards et al. | Aug 2010 | B2 |
7820329 | Boulton et al. | Oct 2010 | B2 |
8029927 | Tucholski | Oct 2011 | B2 |
8268475 | Tucholski | Sep 2012 | B2 |
8441411 | Tucholski et al. | May 2013 | B2 |
8534831 | Tepedino, Jr. et al. | Sep 2013 | B2 |
8586244 | Fensore et al. | Nov 2013 | B2 |
8608310 | Otis et al. | Dec 2013 | B2 |
8637349 | Jenson et al. | Jan 2014 | B2 |
8877103 | Alvarez-Carrigan et al. | Nov 2014 | B2 |
8906088 | Pugh et al. | Dec 2014 | B2 |
9820692 | Wang | Nov 2017 | B2 |
20020105092 | Coyle | Aug 2002 | A1 |
20020161404 | Schmidt | Oct 2002 | A1 |
20030099884 | Chiang et al. | May 2003 | A1 |
20030165744 | Schubert et al. | Sep 2003 | A1 |
20040183965 | Lundgren | Sep 2004 | A1 |
20040265683 | Merrill et al. | Dec 2004 | A1 |
20050048699 | Matsunami | Mar 2005 | A1 |
20050079418 | Kelley et al. | Apr 2005 | A1 |
20050128409 | Lee | Jun 2005 | A1 |
20050244589 | Kornfield et al. | Nov 2005 | A1 |
20050266158 | Pokorny et al. | Dec 2005 | A1 |
20060115724 | Buckle et al. | Jun 2006 | A1 |
20060139540 | Lu et al. | Jun 2006 | A1 |
20060292444 | Chiang et al. | Dec 2006 | A1 |
20070045106 | Yang et al. | Mar 2007 | A1 |
20070138028 | Chodavarapu | Jun 2007 | A1 |
20080084498 | He et al. | Apr 2008 | A1 |
20080153003 | Lesaga | Jun 2008 | A1 |
20080181084 | Sasabe et al. | Jul 2008 | A1 |
20080187824 | Tomantschger | Aug 2008 | A1 |
20080248382 | Sastry et al. | Oct 2008 | A1 |
20090108440 | Meyer et al. | Apr 2009 | A1 |
20100003596 | Sato et al. | Jan 2010 | A1 |
20100068617 | Bedjaoui et al. | Mar 2010 | A1 |
20100285372 | Lee et al. | Nov 2010 | A1 |
20100310932 | Martin et al. | Dec 2010 | A1 |
20110048781 | Neudecker et al. | Mar 2011 | A1 |
20110097623 | Marinis, Jr. et al. | Apr 2011 | A1 |
20110100458 | Kang et al. | May 2011 | A1 |
20110162972 | Furuya et al. | Jul 2011 | A1 |
20110163812 | Bansal et al. | Jul 2011 | A1 |
20110311857 | Tucholski | Dec 2011 | A1 |
20120140167 | Blum | Jun 2012 | A1 |
20120236254 | Pugh et al. | Sep 2012 | A1 |
20130034760 | Otts et al. | Feb 2013 | A1 |
20130035760 | Portney | Feb 2013 | A1 |
20130108907 | Bhardwaj et al. | May 2013 | A1 |
20130122132 | Pugh et al. | May 2013 | A1 |
20130158378 | Berger | Jun 2013 | A1 |
20130166025 | Pugh et al. | Jun 2013 | A1 |
20130174978 | Pugh et al. | Jul 2013 | A1 |
20130203895 | Dershem | Aug 2013 | A1 |
20130222759 | Pugh et al. | Sep 2013 | A1 |
20130230774 | Ortega et al. | Sep 2013 | A1 |
20130258277 | Pugh et al. | Oct 2013 | A1 |
20140000101 | Pugh et al. | Jan 2014 | A1 |
20140028969 | Pugh et al. | Jan 2014 | A1 |
20140085599 | Etzkorn | Mar 2014 | A1 |
20140088372 | Saeedi | Mar 2014 | A1 |
20140088881 | Saeedi | Mar 2014 | A1 |
20140107445 | Liu | Apr 2014 | A1 |
20140320800 | Collins et al. | Oct 2014 | A1 |
20140327875 | Blum et al. | Nov 2014 | A1 |
20140340631 | Pugh | Nov 2014 | A1 |
20140346695 | Pugh et al. | Nov 2014 | A1 |
20140349005 | Everett | Nov 2014 | A1 |
20140349211 | Wei et al. | Nov 2014 | A1 |
20140354946 | Pugh et al. | Dec 2014 | A1 |
20150126834 | Wang | May 2015 | A1 |
20150323811 | Flitsch et al. | Nov 2015 | A1 |
20170181669 | Lin | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2235773 | Oct 2010 | EP |
2501801 | Nov 2013 | GB |
2006274346 | Oct 2006 | JP |
200898099 | Apr 2008 | JP |
2008091859 | Jul 2008 | WO |
2011113903 | Sep 2011 | WO |
2013062662 | May 2013 | WO |
Entry |
---|
“A 3-μW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring” by Liao et al., IEEE Journal of Solid-State Circuits, vol. 47, No. 1, Jan. 2012. |
“Non-ideal effects improvement of SF6 plasma treated hafnium oxide film based on electrolyte-insulator-semiconductor structure for pH-sensor application” by Lu et al., Microelectronics Reliability, vol. 50, pp. 742-746, 2010. |
U.S. Appl. No. 14/460,671, filed Aug. 15, 2014 entitled “Wafer Level Overmold for Three Dimensional Surfces”. |
Appendix P List of IBM Patents or Patent Applications Treated as Related. |
Beeckman, J et al.; “Liquid-crystal photonic applications”; SPIEDigitalLibrary.org/oe; Optical Engineering; vol. 50(8); 081202; Aug. 2011; Copyright 2011 SPIE; <http://opticalengineering.spiedigitallibrary.org/on04/07/2014 Terms of Use: http://spiedl.org/terms>. |
Blue Spark Technologies, “UT Series Printed Batteries”, Product Information, UT Series Oct-12-2, Copyright 2012, website: <www.bluesparktechnologies.com>. |
Ding, Ke-Qiang; “Cyclic Voltmmetrically-prepared MnO2 Coated on a ITO Glass Substrate”; Journal of the Chinese Chemical Society; 2009; 56; pp. 171-181. |
Li, Xiaoping et al. ; “Composite of Indium and Polysorbate 20 as Inhibitor for Zinc Corrosion in Alkaline Solution”; Bull. Korean Chem. Soc.; 2012; vol. 33; No. 5.; <http://dx.doi.org/10.5012/bkcs.2012.33.5.1566>. |
Ren, Hongwen et al.; “Tunable electronic lens using a gradient polymer network liquid crystal” Received Oct. 15, 2002; accepted Nov. 12, 2002' Applied Physics Letters; vol. 82; No. 1; Jan. 6, 2003. |
U.S. Appl. No. 61/858,346, filed Jul. 25, 2013 entitled “Variable Focal Length Lens”. |
U.S. Appl. No. 61/976,595, filed Apr. 8, 2014 entitled “Thin Flexible Microsystem with Low-Profile Integrated Thin Film Battery”. |
U.S. Appl. No. 14/340,304, filed Jul. 24, 2014 entitled Cathode for Thin File Microbattery. |
U.S. Appl. No. 14/340,343, filed Jul. 24, 2014 entitled Homogeneous Solid Metallic Anode for Thin Film Microbattery. |
U.S. Appl. No. 14/340,253, filed Jul. 24, 2014 entitled Thin, Flexible Microsystem With Integrated Energy Source. |
U.S. Appl. No. 14/340,164, filed Jul. 24, 2014 entitled Variable Focal Length Lens. |
Badugu et al.; “A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring”; Journal of Fluorescence; vol. 13; No. 5; Sep. 2003; Copyright 2003; pp. 371-374. |
Liao et al.,; “A 3μW Wirelessly Powered CMOS Glucose Sensor for an Active Contact Lens”; 2011 IEEE International Solid-State Circuits Conference; 978-1-61284-302-5/11; copyright 2011 IEEE; pp. 38-41. |
Rolka et al.,; “Integration of a Capacitive EIS Sensor into a FIA System for pH and Penicillin Determination”; Sensors; ISSN 1424-8220; Copyright 2004 by MDPI; Sensors 2004, 4; pp. 84-94, website: <http://www.mdpi.net/sensors>. |
Office Action dated Mar. 9, 2018 received in U.S. Appl. No. 14/340,343. |
Office Action dated Aug. 24, 2017 received in U.S. Appl. No. 14/340,343. |
“Fresnel Lens”, Wikipedia, last modified Jan. 30, 2017, 9 pages, https://en.wikipedia.org/wiki/Fresnel_lens. |
Notice of Allowance dated May 31, 2018 received in U.S. Appl. No. 14/340,343. |
Number | Date | Country | |
---|---|---|---|
20160045144 A1 | Feb 2016 | US |