1. Field of the Invention
The present invention is directed to a metal oxide varistor having heat protection, especially to a metal oxide varistor with an automatic switching-off feature that automatically opens a circuit in conditions of overheating due to sustained over-voltages.
2. Description of the Prior Arts
Metal oxide varistors are widely used in circuits as voltage protection elements and inrush-current-absorbing elements. Metal oxide varistors have the capability of clamping high transient voltages appearing on unconditioned power lines to a low level to protect electrical equipment or devices connected to the line. While the metal oxide varistors have a long life and have the ability to repeatedly clamp high transient voltage spikes to a safe level, the metal oxide varistors do eventually fail and ultimately, even if a catastrophic failure does not occur, the impedance of metal oxide varistors decreases to the point where they present a significant load, and eventually overheat and fail while emitting smoke and fumes.
Thus, the protection is generally provided to a metal oxide varistors by connecting the varistors across a power line in series with a current limiting fuse and/or a thermal fuse. If the temperature of the varistor increases beyond the rated temperature of the thermal-fuse, the thermal fuse will open, thereby removing the varistor from the circuit. Thermal-fuses used to protect electrical circuits from varistor failure are generally cylindrical in shape and are mounted on printed circuit boards on which the varistor is mounted with the fuse arranged adjacent and parallel to the varistor body. As long as the thermal protective fuse is physically close enough to the varistor, an increase in varistor temperature will increase the temperature of the thermal protective fuse, causing it to open. While these thermal protective fuses used to protect electrical circuits from varistor failure have been somewhat effective, varistors may overheat and fail if localized overheating occurs at a portion of the varistor body remote from the fuse. The varistor and surrounding areas may be destroyed before the temperature at the fuse increases sufficiently to cause the fuse open.
In a further known prior art device, a conventional metal oxide varistor and a thermal fuse are packaged together in encapsulation material to provide heat protection. However, when the temperature of the varistor increases beyond the thermal fuse's rated temperature and the thermal fuse opens, air in the fuse expands because of the heat, which may cause a spark to be generated as a result of a short circuit. The expanded air and the spark may explode the encapsulating material and the elements of the conventional metal oxide varistor and damage other elements in the circuit. Moreover, the explosion may generate a loud noise and startle anyone in the vicinity of the varistor.
To overcome the shortcomings, the present invention provides a metal oxide varistor with heat protection to mitigate or obviate the aforementioned problems.
The main objective of the present invention is to provide a metal oxide varistor with heat protection.
The metal oxide varistor with heat protection in accordance with the present invention has a body, an insulated washer, a first lead, a second lead and a thermal fuse. The body has two sides and two contacts respectively on the sides. The insulated washer is attached to one contact and has a through hole. The first lead is mounted on the other contact. The second lead is mounted on the insulated washer. The thermal fuse is mounted on the insulated washer and electrically connects to the second lead and the second contact. When the body overloads and overheats, the thermal fuse causes the circuit to open quickly, and the insulated washer keeps the thermal fuse from electrically connecting to the second contact again.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
With further reference to
With further reference to
With further reference to
The insulated washer (20, 20′, 20″, 20′″) may be ceramics or polymer and may have a silver sheet or multiple clips (22′).
The silver sheet is attached to the lower surface of the insulated washer (20, 20″, 20′″) and is sintered on the lower surface of the insulated washer (20, 20″, 20′″) so the insulated washer (20, 20″, 20′″) can be bonded to the second contact (121, 121′). Because ceramics are excellent heat conductors, the insulated washer (20, 20″, 20′″) absorbs heat when the metal oxide varistor overloads and overheats, especially when the insulated washer (20, 20″, 20′″) has the silver sheet bonded to the second contact (121, 121′).
The polymer is Nylon 66 (PA66), Poly phenylene sulfide (PPS), Liquid Crystal Polymers (LCP) or the like and is somewhat resilient.
The clips (22′) are formed on the annular edge of the insulated washer (20′) and clamp the insulated washer (20′) to the body (10′). Using the clips (22′) to secure the insulated washer (20′) on the body (10′) effectively simplifies assembly of the insulated washer (20′) and the body (10′).
The first lead (30) is mounted on and electrically connects to the first contact (12, 12′).
The second lead (40) is mounted on the insulated washer (20, 20′).
The test lead (50) electrically connects to the second contact (12, 12′) and may be mounted on the insulated washer (20, 20″, 20′″) and be connected to the second contact (12) via the through hole (21) or between the insulated washer (20′) and the second contact (121′).
The thermal fuse (60) is mounted on the insulated washer (20, 20′, 20″, 20′″) and has a first end and a second end. The first end of the thermal fuse (60) electrically connects to the second lead (40). The second end of the thermal fuse (60) electrically connects to the second contact (121, 121′) via the through hole (21, 21′) in the insulated washer (20, 20′, 20″, 20′″), may electrically connect to the conductive sleeve (13) at a solder joint (61), may electrically connect to the silver layer (211′) in the through hole (21′) in the insulated washer (20′) or may extend through the through hole (21′) in the insulated washer (20′) to electrically connect to the second contact (121′). Solder used to form the solder joint (61) has a melting point less than or equal to a melting point of the thermal fuse (60). Because the thermal fuse (60) only electrically connects to the second contact (121, 121′) at the second end of the thermal fuse (60), the connection between the thermal fuse (60) and the second contact (121, 121′) is easily broken when the thermal fuse (60) overheats and melts. Therefore, when the body (10, 10′) overloads and overheats, the thermal fuse (60) causes the circuit to open quickly. Furthermore, when the thermal fuse (60) opens, the insulated washer (20, 20′) still transmits heat to the thermal fuse (60) to keep the thermal fuse (60) from electrically connecting to the second contact (121, 121′) again.
The cover (70, 70′″) corresponds to the body (10, 10′, 10′″), and is heat resistant electrical insulation, is mounted above the second side of the body (10, 10′, 10′″) and the insulated washer (20, 20′, 20″, 20′″) and has a bottom annular edge and a top inside surface. The heat resistant electrical insulation may be ceramics or polymer so it will not be damaged when the varistor overheats. The bottom annular edge is mounted on the insulated washer (20, 20′, 20″, 20′″). The top inside surface is away from the insulated washer (20, 20′, 20″, 20′″) and forms a sealed cavity between the cover (70, 70′″) and the insulated washer (20, 20′). When the thermal fuse (60) overheats and melts, expands the air and causes a spark, the cover (70, 70′″) keeps elements of the metal oxide varistor from blowing out of the cover (70, 70′″). Moreover, the sealed cavity between the cover (70, 70′″) and the insulated washer (20, 20′) absorbs the explosion to reduce noise caused by the explosion.
The encapsulating layer (80) may be epoxy and is coated around the cover (70) and body (10) to resist moisture. Because the encapsulating layer (80) does not contact the thermal fuse (60) directly, the encapsulating layer (80) does not influence the thermal fuse (60) when the encapsulating layer (80) overheats and deforms.
The method of fabricating a metal oxide varistor comprises acts of (1) providing a body (10), (2) providing a ceramic insulated washer (20, 20″, 20′″), (3) sintering a silver sheet on the insulated washer (20, 20″, 20′″), (4) mounting a first lead (30) on a first contact (12) and mounting a second lead (40) on the insulated washer (20, 20″, 20′″), (5) mounting a thermal fuse (60) on the insulated washer (20, 20″, 20′″) and (7) applying an encapsulating layer (80).
1. The act of providing a body (10) of the metal oxide varistor provides a body (10) having two sides and a first and a second silver contact (12, 121) attached respectively to the sides.
2. The act of providing a ceramic insulated washer (20) provides an insulated washer (20) being ceramic and having a side, a through hole (21) and a silver sheet attached to the side of the insulated washer (20).
3. The act of sintering a silver sheet on the insulated washer (20, 20″, 20′″) and a second contact (121) on the body (10) allows the insulated washer (20, 20″, 20′″) to be bonded to the body (10).
4. The act of mounting a first lead (30) on the first contact (12) and mounting a second lead (40) on the insulated washer (20, 20″, 20′″) comprises mounting the first lead (30) on the first contact (12), connecting the first lead (30) electrically to the first contact (12) and mounting the second lead (40) on the insulated washer (20, 20″, 20′″).
5. The act of mounting a thermal fuse (60) on the insulated washer (20, 20″, 20′″) mounts a thermal fuse (60) having a first end electrically connecting to the second lead (40) and a second end electrically connecting to the second contact via the through hole (21) in the insulated washer (20, 20″, 20′″).
6. The act of mounting a cover (70) on the body (10) and the insulated washer (20, 20″, 20′″) forms a sealed cavity between the cover and the insulated washer (20, 20″, 20′″).
7. The act of applying an encapsulating layer (80) around the cover (70) and the body (10) completely covers the cover (70) and the body (10).
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and features of the invention, the disclosure is illustrative only. Changes may be made in the details, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
3638083 | Dornfeld et al. | Jan 1972 | A |
3903494 | May | Sep 1975 | A |
4107759 | Shirn et al. | Aug 1978 | A |
4107762 | Shirn et al. | Aug 1978 | A |
4212045 | Martzloff | Jul 1980 | A |
4288833 | Howell | Sep 1981 | A |
4538347 | Palilla et al. | Sep 1985 | A |
4975674 | Sumiyoshi et al. | Dec 1990 | A |
5315474 | Kuriyama | May 1994 | A |
5363272 | Tanaka et al. | Nov 1994 | A |
5708553 | Hung | Jan 1998 | A |
5781394 | Lorenz et al. | Jul 1998 | A |
5901027 | Ziegler et al. | May 1999 | A |
5982597 | Webb | Nov 1999 | A |
6094128 | Bennett et al. | Jul 2000 | A |
6204746 | Kane et al. | Mar 2001 | B1 |
6211770 | Coyle | Apr 2001 | B1 |
6252488 | Ziegler et al. | Jun 2001 | B1 |
6307462 | McLoughlin | Oct 2001 | B2 |
6430019 | Martenson et al. | Aug 2002 | B1 |
6636403 | McLoughlin et al. | Oct 2003 | B2 |
7375943 | Lu | May 2008 | B2 |
7453681 | Ho | Nov 2008 | B2 |
7477503 | Aszmus | Jan 2009 | B2 |
7483252 | de Palma et al. | Jan 2009 | B2 |
20080129440 | Ho | Jun 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090027153 A1 | Jan 2009 | US |