The present invention relates to a metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell, a method for preparing the same, and an organic solar cell having improved photovoltaic conversion efficiency using the same.
Referring to
However, this OPV recently shows the following problems: First, since an organic solar cell is formed layer by layer, different properties and interface properties are appeared between the layers. Therefore, photovoltaic conversion efficiency deteriorates. Second, regarding the PEDOT:PSS layer coated on transparent conductive oxide (TCO), oxidation properties are appeared on interface between the PEDOT:PSS layer and electrode (ITO). Accordingly, electrode properties of ITO are degradated. Third, Al electrode is oxidized easily in air.
Nowadays, many techniques are researched to solve the above-mentioned problems. For example, in order to solve the deterioration of photovoltaic conversion efficiency, a method which mixes single-walled/multi-walled carbon nanotubes having excellent conductivity with a photoactive layer has been developed. However, due to aggregation property of carbon nanotubes, dispersion becomes difficult and due to the extremely long length (several μm) and ductility thereof, the tube is easily permeated into different layers when formed in thin layer. Accordingly, the photovoltaic conversion efficiency deteriorates. Although inversed OPV (See
Therefore, the inventors of the present invention developed a metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell, a method for preparing the same, and an organic solar cell having improved photovoltaic conversion efficiency using the same.
The present invention aims to provide a metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell.
Also, the present invention aims to provide a method for preparing the metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell.
Furthermore, the present invention aims to provide an organic solar cell which has improved photovoltaic conversion efficiency by using a metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell.
In order to achieve the object explained above, the present invention provides metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell, prepared by dispersing single walled carbon nanotubes in an organic solvent, adding and dispersing metal oxides in the mixed solution to obtain a composite solution, and depositing the obtained composite solution onto a substrate.
Also, the present invention provides a method for preparing metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell, including steps of: dispersing single walled carbon nanotube in an organic solvent (Step 1); preparing a composite solution by adding and dispersing metal oxide in the mixed solution prepared in step 1 (Step 2); and depositing the obtained composite solution onto a substrate (Step 3).
Further, regarding the organic solar cell laminated in the order of substrate/electrode/photoactive layer/P-type conductive membrane/electrode, the present invention provides organic solar cell having improved photovoltaic conversion efficiency, wherein the P-type conductive membrane is metal oxide/carbon-nanotube composite membrane which is prepared by dispersing single walled carbon nanotubes in an organic solvent, adding and dispersing metal oxides in the mixed solution to obtain a composite solution, and depositing the obtained composite solution onto a substrate.
According to the present invention, the metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell improves the movement of the hole generated in the photoactive layer by use of single walled carbon nanotube and thus improves the movement balance and speed of the entire electrons and holes. A method of preparing metal oxide/carbon-nanotube composite membrane according to the present invention can deposit the metal oxide/carbon-nanotube by using simple solution process, instead of vacuum process. Accordingly, an organic solar cell having the metal-oxide/carbon-nanotube composite membrane prepared according to the present invention provides improved photovoltaic conversion efficiency, and thus, the organic solar cell with low manufacturing cost and high efficiency can be provided.
The present invention provides metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell, by dispersing single walled carbon nanotube into organic solvent, adding and dispersing metal oxide in the mixed solution to prepare a composite solution, and depositing the obtained composite solution onto a substrate.
Hereinafter, the present invention will be explained in greater detail.
Metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell is prepared by dispersing single walled carbon nanotube into an organic solvent, adding and dispersing metal oxide in the mixed solution to obtain a composite solution, and depositing the obtained composite solution onto a substrate. Average granularity of metal oxide used to form the metal-oxide/carbon-nanotube is preferably between 20-50 nm. Average length of carbon nanotube is preferably between 0.1-1 μm and thickness of metal-oxide/carbon-nanotube composite membrane is preferably between 10-100 nm. If thickness of the metal-oxide/carbon-nanotube composite membrane is under 10 nm, thickness of the membrane becomes too thin, and thus, interface property to the photoactive layer is degradated and the possibility of detaching carbon nanotube from metal-oxide/carbon-nanotube composite membrane is increased. Accordingly, the membrane may not perform required function appropriately. Also, if thickness exceeds 100 nm, the distance for the hole to move increases, and thus, photovoltaic conversion efficiency deteriorates.
In addition, the present invention provides a method of preparing a metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell, including: dispersing single walled carbon nanotube in an organic solvent (Step 1); preparing a composite solution by adding and dispersing metal oxide in the mixed solution prepared in step 1 (Step 2); and depositing the composite solution prepared in step 2 onto a substrate (Step 3).
Each step will be explained in greater detail below.
In the present invention, step 1 is a step of dispersing single walled carbon nonotube into an organic solvent.
The organic solvent of step 1 may include isopropyl alcohol (IPA), dimethylformamide (DMF), or dimethyl sulfoxide (DMSO).
Also, in the present invention, step 2 is a step of preparing a composite solution by adding and dispersing metal oxide in the mixed solution prepared in step 1.
The metal oxide of step 2 may include a P-type metal oxide semiconductor nanoparticle, including copper oxide (CuO), nickel oxide (NiO), tungsten oxide (WO3), molybdenum oxide (MoO3), or vanadium oxide (V2O5).
Further, in the present invention, step 3 is a step of depositing the composite solution prepared in step 2 onto a substrate.
The deposition of step 3 may be performed by spin coating, spray coating, roll to roll coating (R2R), or dip coating.
In addition, regarding an organic solar cell laminated in the order of substrate/electrode/photoactive layer/P-type conductive membrane/electrode, the present invention provides an organic solar cell improved photovoltaic conversion efficiency, wherein the P-type conductive membrane is a metal oxide/carbon nanotube composite membrane prepared by dispersing single walled carbon nanotube into an organic solvent, preparing a composite solution through addition and dispersion of metal oxide in the mixed solution, and depositing the mixed solution onto a substrate.
Accordingly, the metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell according to the present invention improves the movement of the hole generated in the photoactive layer by use of single walled carbon nanotube and thus improves the movement balance and speed of the entire electrons and holes. A method of preparing metal oxide/carbon-nanotube composite membrane according to the present invention can deposit the metal oxide/carbon-nanotube by using simple solution process, instead of vacuum process. Accordingly, an organic solar cell having the metal-oxide/carbon-nanotube composite membrane prepared according to the present invention provides improved photovoltaic conversion efficiency, and thus, the organic solar cell with low manufacturing cost and high efficiency can be provided.
The following is provided to explain the details of the present invention with examples and experimental examples. Wherein, the present invention is only illustrated by the examples, thus, the present invention is not limited as the examples.
Single walled carbon nanotube was placed into isopropanol or dimethylformamide (DMF) and dispersed with ultrasonicator. Copper oxide (CuO) nano-particles were added therein and dispersed with ultrasonicator, and thus, mixed solution was prepared. The temperature of the mixed solution was set to 60° C. The mixed solution was deposited by spin-coating onto a substrate on which a photoactive layer was prepared, and the substrate heated at 150° C., and thus, metal-oxide/carbon-nanotube composite membrane was prepared to be used as a P-type conductive membrane for an organic solar cell.
Transparent conductive oxide (TCO) (i.e., Indium Tin Oxide (ITO)) was deposited onto a substrate (i.e., glass), and ZnO was deposited onto the TCO membrane by electro-chemical method or spin-coating using sol-gel solution. Thickness of ZnO membrane can be regulated by regulating applied voltage, voltage applying time, and concentration ratio of solution for synthesizing ZnO. Poly3-hexylthiophnen (P3HT) and 6,6-phenyl-C61-butyric acid methyl ester (PCBM) were dispersed to dichlorobenzene (DCB) solvent with 1:1 ratio and deposited onto ZnO membrane by spin-coating. Single walled carbon nanotube was dispersed to isopropanol, and copper oxide (CuO) nanoparticles were added and dispersed to prepare a composite solution. The composite solution was deposited onto P3HT:PCBM membrane by spin-coating. Thickness of carbon nanotube-copper oxide composite membrane can be regulated by regulating spinning speed (rpm) of the spin coating equipment. Ag electrode was deposited onto the carbon nanotube-copper oxide composite membrane with vacuum device; therefore, an organic solar cell of the present invention was prepared (See
Copper oxide (CuO) nanoparticles were used as a P-type conductive membrane instead of ZnO and an organic solar cell was prepared according to the same steps of the example 2 (See
In order to investigate the nano-structure of the metal oxide/carbon nanotube composite membrane prepared according to the present invention, the membrane was analyzed with TEM (JEOL, 2010) and the result is presented in
Referring to
The following experiment was performed in order to measure photovoltaic conversion efficiency for the organic solar cell prepared according to a method of the present invention and the organic solar cell prepared according to the conventional method and the result is presented in
The photovoltaic conversion efficiency of the organic solar cells was measured with solar simulator. The area of photoactive layer was adjusted to 0.38 cm2 with mask, and simulator of the emitted sun-light was measured under the condition of AM 1.5 and 1 sun.
Referring to
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0131075 | Dec 2009 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR10/09118 | 12/20/2010 | WO | 00 | 6/21/2012 |