Metal-phosphorus-nitrogen polymers, metal-phosphorus compounds and methods of preparation thereof

Information

  • Patent Grant
  • 5286469
  • Patent Number
    5,286,469
  • Date Filed
    Tuesday, December 17, 1991
    33 years ago
  • Date Issued
    Tuesday, February 15, 1994
    30 years ago
Abstract
The invention provides metal-phosphorus-nitrogen polymer compounds and methods for their preparation at low temperatures using readily available starting materials. One group of compounds, metal-phosphazene polymers, are comprised of repeating units of [PN].sub.3 rings linked to form polymers through P--X--M--X--P bonds. The linking atoms X are either NH.sub.2 or O, and M is a metal cation. Another group of the compounds have the generic formula M.sub.a (P.sub.2 O.sub.5).sub.b (NH.sub.3).sub.c O.sub.d.eH.sub.2 O. If the metal-phosphorus-nitrogen polymers are heated to a sufficiently high temperature to reduce the nitrogen/phosphorus ratio, additional novel solid metal phosphorus compounds of the invention are formed, many of which have a foamed, porous structure. The properties of the compounds of the invention can be varied by choice of metal and reaction conditions to create materials having useful conductive, magnetic, optical, catalytic, or ion-exchange properties.
Description

FIELD OF THE INVENTION
The invention relates to solids, and more particularly to metal-phosphazene polymers and metal-phosphate compounds.
BACKGROUND OF THE INVENTION
Novel solid materials with desirable physical and chemical properties are constantly being sought for commercial applications. Economical, low temperature synthetic routes to new solids from readily available starting materials are of particular interest. Especially desirable attributes for novel materials are easy variability of physical and chemical properties and high thermal, storage and in-use stability.
One class of compounds used as starting material for new solids is the phosphazenes, compounds of the formula (NPX.sub.2).sub.n, with alternating phosphorus and nitrogen atoms. Soluble linear chlorophosphazene, [NPCl.sub.2 ].sub.n, is desirable as a primary source for making substituted phosphazene polymers (e.g., [NP(OR).sub.2 ].sub.n), many of which are useful as flame retardants and low-temperature elastomers. Solid hexachlorocyclotriphosphazene, [NPCl.sub.2 ].sub.3, undergoes polymerization at 200.degree. C.-300.degree. C. to [NPCl.sub.2 ].sub.n. The reaction is difficult to control because of cross-linking, air sensitivity, and the formation of insoluble gel products. The molecule [NPCl.sub.2 ].sub.3 is a potential hexa-coordinating ligand and might be expected to react with metal salts to form cationic metal-bridged polymers, [(ring)P--Cl--M.sup.II --Cl--P(ring)].sub.n, with useful properties. However, this approach does not work well in practice because [NPCl.sub.2 ].sub.3 is very water-sensitive. Reaction of [NPCl.sub.2 ].sub.3 with water results in formation of hydrochloric acid (HCl) which prevents formation of the metal-bridged polymer by competing protonation.
SUMMARY OF THE INVENTION
One aspect of the present invention provides novel solid metal-phosphorus-nitrogen polymers which can be made at low temperatures. In one group of compounds of the invention, repeating units of phosphazene [PN].sub.3 rings are linked by P--X--M--X--P bonds to form a polymer. The linking atoms X are either NH.sub.2 or O, and M is a metal cation. Another group of the compounds have the generic formula M.sub.a (P.sub.2 O.sub.5).sub.b (NH.sub.3).sub.c O.sub.d.eH.sub.2 O. Preferably, M is Mg.sup.II, Mn.sup.II, Fe.sup.II, Co.sup.II, Ni.sup.II, Cu.sup.II, or Zn.sup.II. Compositions having Al.sup.III, Cr.sup.III, Fe.sup.III, or V.sup.IV may also be formed. A wide range of metal-phosphorus-nitrogen polymers with various properties may thus be realized. Generally, the method of preparing the metal-bridged polymers involves reacting [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl with a metal salt in an aqueous environment, preferably either at room temperature or under reflux conditions, and isolating the precipitate.
In another aspect of the invention, the metal-phosphorus-nitrogen polymers are heated to a sufficiently high temperature to reduce the nitrogen/phosphorus ratio. The resulting solid products are novel metal-phosphorus compounds, many of which have a foamed, porous structure.
The compounds of the invention have a wide range of properties, making them appropriate for uses as diverse as fire retardants, lubricants, ion-exchangers, ingredients in glazes, and heterogenous catalysts. The proportions of the reactants, the choice of the reaction conditions, and the selection of the metal reactant will all influence the properties of the final product.
Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof and from the claims.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The starting materials for the polymers of the invention may be phosphazenes having the formula (NPX.sub.2).sub.n. For example, a phosphonitrilic halide such as (NPCl.sub.2).sub.3 can be reacted with ammonia (NH.sub.3) to provide [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl. The [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl product is an air-stable, white solid that is insoluble in cold water. The description of this reaction is given by R. A. Shaw in "Phosphorus and Sulfur" (1978), Vol. 4, page 101, which is incorporated herein by reference.
The phosphonitrilic compound [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl is then reacted with a metal salt in an aqueous environment to produce a metal-phosphorus-nitrogen polymer of the invention. The co-production of ammonium salts, which are only weakly acidic, permits the reaction to go to completion. As will be described in further detail below, the reaction conditions, the metal cation used, and the proportions of the initial reactants are all determinative of the molar ratios of the included elements and the specific linking atoms in the final product.
One class of products is composed of polymers having repeating units of metal-linked phosphazene [PN].sub.3 rings. The subunit of a typical metal-phosphazene polymer has the formula ##STR1## The [PN].sub.3 ring is linked to at least one other [PN].sub.3 ring through one or more (P--X).sup.1 --M--(X--P).sup.2 bonds where the phosphorus of said (P--X).sup.1 is a member of a first [PN].sub.3 subunit and the phosphorus of said (X--P).sup.2 is a member of a second [PN].sub.3 subunit and where X is either NH.sub.2 or O and where M is a metal cation. The X substituents on the phosphazene ring not involved in metal-linked bonds are in the form NH.sub.2 or OH.
If the starting materials are reacted at room temperature, the products precipitating from solution have intact phosphazene rings and retain from zero to six of the original six NH.sub.2 groups of the precursor phosphonitrilic compound. Different products, as determined by elemental analysis, usually having different properties from those formed at room temperature, are formed from the same precursors if the reaction takes place at higher temperatures. In general, as the reaction temperature is increased from room temperature to 100.degree. C. (reflux conditions), the nitrogen content (and, therefore, the ratio N/P) of the product polymer is decreased.
A different class of products, novel metal-phosphorus compounds, is produced if the products prepared in the original reaction are heated to a high temperature, e.g., about 600.degree. C. The products of high temperature treatment have considerably reduced to no nitrogen content, and a number of them are unusual foamed, or porous, materials.
The descriptions and charts below give sample reaction conditions and products formed for a broad spectrum of metal systems.





EXAMPLE I--ROOM TEMPERATURE PROCEDURE
The reactants are generally the phosphonitrilic compound, e.g., [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl (A) and a metal salt (usually the halide, nitrate or, preferably, the sulfate hydrate) (B) and distilled water. In a typical experiment, 5.5 gm (0.01 mol) of A is treated with 0.01 mol of B in 100 mL of distilled water, and the mixture is stirred at room temperature for 24 hr. The precipitated product is filtered, washed several times with water and methanol and then air dried. No precipitate is obtained with common magnesium or nickel salt hydrates at room temperature. The colors, yields and analytical data of the precipitated solids are shown in Table I.
TABLE I__________________________________________________________________________Room Temperature ProductsFormula M.sub.a [(PN).sub.3 O.sub.b (OH).sub.c (NH.sub.2).sub.d ].sub.e.fH.sub.2 O Solubility Solubility in 0.1N Anal. (%).sup.1 Molar Ratios 0.1N HCl NaOHM Color Yield.sup.2 a b c d e f M P N N/P N/M Cold Hot Cold Hot__________________________________________________________________________Al(OH).sub.2 White powder 4.03 3 3 0 3 1 19 10.9 14.2 11.6 1.8 2.1 Insol. S. sol. Insol. Insol.FW.sup.3 708 11.4 13.1 11.4Co(OH) Pink powder 0.43 3 3 0 3 1 1 41.8 17.9 16.6 2.1 1.7 Insol. Insol. Insol. S. sol.FW.sup.3 477 37.1 19.5 17.6 blueCr Green powder 3.00 5 5 1 0 2 35 16.9 17.5 8.1 1.0 1.8 Insol. Insol. Insol. Insol.FW.sup.3 1554 16.7 17.9 8.1Cu Greenish blue 1.88 2 4 0 2 1 7 28.2 19.1 13.4 1.6 2.2 Insol. Insol. Insol. S. sol.FW.sup.3 484 powder 26.2 19.2 14.4 blueFe(OH).sub.2 Khaki powder 1.54 4 0 0 6 1 22 21.1 9.4 14.2 3.3 2.7 Insol. Insol. S. ChangedFW.sup.3 974 22.9 9.6 12.9 to brown ppt.Mn Cream powder 0.16 1 1 2 3 2 14 7.0 24.0 21.1 1.9 11.8 Insol. Insol. S. ChangedFW.sup.3 773 7.1 24.1 21.7 to brown ppt.VO(OH).sub.2 Gray-green 2.60 4 0 0 6 1 36 16.4 7.4 9.2 2.8 2.1 Insol. S. sol. S. Sol.FW.sup.3 1283 powder 15.9 7.2 9.8 bluish reddish violet brownZn White powder 1.64 3 3 2 2 2 10 23.5 24.8 18.9 1.7 3.8 Sol. Ppted Insol. Insol.FW.sup.3 782 25.1 23.8 17.9 when heated__________________________________________________________________________ .sup.1 Second row of each entry shows the calculated elemental percentages. .sup.2 Typical yield (gm) under standard experimental conditions. .sup.3 Calculated formula weight of product.
From the data given in Table I it can be seen that all the tested room temperature products have an N/P molar ratio .gtoreq.1.0, implying the presence of intact phosphazene rings [PN].sub.3. From zero to six of the original six NH.sub.2 groups of the phosphonitrilic compound (A) remain in the products. Only two products (those containing V and Fe) have six NH.sub.2 groups and these products have the highest formula weights. Each phosphazene ring generally coordinates from two to four metal units. Exceptions are the products containing Mn (where one metal unit coordinates two phosphazene rings ), Cr (1.7 Cr per phosphazene ring) and Zn (1.5 Zn per phosphazene ring). The highest yields (lowest solubility) are observed for the Al and Cr products, which are M.sup.III systems. With the notable exceptions of Co (0.33) and Mn (14), the room temperature products contain from three to nine water molecules per metal center.
EXAMPLE II--REFLUX PROCEDURE
In a typical experiment, 5.5 gm (0.01 mol) of solid compound (a) described above and 100 mL of distilled water are placed in a 250 mL round bottom flask fitted with a reflux condenser. An equimolar amount of solid metal salt (B) is added and the mixture is refluxed for two hr. After the mixture is cooled to room temperature, the precipitated solid is filtered and washed several times with water and methanol and then air-dried. The colors, yields and analytical data of the precipitated solids prepared by the reflux procedure are shown in Table II.
TABLE II__________________________________________________________________________Reflux Temperature ProductsFormula M.sub.a (P.sub.2 O.sub.5).sub.b (NH.sub.3).sub.c O.sub.d.eH.sub.2 Molar Solubility in Solubility in 0.1N Anal. (%).sup.1 Ratios HCl NaOHM Color Yield.sup.2 a b c d e M P N N/P N/M Cold Hot Cold Hot__________________________________________________________________________Al White 3.79 10 7 11 15 35 11.4 18.8 6.5 0.77 1.1 Insol. S. sol. Sol. Sol.FW.sup.3 2317 powder 11.4 18.3 6.5Co Lavender 2.72 15 5 11 15 0 47.1 16.9 8.5 1.1 0.77 S. sol. Ppted when Insol. Insol.FW.sup.3 2020 powder 43.7 15.3 7.6 pink heatedCr Green 4.71 6 5 8 9 27 17.1 17.7 6.2 0.77 1.3 Insol. Insol. Insol. Insol.FW.sup.3 1788 powder 17.4 17.1 6.3Cu Pale blue 2.19 63 21 22 63 93 40.2 13.0 3.0 0.52 0.34 Sol. Sol. blue Insol. Insol.FW.sup.3 10037 powder 40.0 13.0 3.1 blue change to blackFe Yellow- 4.40 14 4 15 14 65 26.8 8.5 6.9 1.8 1.1 Insol. Insol. S. S. sol.FW.sup.3 2998 brown 26.1 8.3 7.0 brown dark powder brownMg White 1.13 10 12 24 10 20 8.2 26.4 11.9 0.96 2.4 S. sol. S. sol. Insol. Insol.FW.sup.3 2875 powder 8.4 25.8 11.7Mn Pale pink 2.09 4 7 17 4 17 11.6 22.9 12.7 1.2 4.3 S. sol. White ppt. Insol. ChangedFW.sup.3 1880 powder 11.7 23.1 12.7 when changed to brown heated to ppt.n ppt.Ni Pale green 2.02 10 7 18 10 32 22.4 16.4 9.8 1.3 1.8 Sol. Sol. Insol. Insol.FW.sup.3 2623 powder 22.4 16.5 9.6V Pale blue 2.53 43 5 16 86 212 25.9 3.6 2.7 1.6 0.37 Sol. Sol. blue S. Sol.FW.sup.3 8412 powder 26.0 3.7 2.7 blue reddish brownZn White 2.17 6 4 10 6 11 27.6 17.3 9.9 1.3 1.7 Sol. Turbid S. S. sol.Fw.sup.3 1424 powder 27.5 17.4 9.8 when heated__________________________________________________________________________ .sup.1 Second row of each entry shows the calculated elemental percentages. .sup.2 Typical yield (gm) under standard experimental conditions. .sup.3 Calculated formula weight of product.
From the data presented in Table II it can be observed that precipitated products are obtained under reflux conditions with Mg and Ni salts as reactants whereas these two metals do not lead to precipitated products at room temperatures. The product N/P ratio is always lower under reflux conditions than at room temperature, indicating that a higher reaction temperature favors the hydrolysis of NH.sub.2 substituents on the phosphazene ring. This is substantiated by lower N/M molar ratios under reflux conditions.
With three exceptions, the N/P ratio varies between 0.96 (Mg) and 1.8 (Fe) under reflux. In this range, the pattern of variation of N/P with metal is similar to that at room temperature. Since the intact phosphazene ring has N/P=1.0 when all the NH.sub.2 groups have been hydrolyzed to OH groups, most of the products appear to contain intact PN rings. On this basis, those with N/P>1.0 have one or two residual NH.sub.2 groups per phosphazene ring. The notable exceptions are the products prepared from Al and Cr (N/P=0.77) and Cu (N/P=0.52). These products evidently contain hydrolyzed PN rings. The calculated formula weights under reflux are higher than at room temperature, consistent with a higher degree of hydrolysis and polymerization. This is consistent with polymerization through M-O linkages. The products under reflux conditions always contain fewer water molecules of crystallization per metal center than those obtained at room temperature. Aside from the above analytical differences, a number of the products formed under reflux conditions have different acid/base solubility properties from those products prepared from the same metal at room temperature. For example, the product obtained at reflux with aluminum is soluble in cold 0.1 M NaOH while the product obtained at room temperature is insoluble.
EXAMPLE III--HIGH TEMPERATURE PROCEDURE
A solid sample (typically 100 mg) of each precipitate obtained from the room temperature or reflux procedure is heated in air in a porcelain or glass crucible from room temperature to 600.degree. C. in 15 min, held at 600.degree. for 3 hr, and then allowed to cool to room temperature in the oven (typically 2 hr). The colors and analytical data for the solid products obtained on standing at room temperature are shown in Tables III and IV.
TABLE III______________________________________High Temperature Products(prepared from room temperature products)M Color of Product______________________________________Al White powderCo Blue foamed hard lumpsCr Gray brown sof powderCu Foamed pale-green solidFe Off-white chalky chunksMn Hard off-white massV Shiny hard green-gold solidZn Gray hard solid______________________________________
TABLE IV______________________________________High Temperature Products(prepared from reflux products) Anal. (%).sup.1Product Color FW.sup.2 M P N______________________________________AlPO.sub.4 White powder 244 21.7 20.9 0 22.1 25.4 0CO.sub.22 (P.sub.3 O.sub.2).sub.5 Foamed blue 1921 65.6 24.2 0 solid 67.5 24.2 0Cr.sub.2 (P.sub.2 O.sub.5).sub.2 O.sub.3.13H.sub.2 O Brown powder 770 14.0 15.7 0 13.5 16.1 0Cu.sub.3 (PO.sub.2).sub.3 Blue-green 381 47.0 17.1 0 powder 50.1 16.3 0Fe.sub.3 (PO.sub.4).sub.2.8H.sub.2 O Foamed yellow 501 33.9 12.6 0 solid 33.3 12.4 0Mg.sub.2 (PO.sub.3).sub.5 Hard white 444 11.1 33.4 0 mass 11.0 34.9 0Mn(P.sub.2 O.sub.5).sub.2 N.7H.sub.2 O Foamed off- 479 10.7 27.8 3.1 white solid 11.5 25.9 2.9Ni.sub.3 (P.sub.2 O.sub.5).sub.2 N.4H.sub.2 O Tan, chunky, 546 31.6 23.0 2.9 soft solid 32.2 22.7 2.6(VO).sub.8 (PO.sub.4).sub.2 O.sub.5.9H.sub.2 O Foamed hard 967 41.1 6.4 0 black beads 42.1 6.4 0Zn.sub.11 (PO.sub.3).sub.10 Hard gray solid 1509 49.5 21.8 0 47.6 20.5 0______________________________________ .sup.1 Second line in each entry shows calculated elemental analysis. .sup.2 Calculated.
As can be seen from the analytical data presented in Table IV, heating precipitates from reflux experiments at 600 .degree. C. for three hours gives orthophosphate products only with Al, Fe and V. All other products are unusual phosphorus-containing compounds. Only two products (Mn and Ni) contain any detectable N. The pattern of variation of the molar P/M ratio in the products is similar to that of the materials that are heated. This means that the formulas and properties of the high temperature products are set by choice of the precursors, as is illustrated further by the data presented in Tables V and VI. Of particular practical importance is the synthesis of foamed (porous) materials in several metal systems.
TABLE V__________________________________________________________________________Comparison of High Temperature Products from PrecursorsMade at Room and Reflux Temperatures Anal. (%).sup.1Material Heated Product Color FW.sup.2 M P__________________________________________________________________________Cu.sub.63 (P.sub.2 O.sub.5).sub.21 (NH.sub.3).sub.22 O.sub.63.93H.sub.2O.sup.3 Cu.sub.2 (PO.sub.2).sub.3 Foamed pale green 316 37.7 27.7 solid 40.2 29.4Cu.sub.2 [(PN).sub.3 O.sub.4 (NH.sub.2).sub.2 ].7H.sub.2 O.sup.4 Cu.sub.3 (PO.sub.4).sub.2 Blue-green powder 381 47.0 17.1 50.1 16.3__________________________________________________________________________ .sup.1 Second line of each entry gives calculated elemental data for assigned product. .sup.2 Calculated. .sup.3 Obtained at reflux temperature (see Table II). .sup.4 Obtained at room temperature (see Table I).
TABLE VI______________________________________Compariston of High Temperature Products from PrecursorsMade at Room and Reflux TemperaturesElement Product.sup.1 Product.sup.2______________________________________Fe Off-white chalky chunks Foamed yellow solidMn Hard, off-white solid Foamed off-white solidV Shiny, hard green-gold Foamed, hard black beads solid______________________________________ .sup.1 Precursor made at room temperature. .sup.2 Precursor made at reflux temperature.
Products obtained at room temperature or reflux exhibit extremely weak X-ray powder patterns, indicating that they are amorphous. The main effects of treatment at 600.degree. C. are sharpening of .nu..sub.P-O ir bands, the appearance of strong .nu..sub.M-O bands (at ca. 600 cm.sup.-1 for M.sup.II and 1100 cm.sup.-1 for V.sup.IV), and the appearance of sharp X-ray powder diffraction peaks, indicating crystallization.
The novel solids according to the invention have a wide range of uses depending on their specific properties. For example, the foamable compounds are fire resistant and are useful replacements for organic phosphazenes. Some of the materials, e.g., the high temperature Cr compound and the Ni compound prepared under reflux conditions, are slippery and can be used as lubricants. Protective or lubricant coatings can be formed from those products soluble in acid or base. The high temperature products are useful as metal containing fillers for polymers or copolymers or as metalizing agents for refractory materials. Heated samples can be pelletized, making some products suitable for conductivity and optical measurements. Others are possible supports for metal, alloy and mixed-metal oxide catalysts.
Treatment of a suspension of the colorless Al or Zn compounds prepared at room temperature with a molar deficit of copper(II) sulfate in water at room temperature gives a colorless solution and blue solids, the intensity of color increasing with the amount of copper (II) in the treatment solution. Thus, aluminum and zinc in the metal-phosphazene products easily can be ion-exchanged with copper (and, presumably, with other M.sup.II ions) that form stronger bonds to the phosphazene rings than aluminum and zinc, from doping levels up to the level of complete metal replacement. This suggests useful ion-exchange applications, for example in high performance liquid chromatography, in water treatment, and in precious metal recovery from process streams.
Of special interest are the extensive decorative possibilities for using the compounds of the invention. For example, glazes can be prepared for porous glasses, e.g., from the vanadium compound, or metal components can be added to a ceramic body, either to the fired ceramic or to the slip as a reactive component. The product prepared from zinc at room temperature can be drawn into metallated fibers.
Other embodiments of the invention will be apparent to those skilled in the art from a consideration of this specification or practice of the invention disclosed herein. It is intended that the specification and the examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims.
Claims
  • 1. A solid metal-phosphazene polymer compound comprising a phosphazene [PN].sub.3 subunit having the formula ##STR2## wherein said [PN].sub.3 subunit is linked to at least one other [PN].sub.3 subunit through one or more (P--X).sup.1 --M--(X--P).sup.2 bonds where the phosphorus of said (P--X).sup.1 is a member of a first [PN].sub.3 subunit and the phosphorus of said (X--P).sup.2 is a member of a second [PN].sub.3 subunit, X is either NH.sub.2 or O and where M is a metal unit; and wherein
  • the X substituents not linked in (P--X).sup.1 --M--(X--P).sup.2 bonds are NH.sub.2 or OH.
  • 2. A method for preparation of a solid metal-phosphorus-nitrogen compound comprising the steps of:
  • providing hexaminocyclotriphosphazene, [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl;
  • reacting said [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl with a metal salt in an aqueous environment; and
  • isolating the reaction product as a precipitate.
  • 3. The method of claim 2 wherein the step of providing [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl further comprises reacting [NPCl.sub.2 ].sub.3 with ammonia to obtain [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl.
  • 4. The method of claim 2 wherein the metal of the metal salt of the reacting step is selected from the group consisting of Mg.sup.II, Mn.sup.II, Fe.sup.II, Co.sup.II, Ni.sup.II, Cu.sup.II, Zn.sup.II, Al.sup.III, Cr.sup.III, Fe.sup.III, and V.sup.IV.
  • 5. The method of claim 2 wherein the metal salt of the reacting step is selected from the group consisting of halides, nitrates, and sulfates.
  • 6. The method of claim 2 wherein the reacting step comprises refluxing [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl with a metal salt and water.
  • 7. The method of claim 2 wherein the reacting step comprises treating [NP(NH.sub.2).sub.2 ].sub.3.6NH.sub.4 Cl with a metal salt and water at room temperature.
  • 8. The method of claim 2 further comprising the subsequent step of washing the precipitate with water.
  • 9. The method of claim 8 further including a subsequent drying step.
  • 10. The product prepared by the method of claim 2.
  • 11. The product prepared by the method of claim 6.
  • 12. The product prepared by the method of claim 7.
U.S. GOVERNMENT RIGHTS TO THE INVENTION

the work leading to this invention was carried out with United States Government funds. Therefore, the U.S. Government has certain rights in this invention.

US Referenced Citations (21)
Number Name Date Kind
2596935 Malowan May 1952
3869294 Lanier et al. Mar 1975
3948820 Reynard et al. Apr 1976
4110421 Dieck et al. Aug 1978
4124567 Dieck et al. Nov 1978
4128710 Fieldhouse et al. Dec 1978
4129529 Fieldhouse et al. Dec 1978
4139598 Reynard et al. Feb 1979
4157425 Dieck et al. Jun 1979
4175181 Hergenrother et al. Nov 1979
4223080 Auborn Sep 1980
4258172 Allcock et al. Mar 1981
4321217 Allcock et al. Mar 1982
4374781 Allcock et al. Feb 1983
4374815 Li Feb 1983
4522795 Li Jun 1985
4522796 Li Jun 1985
4522797 Pettigrew et al. Jun 1985
4522798 Lum et al. Jun 1985
4551317 Li Nov 1985
4945140 Kolich et al. Jul 1990
Foreign Referenced Citations (1)
Number Date Country
883587 Nov 1961 GBX
Non-Patent Literature Citations (2)
Entry
Allcock, Phosphorus-Nitrogen Compounds, Academic Press, 1972 pp. 370-380.
Stone et al. Inorganic Polymers, Academic Press, 1962, pp. 450-453.