The present invention relates to a so-called corrugated metal plate, in which both of cross-sectional shapes respectively along one particular direction and a direction intersecting the same are formed into a wave shape, and to a metal cover employing the metal plate. For example, it relates to a metal plate, which is suitably used as one that is arranged close to an automobile's heat generating section for the purpose of heat insulation, and to a metal cover employing the metal plate.
A corrugated metal plate is frequently used as a heat insulation cover (also referred to as a heat insulator, including one having a vibration-damping function and/or sound absorption function) that is arranged close to an exhaust manifold or exhaust pipe (muffler) as an automobile's heat generating section. A typical corrugated metal plate is proposed in Patent Publication 1.
The corrugated metal plate disclosed in Patent Publication 1 is one which is prepared by using a thin metal plate of aluminum or the like as a flat plate material and in which both of cross-sectional shapes respectively along two directions, that is, one particular direction (X-direction) and a direction (Y-direction) perpendicular thereto are formed into a wave shape by a repetition of an alternate arrangement of a projection portion and a recess portion.
One described in Patent Publication 1 has one characteristic that is high in elastic property by having in a particular cross-section a so-called bag-shape recess portions 23 (see FIG. 5 of Patent Publication 1) in which a bottom side of an inner portion has a width wider than that of an open side (mouth side).
As to the recess portion in which a bottom side of an inner portion has a width wider than that of an open side (mouth side) in a particular cross-section, from the viewpoint of press working property, it is nothing else but a condition in which the shape of the recess portion turns into a hooking relation by an undercut or inverse relation relative to a direction of withdrawal of a press tool (mold) that makes the recess portions.
In the corrugated metal plate described in Patent Publication 1, however, the wave shape by a roughness repetition to include the recess portions has a special shape. Therefore, it is necessary to conduct the press operation or bending operation several times by using a special pressing facility. Thus, it is forced to have an increased cost by an increase of the number of working operations. In addition, there exists a part where a bending operation has been conducted such that the plate members are locally overlapped in connection with an inverse shape of the recess portion. Therefore, in this part, stress concentration tends to occur, for example, in the case of receiving the vibration force repeatedly.
Furthermore, in the corrugated metal plate described in Patent Publication 1, since both of the cross-sectional shapes in the two directions are corrugated, it is possible to expect the surface rigidity improvement effect. However, the difference of rigidity against bending between X-direction and Y-direction tends to result in a significant strength difference. Furthermore, the shape is significantly different between the front side and the back side. Therefore, for example, in the case of forming into a predetermined three-dimensional shape as a heat insulation cover that is a product, the corrugated metal plate turns into a shape having directional property including a front-and-back relation. As a result, the corrugated metal plate is not superior in usability.
Furthermore, in case that, for example, the corrugated metal plate described in Patent Publication 1 is used as a base plate and then this is formed into a predetermined three-dimensional shape (product shape), for example, as a heat insulation cover that is arranged close to an exhaust manifold that is an automobile's heat generating section, by conducting a bending operation to have a pan shape (shallow pan shape or deep pan shape) or cup shape, the recess portion, in which bottom side of an inner portion has a width wider than that of an open side (mouth side) as mentioned above, may unexpectedly function as a liquid pool.
Patent Publication 1: Japanese Patent Application Publication 2007-262927
The present invention was made in view of the above-mentioned task. In particular, it provides a metal plate and a metal cover, in which a corrugation or embossing work for forming both of cross-sectional shapes into a wave shape is easy, and which are usable irrespective of directional property by minimizing the difference of flexural rigidity between the two directions.
The present invention is one in which its main metal plate has an upper surface, a side wall surface, a lower surface and a side wall surface in this order in succession to form a row having a shape of a projection and a recess, wherein each side wall surface is formed into a wave shape in plan view, and wherein the upper surface and the lower surface are respectively formed into wave shapes in their cross-sections along their rows' direction.
The metal plate of the present invention can be used not only as a heat insulation cover of an automobile's heat generating section, but also as a structural material in various industrial fields other than automobile, as mentioned hereinafter. It can be used in various uses other than heat insulation, such as sound insulation material, sound absorbing material, wind insulation material, light insulation material, etc.
According to the metal plate of the present invention, both of cross-sectional shapes along two directions, that is, their respective rows' direction of the row having a shape of a projection and a recess and a direction intersecting the same are in a corrugated shape. Therefore, not only it is high in second moment of area and is improved in surface rigidity, but also it is possible to minimize the difference of flexural rigidity in the two directions. For example, even in the case of producing a heat insulation cover or the like by forming into a predetermined three-dimensional product shape, the directional property does not matter, and the corrugated metal plate becomes superior in usability.
In
In case that one particular direction is defined as X-direction and that a direction perpendicular to this X-direction is defined as Y-direction, in the corrugated metal plate 1 shown in
That is, as shown in
As a plan view shape of projection row 2, as shown in
The plan view shape of this projection row 2 also appears even in recess row 3 adjacent to projection row 2. As shown in
When viewing the cross-sectional shape along the longitudinal direction (X-direction) of projection row 2, as shown in
The cross-sectional shape along the longitudinal direction (X-direction) of this projection row 2 also appears in recess row 3 adjacent to projection row 2. As shown in
Then, as clear from
Therefore, the corrugated metal plate 1 shown in
On the other hand, the corrugated metal plate 1 shown in
As is clear from above, in the metal plate 1 shown in
In other words, in case that the shape in the cross-section along Y-direction passing through edge lines 6a, 16a of crest portions 6, 16 in projection row 2 and recess row 3 is compared with a shape resulting from inverting the front and back of the shape in the cross-section along Y-direction passing through edge lines 15a, 5a of valley portions 15, 5 in recess row 3 and projection row 2, they coincide with each other in shape although projection row 2 or recess row 3 is displaced by one row in Y-direction.
Similarly, in case that the shape in the cross-section along X-direction of projection row 2 is compared with a shape resulting from inverting the shape along X-direction of recess row 3, they coincide with each other in shape although the crest portion 16, 6 or valley portion 15, 5 is displaced in X-direction by a half pitch. In other words, the corrugated metal plate 1 of the present embodiment has substantially the same projection-recess shape on the front side and the back side. Therefore, it is a so-called reversible metal plate that can be used and/or enables a product design without differentiating its front and back. Then, inclined wall surface 4 positioned between projection row 2 and recess row 3 extends in X-direction in a wave form in plan view as shown in
A wall surface interposed between projection row 2 and recess row 3 is turned into inclined wall surface 4. This is also effective for suppressing the occurrence of fracture (fissure or crack) of corrugated metal plate 1. One get the impression as if it appears to become advantageous in strength, for example, if one turns a wall surface interposed between projection row 2 and recess row 3 as a boundary wall shared thereby into a vertical wall and if one tries to decrease the pitch defined between those projection row 2 and recess row 3 to increase density of them. On the other hand, irrespective of being inclined wall surface 4 or being the vertical wall, fracture tends to occur by stress concentration at a raised portion of the wall surface if the wall surface is steeply raised. In view of this point, as mentioned above, the wall surface interposed between projection row 2 and recess row 3 is turned into inclined wall surface having a wave shape in plan view. Furthermore, provided that the pitch defined between projection row 2 and recess row 3 is constant, the adaptation of inclined wall surface 4 decreases the flat base plate's area and therefore becomes advantageous in terms of material cost, too, as compared with the adaptation of the vertical wall in place of inclined wall surface 4.
The corrugated metal plate 1 of such shape is formed by pressing with only a single machining, for example, by putting a flat base plate between upper and lower molds having irregularities of a predetermined pattern and then pressure clamping. Alternatively, it is formed by pressing with only a single machining similar to the above, by sending a flat base plate into a meshing section of gear-shape rotary molds formed with irregularities of a predetermined pattern.
The reason why it can be formed into a predetermined shape by a single pressing is based on that, as shown in
Therefore, such corrugated metal plate 1 can be prepared to have a predetermined shape by only a single pressing operation as mentioned above. Thus, the press molds can have a simple structure, and the workload becomes the minimum, thereby lowering the cost.
Furthermore, as shown in
This can be explained as follows. In the case of bending the corrugated metal plate 1 along X-direction, the edge lines of crest portions 6, 16 and valley portions 5, 15 in each of projection row 2 and recess row 3 are perpendicular to X-direction. Therefore, it can show a sufficient resistance against the bending force. Furthermore, in the case of bending the corrugated metal plate 1 along Y-direction, the edge lines of crest portions 6, 16 and valley portions 5, 15 in each of projection row 2 and recess row 3 are along Y-direction. Therefore, one gets the impression as if bending tends to occur from those edge lines as starting points. However, as is clear from
Moreover, the shape on the front side is substantially the same as that on the back side. Not only there is no need to differentiate the back side and the front side, but also flexural rigidity in X-direction and that in Y-direction are similar. Therefore, it is possible to minimize the difference between them. This means that, when using the corrugated metal plate 1 as a mechanical structure, not only there is no need to differentiate the front side and the back side, but also the directional property of X-direction and Y-direction does not matter. As a result, for example, in the case of conducting a product design of an automotive engine's heat insulation cover, etc. by using corrugated metal plate 1 as a base plate, its usability becomes extremely good.
Furthermore, it does not have an extremely bent region where blanks are stacked. Therefore, for example, even if it receives a repeated vibration force, there is no risk of the occurrence of cracks and/or fracture caused by stress concentration.
Furthermore, as mentioned above, projection row 2 and its adjacent recess row 3 share inclined wall surface 4 therebetween. Therefore, even if corrugated metal plate 1 is used in any direction, a region functioning as a liquid pool is not generated. As a result, it is possible to prevent the occurrence of secondary defects caused by accumulation of oil, rain water, etc. In particular, it also becomes a preferable one, even in the case of using it particularly as a heat insulation cover that is arranged close to an exhaust manifold as an automobile's heat generating section.
Corrugated metal plate 1 used as this heat insulation cover was prepared as mentioned above by using a flat aluminum plate having a thickness of 0.6 mm as a base plate and conducting an embossing corrugation machining thereon. The pitch defined between projection row 2 and recess row 3 shown in
This heat insulation cover 7 was subjected to a high-temperature vibration test, a high-temperature tensile test, a heat insulation performance test, a sound vibration performance test, an electrolytic corrosion test, etc. As a result, it was confirmed to meet all of necessary performances needed in practical use.
Herein, corrugated metal plate 1 of the present embodiment is not limited to the use as a heat insulation cover for the above-exemplified exhaust manifold and other automobile's heat generating sections. For example, it can be widely used as a structural member in various industrial fields, such as architecture, home electric appliances and sports goods, as well as transport equipment such as automobiles, railways, watercrafts and aircrafts. As to its use, it can also be used as a heat exchanging material, a reinforcing material, etc. as well as various heat insulation materials, sound insulation materials, sound absorbing materials, wind insulation materials, light insulation materials, etc.
In this case, depending on use, thickness and material of a flat base plate for producing corrugated metal plate 1 are suitably selected. As material of the base plate, it is possible to use aluminum (for example, A1050), nonferrous metal plates other than aluminum one, metal plates represented by steel plate, and a composite material (cladding material) having two or three layers of a steel plate, a metal plate other than that, and a nonferrous metal. As corrugated metal plate 1 used for a vehicle-mounted, heat insulation cover, etc., aluminum or an aluminum-based material is desirable from the viewpoint of weight reduction. As to its thickness too, for example, one having a range of about 0.15-1.0 mm is desirable.
Thus, corrugated metal plate 1 of the present embodiment has a shape that can be prepared by conducting a necessary bending machining with a substantially single step. Therefore, it is possible to reduce the cost by decreasing the number of the press machinings. Furthermore, the recess portion and/or valley portion does not function as a liquid pool. Thus, it is possible to prevent the occurrence of secondary defects based on a part functioning as a liquid pool as before.
In this second embodiment, an embossed pattern similar to that of
According to this second embodiment, it will exhibit functions similar to those of the above first embodiment. It is possible to expect a further improvement of surface rigidity. In particular, there is an advantage that it is possible to further decrease the difference between flexural rigidity in X-direction and flexural rigidity in Y-direction (a good X-Y rigidity ratio).
In this third embodiment, an embossed pattern similar to that of
This third embodiment also makes it possible to obtain advantageous effects similar to those of the first embodiment.
In the fourth embodiment shown in
In the sixth embodiment shown in
In the fourth to seventh embodiments shown in
Therefore, the fourth to seventh embodiments shown in
Number | Date | Country | Kind |
---|---|---|---|
2015-151387 | Jul 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/065234 | 5/24/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/022301 | 2/9/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3217845 | Reynolds et al. | Nov 1965 | A |
4044186 | Stangeland | Aug 1977 | A |
4332307 | Ito | Jun 1982 | A |
5594218 | Diaz | Jan 1997 | A |
8251175 | Englert | Aug 2012 | B1 |
20060065480 | Leehaug | Mar 2006 | A1 |
20180281040 | Abe | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
177 780 | Feb 1923 | GB |
H04-220128 | Aug 1992 | JP |
H07-1045 | Jan 1995 | JP |
2001-504393 | Apr 2001 | JP |
2007-175759 | Jul 2007 | JP |
2007-262927 | Oct 2007 | JP |
2009-184001 | Aug 2009 | JP |
5039233 | Jul 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20190009320 A1 | Jan 2019 | US |