1. Field of the Invention
The present invention generally relates to metal roofs. More particularly, the invention relates to a metal roof system for use over an existing low slope modified bitumen, single ply rubber or built up roof.
2. Description of the Related Art
Many structures utilize low slope modified bitumen, single ply rubber or built up roofs to protect the interior of the structure from exposure to the elements, including sun, rain, snow, and the like. Modified bitumen, single ply rubber or built up roofs are utilized on metal, brick, wood, and other structures. Generally, the structure is built with interior columns that support a series of rafters or beams attached at the top of the columns. The roof rafters or beams are typically attached in a low-sloped manner with a ridge at the top to provide downward drainage. Spanning the rafters or beams is a wooden deck or a light gauge metal deck which is in turn covered with insulation and modified bitumen, single ply rubber or built up roofing. The decking generally runs perpendicular to the rafters or beams and is configured to be interconnected providing structural support for the overlying low slope modified bitumen, single ply rubber or built up roof. The low sloped roof usually consists of a layer of insulation board covered by either a multi-layer built up roof, a single ply rubber membrane or a modified bitumen membrane and are secured to a roof deck structure by nails, screws, clips, or other type fasteners. These low slope roofs find applications in many building constructions, such as commercial and industrial buildings.
Over time, due to wear and other factors, the existing low slope modified bitumen, single ply rubber or built up roof is either removed and replaced with another modified bitumen, single ply rubber or built up roof or re-roofed by placing a new metal roof on top of the existing low slope modified bitumen, single ply rubber or built up roof. Re-roofing of such roofs with metal is difficult since the reroofing operation typically requires additional support structure to add slope to the existing low sloped modified bitumen, single ply rubber or built up roof or insulation layers or possibly a wood layer to accept the new roof. The addition of a typical support structure makes this system difficult and expensive to apply effectively. Additionally, reroofing of low sloped roofs with metal is typically hard to effectively weatherproof due to the slope of the roof which results in a less then optimum downward drainage. Furthermore, the metal panels in the new roof are subject to considerable movement together with the building due to the expansion and contraction of the panels by heat, cold, wind, etc. making it extremely difficult to provide a satisfactory weatherproof seal along the seams and at the fastener locations since over time the panels and their seams tend to become loose and create a potential leak path.
A need therefore exists for a reliable and a weatherproof metal roof system for use to re-roof an existing low slope modified bitumen, single ply rubber or built up roof without adding slope.
The present invention generally relates to a metal roof system. In one aspect, a method of placing a roof system over an existing low slope modified bitumen, single ply rubber or built up roof is provided. The method includes measuring a slope plane of the existing low slope modified bitumen, single ply rubber or built up roof to determine the location of irregularity points. Thereafter, at least one shim member is placed proximate each low irregularity point and at other predetermined locations. Next, an air space is formed between the existing low sloped roof and the roof system and then the roof system is operatively attached to the existing low sloped roof.
In another aspect, a method of placing a roof system over an existing low sloped roof is provided. The method includes placing at least one shim member proximate each irregularity point on the existing low sloped roof and at other predetermined locations. The method further includes reducing the heat transfer from the roof system to a building or structure below by forming an air space between the roof system and the existing low sloped roof. Further, the method includes operatively attaching the roof system to the existing low sloped roof.
In yet another aspect, a method of placing a roof system over an existing low sloped roof is provided. The method includes measuring a slope plane of the existing low sloped roof to determine the location of irregularity points and then placing at least one shim member proximate each low irregularity point and at other predetermined locations. The method also includes directing the thermal movement of the roof system by employing a plurality of fixed and floating clips at predetermined locations between the roof system and the existing low sloped roof and then operatively attaching the roof system to the existing low sloped roof.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The present invention generally relates to a metal roof system for use on an existing low sloped modified bitumen, single ply rubber or built up roof. The metal roof system is comprised of clips, shims, roof panels, and other components. Prior to installing the metal roof system, the existing low sloped modified bitumen, single ply rubber or built up roof must be examined to determine if it is suitable for a retrofit. For example, the existing roof decking is examined to determine if the decking is capable of holding fasteners. Additionally, the structure of the existing roof is examined to determine if the structure is capable of holding additional weight. After the existing low sloped roof has been completely examined and has met certain criteria, the metal roof system of the present invention may be employed in accordance with the method described herein. To better understand the novelty of the apparatus of the present invention and the methods of use thereof, reference is hereafter made to the accompanying drawings.
The sidewall arrangement 150 includes a plurality of shims 165 or bearing plates positioned at predetermined locations along on top of the existing roof 10. Prior to positioning the shims 165, the slope of the existing roof 10 is measured by a level device (not shown). The level device is used to determine the amount of shimming that will be required to make the roof system 100 straight and true. Next, the shims 165 are used to fill low spots or irregularities and other predetermined locations on the existing roof 10 to ensure that the roof system 100 is substantially without dips which typically hold water. It should be noted that a plurality of shims may be employed at any one location without departing from principles of the present invention. In one embodiment, the shims 165 are constructed from a plastic or composite material. Additionally, the shims 165 or bearing plates are used to increase the contact surface area between a clip 120 and the existing roof 10. Furthermore, the shims 165 are used to create an airspace 135 between the existing roof 10 and the roof system 100.
The airspace 135 is generally used as insulation to reduce the amount of heat transferred from the roof system 100 through the existing roof 10 into the building or structure below (not shown). In reducing the amount of heat transferred into the building or structure below the roof system 100, the energy required to heat or cool the building or structure is subsequently reduced. In one embodiment, a radiant barrier may be disposed in the airspace 135 to further reduce the amount of heat transfer between the roof system 100 and the building or structure below. It should be understood, however, that any form of insulation may be employed in the airspace 135 without departing from principles of the present invention
The sidewall arrangement 150 further includes a plurality of clips 120 positioned on top of the shims 165. The clips 120 are secured to the existing roof 10 by a plurality of fasteners 130. The primary function of the clips 120 is to secure the roof system 100 to the existing roof 10. More particularly, the clips 120 provide a means of supporting a roof panel 125 and holding new roof panels together. The clips 120 may be a fixed clip which is secured at one location or a floating clip which is capable of moving a predetermined distance. The floating clip allows the panel 125 to move as the panel 125 expands or contracts due to heat, cold, etc. Therefore, the placement of the fixed and floating clips at predetermined locations on the existing roof controls the direct thermal movement of the roof system 100. In one embodiment, the fixed clips will be used in the middle area or top area of the roof system 100 and all other clips will be floating clips installed in such a manner where a sliding mechanism is in the center of the clip allowing the panel to move in either direction. Another function of the clips 120 adjacent the wall 155 is to support a sidewall cleat 110.
As illustrated in
As illustrated in
The roof panel 225 and other main roof panels are typically continuous along their entire length from the ridge or headwall to the eave with no end laps. In one embodiment, the roof panel 225 and other roof panels (not shown) in the roof system 100 have different panel widths to ensure that the last panel seam lands at a predetermined distance from a penetration or a wall. Additionally, in another embodiment, the roof panel 225 and other panels in the roof system 100 have a vertical seam arrangement, thereby allowing versatility and more complex roof geometry.
As shown, an upper zee 205 is attached to an upper end of the lower zee 210 by a plurality of fasteners 170. Additionally, the tape seal 140 is disposed between the upper and lower zees 205, 210 to create a fluid tight relationship therebetween. The upper zee 205 is used to raise the perimeter of the roof system 100 along the headwall 245 or ridge to ensure a weatherproof arrangement between the roof system 100 and the building or structure below. The headwall arrangement 200 also includes a headwall trim 220 operatively attached to the upper zee 205 by fasteners 170. The headwall trim 220 is used to direct particles, such as water, toward the roof panel 225. Typically, a seal member (not shown) is employed between the headwall trim 220 and the headwall 245 to create a sealing relationship therebetween.
Referring back to
As illustrated in
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.